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Potential functions allow the definition of both an implicit surface and its volume. In this representa-
tion, two categories can be distinguished: bounded and unbounded representations. Boolean composi-
tion operators are standard modelling tools allowing complex objects to be built by the combination of
simple volume primitives. Though they are well defined for the second category, there is no clear def-
inition of the properties that such operators should satisfy in order to provide bounded representation
with both smooth and sharp transition. In this paper, we focus on bounded implicit representation. We
first present fundamental properties to create adequate composition operators. From this theoretical
framework, we derive a set of Boolean operators providing union, intersection and difference with
or without smooth transition. Our new operators integrate accurate point-by-point control of smooth
transitions and they generate G1 continuous potential fields even when sharp transition operators are
used.
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1. Introduction

Providing interactive, accurate and intuitive control of shapes is a fundamental issue in the
development of three-dimensional modelling techniques. Direct manipulation of meshes,
parametric shape representations and, more recently, subdivision surfaces are common and
useful solutions adopted by most commercial software. However, implicit volume mod-
els 1,2 are rapidly becoming a practical alternative to these methods due to the increase
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in computer power and storage capacity of modern workstations combined with the latest
developments in graphics hardware.

Among the advantages of implicit surfaces we notice their natural blending prop-
erty 3,4,5, the true three-dimensional representation of volumes, the efficiency for collision
tests ?, the Boolean composition of their volume by simple function composition 6,8,9,10

and finally their very compact functional representation.
Two general implicit representations can be distinguished: A bounded representation

where the function defining the volume returns a constant value outside the boundary
(known as “Metaballs” 11 or “Soft Objects” 12), and an unbounded representation (such
as R-functions 8,9) where the function varies in the whole space. Unbounded representa-
tion provides a general implicit volume representation 13 and therefore, a wide variety of
modelling operators such as sweeping by moving solids 14, Boolean composition with soft
transition 9,15,16,17 and Constructive Volume Geometry algebra 18, have been proposed.
Due to their global definition, it is difficult to provide both accurate and interactive surface
rendering 30. The local representation of bounded objects is better suited for this purpose.
“Soft Objects” are more popular for their automatic blending property and whereas many
blending functions have been presented in the literature (see 20,21,22 for a summary), as
far as we know, since Ricci 6, no consequent improvement has been proposed for Boolean
composition operators on “Soft Objects”. Under its actual form, composition with sharp
transition generates undesirable discontinuities in the potential field and smooth composi-
tion provides a very limited control of the form of the transition.

Smooth transitions in the composition operators have become a standard tool for im-
plicit modelling. Intuitive parameters for control are necessary in order to allow the user
to design the desired shape. On the other hand it has been shown that the local definition
of the bounded representation is a fundamental advantage which provides complete inter-
active modelling tools 23,24. Therefore providing Boolean composition operators (with or
without smooth transition) for bounded implicit primitives with properties well suited for
CSG compositions remains an open, rather important problem.

In this paper, we first state the limits of the actual methods used to combine bounded
objects. We then present specific properties that composition operators should satisfy in
order to provide the surface resulting from a composition with, at least, a G1 continuous
potential field. We introduce a generic family of composition functions based on arc-of-
ellipses. From this general function representation, we derive new operators to combine
bounded primitives with both smooth transition integrating “point-by-point” control of the
shape (as introduced by Barthe et al 25), and sharp transition with a G1 continuous potential
field everywhere outside the surface and the boundary.

2. Related works

“Metaballs” 11 or “Soft Objects” 12 are bounded objects defined by a potential function
f : R

3 → R. A single primitive, also called “skeleton primitive”, is first defined from a
simple geometric object S (the skeleton) such as a point, a line, a polygon, etc. Then one
has to choose a metric d which is generally the Euclidean norm. The potential function f
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is defined as a function of the distance with respect to the norm d from the skeleton S to
points p of R3:

f : R
3 → R

p → f (r) with r = d(S, p).
(1)

We denote r as d(S, p). The primitive’s boundary is defined by a chosen scalar R called
“radius of influence”. The function f equals 0 if r ≥ R and it decreases from 1 to 0 when r
increases from 0 to R, following a Gaussian-like variation. The surface is defined by the set
of points p0 ∈ R

3 such that d(S, p0) = r0 and f (r0) = C, where C is a pre-chosen value in
(0,1) (usually 1/2), and the volume object is defined by the set of points of R

3 for which
f (r) ≥ C (see Figure 1). A wide variety of primitives are available 4,26, and the blend of
a set of n primitives is automatically computed by summing their potential functions f i

(i = 1..n):

F ( fi) =
n

∑
i=1

fi, (2)

where F is a new potential function which has the same analytic properties as functions
fi. Many different field functions fi 20,21,22 and blending models 27,28 have been proposed
to control the smoothness of the transition region, but the operators remain limited to the
blending and the control of which primitives must and must not blend. The locality of the
definition and the capacity to be automatically blended allow modelling techniques based
on these objects to be interactive 24,29.

Fig. 1. Graph of a potential function f defining a “Soft Object”.

CSG composition operators are already supported by bounded primitives (using the
Ricci’s min/max operators 6) but discontinuities are introduced in the gradient of the po-
tential field of the resulting object, altering the smoothness of the transition when it has to
be blended (Figure 2). This is undesirable.

A solution using Ricci’s super-elliptic operator 6 to apply binary union and binary
intersection operators with smooth transitions to “Soft Objects” was used by Wyvill et al23

(see Equation 3), and extended to n-ary operations.

G( f1, f2) = ( f1
n + f2

n)
1
n . (3)
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Fig. 2. On the left, the two bottom spheres are first combined (union) with sharp transition using Ricci’s max
operator. The resulting object is then combined with the top sphere (union) using smooth transition. We can
see the undesirable discontinuity in the middle of the smooth transition. On the right we show a correct smooth
transition.

This operator has a single parameter n which controls the transition sharpness. There
is no explicit link with some geometric parameter allowing the user to interactively select
the beginning, the end, or the form of the transition. The user is limited to approximately
select either, the global sharpness of the transition, or where the transition starts on one
of the combined primitives, or where it finishes on the other one (in the case of a binary
operator).

Recently Barthe et al. 30 and Hsu et al. 17 introduced new CSG opertors with smooth
transitions. In Hsu et al., operators can be n-ary and a lot of flexibility is provided in the
choice of the function defining the operator. However, the control over the shape remains
limited and the operator is very expensive to evaluate. On the other hand, Barthe et al.
proposed binary operators based on 16 which are cheaper to evaluate and which provide a
high level of control on the shape of the transition. Since our goal is to allow the user to
accurately control the shape of the smooth transition, we use operators presented in 16 as
a basis to develop our operators for ”soft objects”.

3. Fundamental properties

As far as we know, there is no clear definition of what is to be expected from a CSG
Boolean composition operator on bounded implicit primitives. However, some first insights
are given by the properties satisfied by the composition operators on unbounded primi-
tives 5,25. The main difference between the two representations is the boundary. While we
are expecting equivalent properties in terms of potential field variations and shape con-
trol, we also have to maintain a consistent potential field around and at boundaries. The
constraints can be specified as follows:

• The potential field produced by the composition operator must be at least G1
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continuous everywhere inside the object boundary.
• The “automatic blending” property by potential summation must be conserved

through the composition.
• The result of a composition must be a bounded object having its bounding box

easily computed from those of the combined primitives.
• For smooth composition, the extremities of the transition should be able to be

intuitively selected once the objects’ boundaries (radii of influence) are fixed.

In order to introduce these properties, we first look at the expected result and work
backwards, up to the composition operator. We only present the union Boolean operator
because once this case is understood, properties for intersection and difference can be
directly derived without major difficulty.

Figure 3 illustrates the result of the union of two spheres with smooth transition. Object
i (i = 1,2) is defined by a potential function fi. The equation fi = C represents object’s i
surface, and inequalities fi > C and fi < C define the inside and outside of object i respec-
tively. Equation fi = 0 defines the part of space R3 on and outside object’s i boundary (zone
4 in Figure 3).

From the graph shown in Figure 3 we plot the union binary combination operator G
(Figure 4) and we deduce the definition of operator G in each zone:

• In zone 1, f1 > 0 and ∀ f1, f2 = 0. Therefore, in this area, operator G is a one-
dimensional map G( f1,0) which scales the values of function f1.

• In zone 2, f2 > 0 and ∀ f2, f1 = 0. Therefore, in this area, operator G is a one-
dimensional map G(0, f2) which scales the values of function f2.

• In zone 3, f1 > 0 and f2 > 0. Operator G is a two-dimensional function G( f1, f2)

which defines a two-dimensional potential field.
• In zone 4, f1 = f2 = 0. Here, G( f1, f2) = G(0,0) = Cte, Cte ∈ R.

Function G can define a two-dimensional potential field only in zone 3. Hence, the
transition between the combined primitives has to be fully defined in this zone, and no
transition can be performed outside one of the objects boundary. This also implies that
the continuity between the transition and the combined primitives has to be ensured in this
zone, or at its boundary (as shown with small circles in Figure 4). Since we want to produce
smooth potential fields, the continuity at the junction has to be at least G1 i.e. the partial
derivatives of function G must satify the following properties: ∂G/∂ f2 = 0 at the junction
between zones 1 and 3, and ∂G/∂ f1 = 0 at the junction between zones 2 and 3.

In zone 1, function G scales the values of f1 and if G( f1,0) = f1, operator G reproduces
the metric and the variations of function f1, and the potential field defined by f1 is preserved
through composition. This property avoids the introduction of non-uniform variations in
the potential fields which could alter the regularity of the transition and the “automatic
blending” property. In zone 2, function G scales the value of f2 and as argued for zone 1, a
pertinent definition of operator G is: G(0, f2) = f2.

In zone 4, operator G is constant. It represents the outside of the resulting object bound-
ary, and since it has to be continuously (at least G1) joined with the other zones, an obvious
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Fig. 3. Graph illustrating a 2D section of the potential fields when two spheres are combined (union) with smooth
transition. Zone 1 is inside object 1 boundary and outside object 2 boundary, zone 2 is inside object 2 bound-
ary and outside object 1 boundary, zone 3 is the intersection of objects’ boundaries and zone 4 is outside both
boundaries. Lines represent sections of iso-surfaces. In zone 3, we also show sections of the smooth transition.

Fig. 4. Plot of the union binary composition operator G which generates the smooth composition shown in Fig-
ure 3. In order to better correspond to Figure 3, zone 1 can be reduced to the X axis (Y = 0,∀X), zone 2 can be
reduced to the Y axis (X = 0,∀Y ) and zone 4 can be reduced to the point (0,0) (X = 0 and Y = 0).

value is: G(0,0) = 0.
These fundamental statements give us a theoretical basis to provide Boolean composi-

tion operators for bounded implicit primitives. Note that the bounding box of the resulting
object is easy to compute. For the union operator, the box is the union of those of the
two combined primitives. For the intersection operator, it is their intersection and for the
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difference it is the box of the object defined by function f1 (for the case ob ject1\ob ject2).
We now emphasize the link between composition operators for unbounded primitives

and bounded primitives. If we look at Figure 4 carefully, we see that the operator which
combines bounded objects with smooth transition also combine the zero-isosurface with
sharp transition (with a smooth potential field everywhere else). Hence, as done in30,17, it
is desirable to study operators combining unbounded implicit primitives with sharp tran-
sition 9,16,17. Note that those proposed in 9 as well as operators with smooth transition
for unbounded objects do not satisfy the continuity conditions at the junction between the
different zones.

4. Generic arc-of-an-ellipse function

In this Section, we introduce the general form of an operator G which satisfies the condi-
tions presented in the previous Section. It is based on a geometric construction of function
G and a specific adaptation has already been used in 16 to combine unbounded implicit
primitives with sharp transitions.

In order to respect the different constraints, operator G is piecewise defined. In zones
1 and 2, it returns the value of f1, respectively f2 (as suggested in Section 3). In zone 4 it
returns 0 and in zone 3, we propose to link the vertical iso-lines defined by G( f1,0) = f1

to the horizontal iso-lines defined by G(0, f2) = f2 with a quarter of an ellipse (Figure 5)
defined by the following equation:

(Xp−Xp0)
2

(CP −Xp0)2 +
(Yp −Yp0)

2

(CP −Yp0)2 = 1, (4)

where a point P ∈ R
2 has the coordinates P( f1 = Xp, f2 = Yp) and the potential in this

point is G(P) = G(Xp,Yp) = Cp. The center of the ellipse passing by the point P is the
point P0(Xp0,Yp0).

Fig. 5. Plot of the general form of a union composition operator G. The arc-of-an-ellipse links the horizontal and
vertical half-lines with a G1 continuity.
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The junction between the constant map G( f1,0) = f1 (or G(0, f2) = f2) and the
quadratic arc-of-an-ellipse is G1 continuous and they are both internally G∞.

In Equation 4, unknowns Xp0 and Yp0 are to be expressed in terms of Cp and the equa-
tion is solved to compute the value Cp returned by operator G at a point P(Xp,Yp). In the
following Sections, we use two different geometric constructions based on this general
definition in order to provide Boolean composition with and without smooth transition.

5. Operators with smooth transition

Our operator G is already designed to conserve the combined primitives’ metrics outside
the transition. All we have to do is to define boundaries for the arc-of-an-ellipse. For this
purpose, we introduce two angles θ1 and θ2, as illustrated in Figure 6, and it allows us to
determine the unknowns Xp0 and Yp0:

Xp0 =
Cp

tan(θ2)
= Cp cot(θ2) and Yp0 = Cp tan(θ1). (5)

The adaptation of operator G to bounded primitives composition operators with smooth
transitions is denoted G̃∪.

Fig. 6. Graph of our operator G̃∪. Angles θ1 and θ2 are introduced in order to bound the arc-of-an-ellipse.

To allow accurate and intuitive control, the transition must be defined by control points
on the C iso-potential surface. The first adaptation is to define angles θ1 and θ2 from the
user Euclidean space R

3 by selecting control points p1(x1,y1,z1) and p2(x2,y2,z2) on the
combined objects’ surface, respectively f1 =C and f2 =C (Figure 7). We notice that points
p1 and p2 must be selected inside the intersection of the objects’ boundaries because, no
transition can be defined outside these limits (as explained in Section 3). Our geometric
construction of operator G̃∪ leads us to the following equation (equations of operators G̃∩
and G̃\ are given in Appendix A):
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Points p1 ∈ R3 and p2 ∈ R3 selected by the user

correspond to points P1 and P2 such as: P1(C, f2(p1)) and P2( f1(p2),C).

θ1 = angle([OX), [OP1)) , θ2 = angle([OX), [OP2))

At point P(Xp,Yp) : θp = angle([OX), [OP))

G̃∪(Xp,Yp) =





Xp if Yp = 0
Yp if Xp = 0
Xp if θp ≤ θ1

Yp if θp ≥ θ2

Cp where Cp is the solution of:
(Xp−Cp.cot(θ2))

2

(Cp−Cp.cot(θ2))
2 +

(Yp−Cp.tan(θ1))
2

(Cp−Cp.tan(θ1))
2 = 1

if θp ∈ (θ1,θ2)

(6)

Fig. 7. Union with smooth transition controlled point-by-point in the user Euclidean space and its function repre-
sentation.

The closed form solution for the evaluation of Cp in Equation 6 is given in 16. With
operator G̃∪ in this form, only the boundaries of the transition can be controlled. For fixed
angles θ1 and θ2 it is necessary to be able to choose the smoothness of the transition. This
leads us to add at least one control point. In fact, adding one or more control points brings
us to the same solution. To conserve the G1 continuity in the field, we multiplyG̃∪(P) by
a function m(θP) where m is an interpolation function of R → R when θP ∈ [θ1,θ2] and
m(θP) = 1 otherwise. A valid graph for function m is shown in Figure 8. The link with
the control points is done as follows: m(θ1) = 1,m′(θ1) = 0 and m(θ2) = 1,m′(θ2) = 0
to ensure G1 continuity at the beginning and the end of the transition. Then ki (i > 2) are
computed from the control points pi(xi,yi,zi) (i > 2) selected in the Euclidean modelling
space R

3. Point pi allows us to compute the point Pi( f1(pi), f2(pi)), followed by θPi and
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Ci = G̃∪(Pi). The corresponding point ki (i > 2), to interpolate, has then the coordinates:
ki(θi,C/Ci). We have chosen one-dimensional cubic polynomial splines 31 to define func-
tion m when θP ∈ [θ1,θ2] for their adequate smoothness and oscillation properties, and
for their inexpensive computation cost. We finally obtain the union Boolean operator with
“functionally defined” transitions for bounded objects in Equation 7.

G̃∪
f inal

(P) = m(θP).G̃∪(P) (7)

The same path has been followed to build the intersection Boolean operator with “func-

tionally defined” transitionG̃∩
f inal

(P) = m(θP).G̃∩(P) from G̃∩(P).

Fig. 8. Graph of an interpolation function m(θp) used to deform the operator G̃∪ and allow the control point-by-
point of the transition.

The difference operator G̃\ cannot be directly derived with the standard method used

for unbounded primitives: G̃\( f1, f2) = G̃∩( f1,− f2). Ricci 6 proposed the realization of the
difference operator on bounded implicit objects using the intersection operator applied on
f1 and (2C− f2) instead of f2. The same method used on our intersection operator G̃∩

f inal

gives the difference Boolean operator with “functionally defined” transition:G̃\
f inal

. Fig-
ure 9(c) shows a ring object built from the ring of Figure 9(a) and a gem similar to that
in Figure 9(b). The gem has been further modified by two profile curves. The first profile
curve modifies the smooth intersection operation used to construct the gem. The second
modifies the difference operation between the gem and a sphere (implicit point primitive)
at its center. Finally, another sphere has been added with a smooth union operation. The
gem is then joined to the ring using another smooth union with a profile curve. Table 1
illustrates different union composition operators with smooth transition and allows us to
compare of the computation times, the potential field variations and the shape produced at
the transition level. The increase of the evaluation cost of our operators is compensated by
the controllability of the form of the transition.

A function m of R → R is used to provide point-by-point control. Because such a
function must be single valued, we do not obtain a true free-form control of the transition
(as proposed in 16 for unbounded primitives). However, we deal with bounded objects.
The transition in operators like ours is then essentially used to smooth the junction of
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Table 1. Time in milliseconds to compute potential function values for
a 1283 grid (2097152 evaluations), using a 1.0 GHz AMD Athlon pro-
cessor with 512 Mbytes of DDR memory. (a) Using Ricci’s operator
with n = 1, (b) Ricci’s operator with n = 3, (c) Ricci’s operator with
n = 7, (d) operator g̃∪, (e) operator g̃∪

f inal with 3 control points and
(f) operator g̃∪

f inal with 5 control points. The middle column shows
two-dimensional sections of the full grid.

time 2D section 3D object

(a) 246

(b) 884

(c) 940

(d) 1005

(e) 1933

(f) 2315
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(a)

(b) (c)

Fig. 9. (a) The ring is built using two implicit cylinders and applying subtraction, the center image uses the
Ricci CSG subtraction operator, the right hand image, our smooth CSG subtraction G̃\. (b) The gemstones are
built from implicit box primitives and an implicit cone, center image uses the Ricci intersection operator, right
hand image our smooth intersection G̃∩. (c) Applying the smooth CSG operators G̃∪, G̃∩, G̃\ and profile curve

operators G̃∩
f inal

, G̃\
f inal

on bounded implicit objects.

two primitives when they are combined. We assume that in a general case, to create the
desired smooth transition, three, four or five control points give enough flexibility. Free-
form curves are needed in very specific cases, and often it remains easier to build a new
primitive and to combine it with a smooth transition.

6. Operators with sharp transition

Our operator G combines the primitives’ boundaries with sharp transition and generates
a smooth G1 potential field everywhere else using an arc-of-an-ellipse. Since we want to
combine the object surfaces with sharp transition, we have to provide a solution where op-
erator G does not smooth both boundaries and C iso-surfaces, but still smooth the potential
field everywhere else. In order to satisfy this additional constraint, we propose the geo-
metric construction illustrated in Figure 10 and we denote our binary union operator with
sharp transition as Ĝ∪. Note that we cannot derive a simple solution using the operators
proposed in 30,17 because they generate discontinuities in the field around the origin (0,0),
at the level of the X and Y axes (see Figure 4).

This geometric representation leads us to the following definition of unknowns Xp0 and
Yp0:

In zone a: Xp0 = Yp0 =
C2

p

C
= CaC2

p with Ca =
1
C

(8)

in zone b: Xp0 = Yp0 =
√

CCp. (9)

Operators Ĝ∩ and Ĝ\ are presented in Appendix B and the closed form solution for the
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Fig. 10. Graph of our operator Ĝ∪. Both boundaries and C iso-surfaces are combined with sharp transition while
the potential field is G1 continuous everywhere else.

evaluation of Cp in Equation 10 is given in Appendix C. Figure 11 illustrates the effect of
operator Ĝ∪ on both shape and potential field, and Figure 2 shows its smoothing property
when the resulting object is to be combined with smooth transition.

Ĝ∪(Xp,Yp) =





Xp if Yp = 0
Yp if Xp = 0
Yp if Yp ≥

√
CXp and Yp ≤C

Xp if Yp ≤CaX2
p and Xp ≤C

Yp if Yp ≥CaX2
p and Yp > C

Xp if Yp ≤
√

CXp and Xp > C
Cp where Cp is the solution of:

(Xp−CaC2
p)

2
+(Yp−CaC2

p))
2

(Cp−CaC2
p)

2 = 1

if P(Xp,Yp) is in zone a
Cp where Cp is the solution of:

(Xp−
√

CCp)
2
+(Yp−

√
CCp))

2

(Cp−
√

CCp)
2 = 1

if P(Xp,Yp) is in zone b

(10)

The evaluations of Ĝ∪ for a 1283 grid (2097152 evaluations), using a 1.0 GHz AMD
Athlon processor with 512 Mbytes of DDR memory takes 2010 milliseconds (to create
the object of the central image in Figure 11). We notice that we first store the combined
primitives in regular grids. Therefore, the given time does not depend on the complexity
of the combined objects, and the composition of two complex primitives leads us to the
same result. What is time consuming is the complexity and the expensive computation of
Ĝ∪ when it has to be evaluated in zones a and b. However, we are dealing with bounded
objects, and they do not need to be evaluated at a point of R

3 which is located outside their
bounding-box. Moreover, if the point is inside the box, the expensive evaluation occurs
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Fig. 11. From left to right: Plot of our operator Ĝ∪, its effect on the composition of two implicit bounded spheres
and a 2D section of the generated potential field. In the left and right Figures, the white area represents the inside
of the object and the dark area, the outside.

only if the point is also inside the intersection of the combined objects boundaries. This
significantly reduces the complexity brought by our operator when it is used to model a
complex object.

7. Example

Figure 12 shows a teddy bear made of some simple primitives and the binary Boolean
composition operators described in this paper. Figure 13 shows an arm of the teddy bear.
The arm is the smooth difference between a scaled point primitive and a plane primitive.
The shape of the end of the arm is created by placing controlpoints. Figure 14 shows an ear
of the teddy bear. The ear is the sharp difference between a point primitive and the sharp
union of a sphere and a plane. Once created, the ear is combined to the head with a smooth
transition.

We point out that it is obvious that our operators are computationally expensive (as
shown in Table 1). However, they have the fundamental property to be bounded, and hence,
our operators have to evaluated only in potential field areas where implicit primitives are
combined. In other part of the space, the computational complexity remains the one of the
combined primitives themselves.

Figures 9,12,13 and 14 are computed using a standard ray marching algorithm without
any optimisition. The computation of Figure 12 took ten hours on an Intel PIII 1.3Ghz. The
use of a faster raytracing technique will significantly reduce this time, but fast rendering is
out of the scope of this paper.

8. Conclusion

We have presented a theoretical background which gives us a basis for the construction
of binary Boolean composition operators for bounded implicit primitives. Boolean com-
position operators with smooth or sharp transition can be derived while preserving a G1

continuous potential field. The operatorsG̃ f inal greatly increase accuracy and freedom in
the control of the transition when primitives are smoothly combined. The operators Ĝ limit
the discontinuities in the composed objects to a minimum, so these objects can be used in
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Fig. 12. Teddy bear made from simple primitives and the operations described in this paper

Fig. 13. An arm of the teddy bear. White circles indicate controlpoints.

Fig. 14. An ear of the teddy bear.
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other operations without generating G1 discontinuities in the transition area, so that even
after several Boolean compositions, the resulting object still have the “automatic blending”
property.

However, our operators remain expensive to evaluate and they are still limited to binary
compositions. Hence, we can say that these results provide a basis to study new compo-
sition operators for bounded implicit primitives, and improvements can be investigated in
order to propose fast evaluated operators or operators satisfying specific properties like the
Lipschitz 32 condition to accelerate the rendering for example. The extension from binary
operators to n-ary operators is also interesting. However, we did not find any direct deriva-
tion of our operators in order to define n-ary operators and the definition of n-ary operators
providing both accurate control and smooth transion seems to be a challenging problem.
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Appendix A. Operators G̃∩ and G̃\

• Operator G̃∩:

Points p1 ∈ R
3 and p2 ∈ R

3 selected by the user

correspond to points P1 and P2 such as: P1( f2(p1),C) and P2(C, f1(p2)).

θ1 = angle([OX), [OP1)) , θ2 = angle([OX), [OP2))

At point P(Xp,Yp) : θp = angle([OX), [OP))

G̃∩(Xp,Yp) =





0 if Yp = 0
0 if Xp = 0
Yp if θp ≤ θ1

Xp if θp ≥ θ2

Cp where Cp is the solution of:
(Xp−Cp.cot(θ1))

2

(Cp−Cp.cot(θ1))
2 +

(Yp−Cp.tan(θ2))
2

(Cp−Cp.tan(θ2))
2 = 1

if θp ∈ ]θ1,θ2[

(A.1)

• Operator G̃\:

Operator G̃\ is directly obtained from operator G̃∩ using the following expression:

G̃\( f1, f2) = G̃∩( f1,2C− f2) (A.2)
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Appendix B. Operators Ĝ∩ and Ĝ\

• Operator Ĝ∩:

Ĝ∩(Xp,Yp) =





0 if Yp = 0
0 if Xp = 0
Xp if Yp ≥

√
CXp and Xp ≤C

Yp if Yp ≤CaX2
p and Yp ≤C

Xp if Yp ≥CaX2
p and Xp > C

Yp if Yp ≤
√

CXp and Yp > C
Cp where Cp is the solution of:

(Xp−
√

CCp)
2
+(Yp−

√
CCp))

2

(Cp−
√

CCp)
2 = 1

if P(Xp,Yp) is in zone a
Cp where Cp is the solution of:

(Xp−CaC2
p)

2
+(Yp−CaC2

p))
2

(Cp−CaC2
p)

2 = 1

if P(Xp,Yp) is in zone b

(B.1)

• Operator Ĝ\:

Operator Ĝ\ is directly obtained from operator Ĝ∩ using the following expression:

Ĝ\( f1, f2) = Ĝ∩( f1,2C− f2) (B.2)

Appendix C. Closed form solution for the evaluation of Cp in our new
composition operators with sharp transition

Solution for the equation:

(Xp −CaCp
2)2 +(Yp−CaCp

2)2

(CP −CaCp
2)2

= 1 (C.1)

CP is one of the roots of the following equation:

Ca
2C4

p +2CaC
3
p − (2CaXp +2CaYp +1)C2

p +X2
p +Y 2

p = 0 (C.2)

CP is computed with:

S11 = 48C3
aY 2

p Xp+64C3
aY 3

p +78C2
aY 2

p +64C3
a X3

p+48C3
a X2

pYp+78C2
aX2

p−24C2
aXpYp−6CaXp−6CaYp−1

S12 = −3(X2
p +Y 2

p )(−64C3
aX3

p +16C3
aX2

pYp −35C2
aX2

p +64C4
aX2

pY 2
p +72C2

aXpYp)

S13 = −3(X2
p +Y 2

p )(16C3
aY 2

p Xp +14CaXp +14CaYp −64C3
aY 3

p −35C2
aY 2

p +2)

S1 = S11 +6 Ca

√
S12 +S13

S2 =
5 3√S1+4 3√S1CaXp+4 3√S1CaYp+ 3√S1

2
+16C2

aY2
p+16C2

aX2
p+8C2

aXpYp+4CaXp+4CaYp+1
3√S1

S3 =
√

S2
3
√

S1CaYp

S4 =
√

S2
3
√

S1CaXp
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S5 =
√

S2
3
√

S1

S6 =
√

S2
3
√

S1
2

S7 =
√

3 3
√

S1

R1 = −10S5−8S4−8S3+S6+16
√

S2C2
aY 2

p +16
√

S2C2
a X2

p+8
√

S2C2
a XpYp+4

√
S2CaXp+4

√
S2CaYp+

√
S2

R2 = 12S7(CaXp +CaYp +1)

Cp =
1

6 Ca


−3+

√
3S2−

√
−3(R1 +R2)

S5


 (C.3)

We notice that in the previous equation, values Si and R1 can be complex. Therefore,
all the computations have to be done with complex numbers, even if the result Cp is real.

Solution for the equation:

(Xp −
√

CCp)
2 +(Yp−

√
CCp)

2

(CP −
√

CCp)2
= 1 (C.4)

CP is one of the roots of the following equation:

−C2
p +2Cp

√
CCp +CCp −2(Xp +Yp)

√
CCp +X2

p +Y 2
p = 0 (C.5)

CP is computed with:

S11 = −18C5Xp−18C5Yp−36C4X2
p−36C4Y 2

p +108C4XpYp−C6

S12 = 18C8X3
pYp−72C7Y 3

p X2
p−36C7XpY 4

p −3C10XpYp+18C8XpY 3
p −48C9XpY 2

p

S13 = 36C6X2
pY 4

p −36C7X5
p+3C9X3

p+42C8X4
p+3C9Y 3

p +42C8Y 4
p −36C7Y 5

p

S14 = 12C6X6
p+12C6Y 6

p −72C7X3
pY 2

p −48C9X2
pYp+165C8X2

pY 2
p +36C6X4

pY 2
p −36C7YpX4

p

S1 = S11 +12
√

S12 +S13 +S14

S3 = 3
√

S1

S2 = (15C2S3 +3S2
3 +36C3Xp +36C3Yp −36C2X2

p −36C2Y 2
p +3C4)/S3

S4 =
√

S2

R1 = 10C2S3S4−S4S2
3−12C3XpS4−12C3YpS4+12C2X2

p S4+12C2Y 2
p S4−C4S4

R2 = 36C3S3−36C2XpS3−36C2YpS3

CP =
1
C


C

2
− S4

6
+

1
6

√
3(R1 −R2)

S3S4




2

(C.6)

We notice that in the previous equation, some values can be complex. Therefore, all the
computations have to be done with complex numbers, even if the result Cp is real.
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