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ABSTRACT
We present methods for automatically producing summary excerpts
or thumbnails of music. To find the most representative excerpt, we
maximize the average segment similarity to the entire work. Af-
ter window-based audio parameterization, a quantitative similarity
measure is calculated between every pair of windows, and the re-
sults are embedded in a 2-D similarity matrix. Summing the simi-
larity matrix over the support of a segment results in a measure of
how similar that segment is to the whole. This measure is maxi-
mized to find the segment that best represents the entire work. We
discuss variations on the method, and present experimental results
for orchestral music, popular songs, and jazz. These results demon-
strate that the method finds significantly representative excerpts, us-
ing very few assumptions about the source audio.

1. INTRODUCTION
As digital audio collections grow in size and number, audio sum-
marization, or “thumbnailing” has become an increasingly active
research area. Audio summaries are useful in applications such as
e-commerce and information retrieval, because of the large file sizes
and high bandwidth requirements of multimedia data. Quite often
it is not practical to audit an entire work, for example if a music
search engine returns many results each lasting several minutes. A
representative excerpt that gives a good idea of the work is thus is
desirable. Similarly, e-commerce music sites often make short song
segments available to preview before purchase. In an audio retrieval
system, it may make sense to judge the similarity of representative
excerpts of a work rather than the work as a whole, especially if the
analysis is computationally expensive. There is no point analyzing
an entire symphony if a reasonable index can be derived from a
ten-second excerpt.

For these applications, the segment must be a good representation
of the longer work. However, existing segmentation and excerpting
algorithms do little to guarantee this. Indeed, some approaches can
be as crude as to present, for example, the first thirty seconds of
an audio track as representing the whole work. This can be highly
unsatisfactory if, for instance, the bulk of a particular track bears
little resemblance to an idiosyncratic introduction.

We present a method for automatically producing excerpts of lin-
ear media (where “linear” implies a function of a one-dimensional
variable). Examples include audio and video, which are functions
of time, and text, which is a discrete function of file position. We
construct summaries using self-similarity analysis, which allows us
to study the structure in an audio file by measuring the pairwise
similarity between audio instants.

Here we assume the optimal excerpt is most similar, in an average
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Figure 1: Embedding pairwise similarity data in the similarity
matrix.

sense, to the piece as a whole. This approach does not rely on se-
mantic content that can’t be automatically extracted, and thus cannot
be considered optimal in that sense. For example, a summary of the
first movement of Beethoven’s Fifth Symphony without the famous
four-note theme would not be ideal by most standards. To rectify
this, the process can be weighted to reflect any available semantic in-
formation. Another possible desiderata for an audio summary is that
it contain all representative portions. For example, a popular song
containing verses, refrains and a bridge should arguably be summa-
rized by an example containing portions of all three segments. This
is generally not possible with a short, contiguous excerpt. In this
paper, our summaries will be continuous excerpts that are typically
much shorter than the source audio.

1.1 Related Work
There is a great deal of related work on summarization techniques
for text, audio, and video. Most summarization or excerpting tech-
niques start with an analysis of the structure or semantics of the
source material. The work on statistical text summarization uses
term frequency/inverse document frequency (tf/ idf) to select para-
graphs [1], sentences [9], or key phrases that are both representative
of the document and differentiate it from other documents. Au-
dio summarization techniques typically use a segmentation phase
followed by extraction of a representative excerpt from each seg-
ment. A subset of these excerpts are combined to summarize the
audio [6]. The work on scene transition graphs is a typical ap-
proach to abstracting video [8]. After video frames are clustered,
the keyframe closest to each cluster center is chosen to represent
that cluster. Other approaches attempt to summarize video using
various heuristics, often derived from an analysis of accompanying
closed captions [2]. In contrast, our summarization method is not
based on any prior segmentation or segment clustering. The result-
ing summaries are selected to maximize quantitative measures of
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Figure 2: Spectrogram data computed from artificial three-
tone audio data.

the similarity between candidate excerpts and the source audio as a
whole. Summaries of any desired length can be extracted, to support
browsing at varying levels of detail.

2. SELF-SIMILARITY ANALYSIS
In our analysis, the first step is to parameterize the audio. This is
typically done by windowing the audio waveform. Currently, we
convert the source audio to a 22.05 KHz mono format by resampling
or decoding a compressed format like MP3 (MPEG Layer 2 Level 3).
We then subdivide the audio into 2048 sample (92.87 ms) “frames”
at a 10 Hz rate. Each frame is then windowed with a Hamming win-
dow, and parameterized using Mel-Frequency Cepstral Coefficient
(MFCC) analysis (e.g. [7]). We have also successfully employed
standard spectrogram-based parameterizations. We achieve simi-
lar performance by reducing the dimension of uniformly-spaced 64
bin spectrograms via singular value decomposition (SVD). We are
currently using MFCCs as they provide a low dimensional data-
independent parameterization, which may be efficiently calculated
using freely available software. Many compression techniques such
as MP3 contain similar spectral representations which could be used
directly, avoiding the expense of audio decoding and reparameter-
izing. Regardless of the parameterization, the result is a compact
vector of parameters for every frame. Figure 2 shows the spec-
trogram for a synthetic three-tone test signal. This was generated
by concatenating 30 seconds of a 1 kHz sine wave, 40 seconds of
500 Hz, and 30 seconds of 2 kHz to result in a one-hundred second
signal. Because the 500 Hz portion is the longest, the ideal sum-
mary should consist primarily of the 500 Hz signal as opposed to
the shorter 1 KHz and 2 KHz segments.

2.1 Distance Matrix Embedding
Once the signal has been parameterized, it is then embedded in
a two-dimensional representation [3, 4]. The key is a measured
of the (dis)similarity between pairs of parameter vectorsvi andvj

calculated from framesi andj. A simple distance measure is the
Euclidean distance in theL-dimensional parameter space:

de(vi, vj) =

√√√√ L∑
l=1

(vi(l)− vj(l))2 . (1)

Another useful similarity measure is the scalar (dot) product of the
vectors. The dot product can be normalized to give the cosine of the
angle between the parameter vectors:

dc(vi, vj) =
< vi, vj >

‖vi‖ ‖vj‖
. (2)
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Figure 3: Similarity matrix for synthetic signal of Figure 2.

This is the cosine of the angle between the vectors and has the
property that it yields a large similarity score even if the vectors
are small in magnitude. For most applications, this significantly
improves performance over the Euclidean distance measure by re-
moving dependence on signal energy.

The distance measure is a function of two frames, hence instants in
the source audio. We consider the similarity between all possible
instants in a signal by embedding the distance measure in a two-
dimensional similarity matrix, as depicted in Figure 1. The matrix
S contains the similarity computed between all frame combinations,
such that the element at theith row andjth column is

S(i, j) = dc(vi, vj) . (3)

In general,S will have maximum values on the diagonal (because
every window will be maximally similar to itself); furthermore ifd
is symmetric thenS will be symmetric as well.

2.2 Visualizing Similarity Matrices
We visualizeS by assigning a brightness proportional to the similar-
ity measuredc(i, j) to each pixel(i, j). The resulting image reveals
the structure of the source audio. Regions of high self-similarity ap-
pear as bright squares along the main diagonal. Repeated sections
produce bright off-diagonal rectangles. If the work has a high degree
of repetition, this will be visible as diagonal stripes or rectangles,
offset from the main diagonal by the repetition time. The similarity
matrix for the synthetic three tone signal is shown in Figure 3. Each
portion of the signal is visible as self-similar white squares on the
diagonal. For example the 500 Hz tone extends from 30 seconds to
70 seconds on both time axes.

3. AUTOMATIC SUMMARIZATION
To find the segment of a work that best represents the entire work,
we wish to find the segment with maximum similarity to the whole.
In popular music, which commonly contains repeated elements such
as verses or choruses, we expect that the song’s most-repeated or
longest element will appear in the summary. This element is deter-
mined from the similarity matrix.

A simple example will illustrate the approach. Given the sequence
ABBBCC, we wish to find the most representative subsequence of
length three. For simplicity, the similarity measure is chosen to
be one if the sequence members match and zero otherwise. We
can computeS using a Hamming-like metric such that the distance
between two sequence elements is one if the elements are the same,
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Figure 5: Summary scoresQL(i) computed from the similarity
matrix of Figure 3 for L = 20, 30, and 40 seconds.

and zero otherwise:

S =


1 0 0 0 0 0
0 1 1 1 0 0
0 1 1 1 0 0
0 1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

 . (4)

For any subsequence, the average similarity between the subse-
quence and the entire sequence can be found by summing the
columns (or equivalently, rows) ofS corresponding to that sub-
sequence. In our example, we want to find the three-element sub-
sequence with maximal average similarity. There are four possi-
ble subsequences:ABB, BBB, BBC, andBCCwith column sums
seven, nine, eight, and seven, respectively. The highest scoring
subsequence isBBB, with a score of nine. This is the optimal
three-element contiguous summary of the sequenceABBBCC. Note
that this contains all the most frequent members (B) of the longer
sequence. The runner-up sequence isBBCwith a score of eight,
which contains both the most frequent and second-most frequent
members. The score can be normalized by the subsequence length
so that summaries of different lengths can be compared.

The previous example can be generalized to arbitrary sequence
lengths. Given a segment starting atq and ending atr, the av-
erage similarity of the segment is calculated as the sum of the self-
similarity between the segment and the entire work, normalized by
the segment length:

S̄(q, r) =
1

N(r − q)

r∑
m=q

N∑
n=1

S(m, n), (5)

whereN is the length of the entire work (width and height ofS).
This is shown schematically in Figure 4. A simple interpretation
of S̄(q, r) is the average of similarity matrix rows over the interval
q, · · · , r (or equivalently, the columns). Thus intervals with large
similarity to the work as a whole will have a larger averageS̄(q, r).

If a weighting functionw is known, it can be applied to find a
weighted average as:

S̄w(q, r) =
1

N(r − q)

r∑
m=q

N∑
n=1

w(n)S(m, n). (6)

This can be maximized to find the optimal weighted summary. Typ-
ical weighting functions might include aw that decreases with time,
so segments at the beginning of the work are weighted more highly
than those at the end. Alternatively,w might include a measure of
loudness, favoring generally louder sections such astutti (all instru-
ments playing) or choruses rather than verses. Any other information
knowna priori or deduced can be incorporated intow.

To find the optimal summary of lengthL, we find the excerpt of
that length with the maximum summary score (Eq. (5)). Define the
scoreQL(i) as

QL(i) = S̄(i, i + L) =
1

NL

i+L∑
m=i

N∑
n=1

S(m, n) (7)

for i = 1, · · · , N −L. The best starting point for the excerpt is the
time q∗L that maximizes the summary score:

q∗L = ArgMax
1≤i≤N−L

QL(i). (8)

The best summary is then the excerpt of lengthL starting atq∗L and
ending at timeq∗L + L.

Figure 5 shows values ofQL(i) versus start timei, for summary
lengthsL of 20, 30, and 40 seconds. All show a maxima or peak at
q∗ = 30, which is the start time of the 500 Hz tone (the most repre-
sentative segment of the work). TheL = 20 curve has a maximum
that extends from 30 seconds to 50 seconds, because any 20 second
excerpt starting within that interval will consist solely of the 500
Hz representative tone. Thus for this example and segment lengths,
picking any maximal pointq∗L results in an excerpted segment that
consists completely of the 500 Hz tone. This is the desired behav-
ior in a quasi-probabilistic sense: any infinitesimally short sample
taken uniformly randomly from the the source signal will result in
a 500 Hz tone 40% of the time, and 1 or 2 kHz only 30%. Thus
the selected segment contains the excerpt most likely to be similar
to samples from the original signal.

4. EXPERIMENTS
4.1 Music Visualization
Figure 6 shows a visualization for the Spring (allegro) movement
from Vivaldi’s The Four Seasons. The 22.05 KHz audio was win-
dowed at a 10 Hz rate. For each window, we computed 45 MFCCs.
We then ordered the MFCCs according to their variances across
the entire piece, and retained the fifteen coefficients with highest
variances. We scaled these coefficients to unit variance (hence zero
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Figure 6: Similarity matrix computed for Vivaldi’s Spring us-
ing MFCC features and cosine similarity measure. The opening
theme is repeated at 72 and 190 seconds.

mean) across the piece, and then calculated the pairwise similarity
using the cosine distance of (2). (We discarded the low variance co-
efficients as they provide poor discrimination between the structural
elements of a piece. Scaling them to unit variance will generally
amplify noise and in turn degrade the similarity analysis.)

The resulting similarity matrix shows the familiar opening theme in
the first sixteen seconds. It is repeated twice, firstforte(loudly) then
a quieter repeat eight seconds later. Both repetitions look similar
because of the cosine similarity measure. The theme is repeated at
seventy-two seconds and one hundred ninety seconds, which can be
seen as brighter regions along the bottom of the image. The major
structure of the piece is also evident in the blocks along the main
diagonal. For example the bright block between 30 and 70 seconds
is a soft passage for two violins, with the rest of the ensemble quiet.

Figure 7 shows the similarity matrix computed fromThe Magical
Mystery Tourby The Beatles, using the same parameterization as the
Vivaldi. The bright white squares of high similarity show repeated
instances of the song’s familiar chorus (“Roll up, roll up for the
Mystery Tour”) throughout the song. The piece also features a
distinctive coda from 145 - 167 seconds, which differs substantially
from the majority of the song.

4.2 Music Summarization
We use the similarity matrix to determine the optimal summaries in
two steps. The first step is to evaluate the summary scoreQL(i)
of (7). Next, we maximize this to find the best start pointq∗L of
(8). Computing the column sums of ofS in advance can reduce
computation and storage requirements. For example, in an ap-
plication where variable length summaries of songs are provided
depending on available bandwidth, the column sums for each song
can be pre-computed and stored, andS can be discarded. Given a
desired summary length,L, QL can be computed using solely the
column sums (the inner sum of (5)), and maximized to determine
the summary excerpt. The column sums computed from the matrix
of Figure 7 appear in Figure 8.

Figure 9 shows the summary scoresQ10(i), Q20(i), andQ30(i)
computed by summing the columns of the similarity matrix for for
The Magical Mystery Tour(Figure 8). Locating the maxima in these

Figure 7: Similarity matrix computed for The Magical Mystery
Tourusing MFCC features and cosine similarity measure.

Figure 8: Column sums computed from the similarity matrix of
Figure 7.

curves, per (8), produces the optimal summary start points shown
in Table 1. The twenty second summary includes the ten second
summary and contains the familiar title refrain. The thirty second
summary, interestingly, is a repeat of this element of the song, but
from later in the piece (after the bridge). This excerpt was selected
because it is a longer reprisal of the same title refrain than is available
at the beginning of the song.

Table 2 shows the optimal summaries computed for Vivaldi’sSpring.
All three summaries include the memorable introductory theme. The
ten second summary is the first 10 seconds of the theme. The 20-
second summary includes the last three repetitions. The 30-second
summary includes virtually the entire introduction, which exhibits
the highest average similarity with the overall piece.

We also present summaries for two additional songs. Table 3 shows
three summaries computed forWild Honeyby the band U2. All
three summaries include the song’s longest chorus segments. The
chorus is about 15 seconds long, so the first summary only contains
a portion of it, while the longer two summaries contain at least one
of its repetitions in its entirety. Table 4 shows three summaries
computed forTake the “A” Trainperformed by Duke Ellington and
his orchestra. Again, all three summaries contain the same portion
of the piece; in this case it is a reprisal of the song’s main melody
at the performance’s end. In each of the four cases presented, the
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Figure 9: Summary scores,QL(i), computed from the similar-
ity matrix of Figure 7 for L = 10, 20, and 30 seconds.

resulting summaries make intuitive sense, and represent significant
and memorable elements of the original pieces. These results are
promising, and more thorough validation of the approach is planned.
The results presented here are available for review on the world wide
web1.

Table 1: Summary times forThe Magical Mystery Tour.
Segment Length Start (sec.) End (sec.)

10 49.7 59.7
20 44.9 64.9
30 91.1 121.1

Table 2: Summary times for Spring.
Segment Length Start (sec.) End (sec.)

10 4.3 14.3
20 8.4 28.4
30 2.5 32.5

5. CONCLUSION
We have presented a quantitative approach to automatic music sum-
marization which makes minimal assumptions regarding the source
audio. (Indeed, we expect this approach to work for MIDI, video,
and other time-dependent media as well). The pairwise similarity of
the audio feature is embedded in a similarity matrix which reveals
the major structure of the audio. By summing the similarity matrix
columns, the most representative contiguous portions of the piece
can be located and used for summaries of arbitrary length. We have
presented experimental results across a variety of genres, and in
each case, the resulting summaries represented significant elements
of the original piece. While this approach will not always yield intu-
itively satisfying results, we argue that it will find the summary that
is most likely to be similar to the work as a whole. This excerpting
criteria is particularly well-suited to popular music which exhibits a
relatively high degree of repetition of songs’ principal segments.

We are currently integrating this summarization approach with au-
dio segmentation [5] such that summaries will begin and end at

1http://www.fxpal.com/media/musicthumbnails.html

Table 3: Summary times for Wild Honey.
Segment Length Start (sec.) End (sec.)

10 197.1 207.1
20 189.6 209.6
30 181.7 211.7

Table 4: Summary times for Take the “A” Train .
Segment Length Start (sec.) End (sec.)

10 135.2 145.2
20 136.7 156.7
30 135 165

meaningful segment boundaries (such as verse/chorus transitions).
We are also examining joint segmentation and summarization tech-
niques to develop a more complete structural characterization of
digital audio.
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