
Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 1

Perl: Regular
expressions

A powerfu l tool for searching and
transform ing text.

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 2

M ot ivat ion
• We have seen m any

operat ions involving
st ring com parisons

• Several Perl built -in
funct ions also help with
operat ions on st rings
– split & join
– subst r
– length

• There is a lot we can do
with such funct ions

• Exam ple:
– Given a st ring holding

some t imestamp,
ext ract out different
parts of date & t ime

while (my $line = <STDIN>) {
 chomp $line;
 if ($line eq “BEGIN:VSTART”) {
 # ...
 }
}

...

my ($property, $value) = split /:/, $foo;
if ($property eq “DSTART) {
 # ... etc etc etc
}

@csv_fields = split /,/, $input_line;

$output = join “:”, @data;

$first_char = substr $input, 0, 1;

$width = length $heading;
print $heading, “\n:
print “-” x $width;

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 3

M ot ivat ion
• Recall:

– iCalendar dates are used
by iCal-like program s

– The year, m onth, etc.
port ions of the code are
fixed in posit ion

• How could we use “ subst r”
to help us?

• This code certainly obtains
what we need.
– But it can be a bit t ricky

to get right .
– Adapt ing code to use

another date/t im e form at
is not t rivial…

– … and is bugbait !

my $datetime = “20051225T053000”;

$year = substr $datetime, 0, 4;
$month = substr $datetime, 4, 2;
$day = substr $datetime, 6, 2;
$hour = substr $datetime, 9, 2;
$min = substr $datetime, 11, 2;
$sec = substr $datetime, 13, 2;

ISO 8601 time format
my $datetime = “i2003-10-31T13:37:14-0500”;

$year = substr $datetime, 1, 5;
$month = substr $datetime, 7, 8;

coffee break
...
$day = substr $datetime, 9, 2;
$hour = substr $datetime, 12, 2;
$min = substr $datetime, 14, 2;
$sec = substr $datetime, 16, 2;

“H
az
ar
do
us
 t
o
yo
ur
 h
ea
lt
h”

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 4

M ot ivat ion
• A bet ter m ethod is to

indicate the st ring’s pat tern
in a way the reflects the
actual order of pat tern
com ponents
– The date begins at the

start of the st ring.
– The year is four digits.
– The m onth follows (two

digits)…
– … and then the day.
– The “ T” character

separates the date and
t im e

– Hour, m inute and date
follow, each two digits
long.

• For the elder Perlm ongers:

my ($year, $month, $day,
 $hour, $minute, $second)
 = $datetime
 =~ m{ \A # start of string
 (\d{4}) # year
 (\d{2}) # month
 (\d{2}) # day
 T # literal T
 (\d{2}) # hour
 (\d{2}) # minute
 (\d{2}) # second
 \z # end of string
 }xms;

my $datetime = “20051225T053000”;

if ($datetime =~
 /^(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})(\d{2})$/)
{
 ($year, $month, $day, $hour, $min, $sec)
 = ($1, $2, $3, $4, $5, $6);
}

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 5

M ot ivat ion
• Back to our “ code

m odificat ion” exam ple
– Now we have a different

date form at
– Using a regular

expression, we can
great ly reduce the
possibility of bugs

– String begins with an
“ i” …

– followed by year…
– followed by a dash…
– followed by m onth…
– etc…

my ($year, $month, $day,
 $hour, $minute, $second)
 = $ical_date
 =~ m{ \A # start of string
 i # literal i
 (\d{4}) # year
 - # literal dash
 (\d{2}) # month
 - # literal dash
 (\d{2}) # day
 T # literal T
 (\d{2}) # hour
 : # literal colon
 (\d{2}) # minute
 : # literal colon
 (\d{2}) # second
 .+ # ignore remainder
 \z # end of string
 }xms;

ISO 8601 time format
my $datetime = “i2003-10-31T13:37:14-0500”;

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 6

Topics
• Sim ple m atching
• Metacharacters
• Anchored search
• Character classes
• Range operators in

character classes
• Matching any character
• Grouping
• Extract ing Matches
• Search and Replace

• Our coverage of regex syntax will
be m uch m ore slowly paced that
the “ m ot ivat ion” just shown!
– Previous slides have been

shown to give you a “ flavour”
of what regular expressions
can achieve.

– We will learn how to
const ruct such expression
over the next few lectures.

• We have a range of topics
• Regular expressions can seem

com plex and crypt ic
– However, slow and pat ient

work with such expressions
will im prove your
product ivity.

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 7

Perl Regular Expressions
• Perl is renowned for it s

excellence at text
processing.

• Handling of regular
expressions plays a big
factor in its fam e.

• Mastering even the basics
will allow you to m anipulate
text with ease.

• Regular expressions have a
st rong form alism (FSA).

• You have already used
som e and seen others.

• Other languages have
som e support for regexes,
usually via som e library.

% ls *.c

% ps aux | grep “s265s*” | less

Java:
import java.util.regex.*;

Python:
import re;

C#:
using System.Text.RegularExpressions;

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 8

Sim ple St ring M at ching
• Regular expressions are

usually used in
conjunct ion with an “ if”

– “ if < st ring matches
this pat tern> …”

– “ ... then > do
som ething with that
m atch> .”

• The simplest such match
refers to a st ring

• But note: this is much
different that using “ eq”

my $line = <SOMEINPUT>;
chomp $line;

Unbeknownst to programmer, the first line
of the input is the line “Hello, World”;

if ($line =~ m/World/xms) {
 print “Regexp matches!\n”;
}
else {
 print “Oh, poop.\n”;
}

if ($line eq “World”) {
 print “line is equal to ‘World’\n”;
}
else {
 print “line sure ain’t equal to ‘World’\n”;
}

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 9

A w ord about
“ m /yadayada/xm s”

• The text between the two slashes is the regular expression
(“ regex”).

• Leading “ m ” indicates the regex is used for a match
• Trailing “ xm s” are three regex opt ions

– “ x” : Extended form at t ing (whitespace in regex is ignored)
– “ m ” : For line boundaries (and elim inates a cause of som e subt le

bugs)
– “ s” : ensures everything is m atched by the “ .” sym bol

• Why all of this verbiage instead of plain old “ /yadayada/” as of
old?

• Also note: “ m { } ” or “ m //”
/’[^\\’]*(?:\\.[^\\’]*)*’/

m{ ‘ # an opening single quote
 [^\\’]* # any non-special chars
 (?: # then all of..
 \\ . # any explicitly backslashed char
 [^\\’]* # followed by any non-special chars
)* # repeated zero of many times
 ‘ # a closing single quote
}xms

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 10

Anot her exam ple
• The code on the right

searches for a pat tern in
som e dict ionary file

– Note that a comm and-
line argument is being
used for a regex!

– Also note “ < > ” syntax:
This takes the first
unused com m and-line
argument , and uses it
as a filenam e for
opening!

#!/usr/bin/perl

use strict;

my $regexp = shift @ARGV;
while (my $word = <>) {
 if ($word =~ m/$regexp/xms) {
 print $word;
 }
}

% ./search.pl pter /usr/share/dict/linux.words
abrupter
Acalypterae
acanthopteran
Acanthopteri
... <snip> ...
unchapter
unchaptered
underprompter
... <snip> ...
Zygopteris
zygopteron
zygopterous
%

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 11

M et acharact ers
• Regexs obtain their power

by describing sets of
st rings.

• Such descript ions involve
the use of
“ metacharacters”

• Of course, some st rings
that we want to match will
contain these st rings.
– Therefore we m ust

“ escape” them.

{ } [] ()
^ $.
| * ?
/ \

“2+2=4” =~ m/2+2/xms # doesn’t match

“2+2=4” =~ m/2\+2/xms # does match

“The interval is [0,1).” =~
 m/[0,1)./xms # syntax error

“The interval is [0,1).” =~
 m/\[0,1\)\./xms # does match

“/usr/bin/perl”
 =~ m/\/usr\/bin/\/perl/xms # matches

“/usr/bin/perl”
 =~ m{/usr/bin/perl}xms # better

‘C:\WINDOWS’ =~ m/C:\\WINDOWS/ # matches

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 12

Anchoring
• We m ay wish to “ anchor” a match to certain

locat ions
– “ ^ ” m atches the beginning of a line.
– “ $” m atches the end of a line.
– “ \A” m atches the beginning of a st ring.
– “ \z” matches the end of a st ring.“housekeeper” =~ m/keeper/xms # matches

“housekeeper” =~ m/^keeper/xms # does not match
“housekeeper” =~ m/keeper/xms # matches
“housekeeper” =~ m/keeper\n/xms # also matches

“keeper” =~ m/^keep$/xms # does not match
“keeper” =~ m/^keeper$/xms # matches
“keeper” =~ m{\A keeper \z}xms # matches

my $text ="Here is one line.\nIt is followed by\nAnother line!\n";

if ($text =~ m{line\. $}x) { print "Gotcha\n"; } else { print "Oh dear\n"; }

if ($text =~ m{line\. $}xm) { print "Gotcha\n"; } else { print "Oh dear\n"; }

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 13

Charact er classes
• These allow

sets of
possible
characters
to be
m atched

• Used at
desired
points within
a regex.

m/cat/xms # matches ‘cat’
m/[bcr]at/xms # matches ‘bat, ‘cat’, or ‘rat’
m/item[0123456789]/xms # matches ‘item0’, .. ‘item9’

“abc” =~ m/[cab]/xms # matches ‘a’
m/[yY][eE][sS]/xms # matches case-insensitive YES
m/yes/xmsi # simpler way, using “i”
m/(?i)yes/xms # same

m/[\]c]def/xms # matches ‘]def’ or ‘cdef’

$x =‘bcr’
m/[$x]at/xms # matches ‘bat’, ‘cat’, ‘rat’
m/[\$x]at/xms # matches ‘$at’ or ‘xat’
m/[\\$x]at/xms # matches ‘\at’, ‘bat, ‘cat’,
 or ‘rat’

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 14

Range operat ors
• Ranges can

elim inate som e
ugly code
– [0123456789]

becom es [0-9]

– [abcdefghijklm nopqrs
tuvwxyz] becom es [a-
z]

• If “ -” is the first or last
character in a character
class, it is t reated as an
ordinary character

m/item[0-9]/xms # item0, item1, ... item9
m/[0-9bx-z]aa/xms # ‘0aa’, ..., ‘9aa’,
 # ‘baa’, ‘xaa’, ‘yaa’,
 # or ‘zaa’
m/[0-9a-fA-F]/xms # matches hex digit
m/[a-z]/i # matches a “word” char

all are equivalent

m/[-ab]/xms
m/[ab-]/xms
/[a\-b]/xms

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 15

Negat ed charact er
classes

• The special character
^ in the first posit ion
of a character class
denotes a negated
character class

• Matches any character
but those in the
brackets

m/[ˆa]at/xms
 # doesn’t match ’aat’ or ’at’, but
 # matches all other ’bat’, ’cat,
 # ’0at’, ’%at’, etc.

m/[ˆ0-9]/xms
 # matches a non-numeric character

m/[aˆ]at/xms
 # matches ’aat’ or ’ˆat’; here ’ˆ’
 # is ordinary

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 16

M at ching any charact er
• The period '. ' matches any character but " \n"
• A period is a m etacharacter, it needs to be

escaped to m atch as an ordinary period.

m/..rt/xms # matches any 2 chars, followed by ’rt’
m/end\./xms # matches ’end.’
m/end[.]/xms # same thing, matches only end.
"" =˜ m/./xms # doesn’t match - needs a character
"a" =˜ m/ˆ.$/xms # matches

"" =˜ m/ˆ.$/xms # doesn’t match - needs a character
"\n" =˜ m/ˆ.$/xms # doesn’t match - needs a character
 # other than \n
"a\n" =˜ m/ˆ.$/xms # matches, ignores the \n

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 17

M at ching t his or t hat

• We would like to m atch different
possible words or character st rings

• We use the alternat ion character |
(pipe)

"cats and dogs" =˜ /cat|dog|bird/ # matches "cat"
"cats and dogs" =˜ /dog|cat|bird/ # matches "cat"

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 18

Grouping Things
Toget her

• Som et im es we want alternat ives for part of a
regular expression.

/(a|b)b/ # matches ’ab’ or ’bb’
/(ac|b)b/ # matches ’acb’ or ’bb’
/(ˆa|b)c/ # matches ’ac’ at start of string or

 # ’bc’ anywhere
/(a|[bc])d/ # matches ’ad’, ’bd’, or ’cd’

/house(cat|)/ # matches either ’housecat’

 # or ’house’
/house(cat(s|)|)/ # matches either ’housecats’ or
 # ’housecat’ or ’house’.
 # Note groups can be nested.

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 19

Ext ract ing M at ches
• The grouping metacharacters () also serve another

completely different funct ion: they allow the ext ract ion of
the parts of a st ring that matched.

• For each grouping, the part that m atched inside goes into
the special variables $1, $2, etc.

extract hours, minutes, seconds
$time =˜ /(\d\d):(\d\d):(\d\d)/ # match hh:mm:ss format

 # \d is equivalent to [0-9]
$hours = $1;
$minutes = $2;
$seconds = $3;

More compact code, equivalent code
($hours,$minutes,$second) = ($time =˜/(\d\d):(\d\d):
(\d\d)/)

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 20

M at ching Repet it ions
• We would like to be able to match mult iple t imes:

– a? = match 'a' 0 or 1 t im es (~ opt ional)
– a* = match 'a' 0 or more t imes, i.e., any num ber of t imes
– a+ = match 'a' 1 or more t imes, i.e., at least once
– a{n,m} = match at least n t im es, but not more than m

t imes.
– a{n,} = match at least n or m ore t imes.
– a{n} = match exact ly n t im es

$year =˜ /\d{2,4}/ # make sure year is at least 2 but
 # not more than 4 digits

/[a-z]+\d*/i # match a word and any number of digits

/y(es)?/i # matches ’y’, ’Y’,
 # or a case-insensitive ’yes’

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 21

Search and Replace
• Regular expressions also play a role in

search and replace operat ions in Perl
• Search and replace is accom plished

with the s/// operator
• General form :

s/regexp/replacement/modi ers

$x = "Time to feed the cat!";

if ($x =˜ s/cat/hamster/) {
 print $x; # “Time to feed the hamster!”
}

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 22

M ore Search and Replace
Com m ands

$y = "'quoted words'";

$y =˜ s/ˆ'(.*)'$/<<$1>>/ # strip single quotes, $y
 # contains "<<quoted words>>"

$x = "I batted 4 for 4";
$x =˜ s/4/four/ # doesn’t do it all:

 # $x contains

 # "I batted four for 4“

 $x = "I batted 4 for 4";

 $x =˜ s/4/four/g # /g modifier does it all:
 # $x contains

 # "I batted four for four"

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 23

A few m ore regexp
t opics

• Advanced uses of m atches

• Escape sequences

• List and scalar context , e.g., phone
num bers

• Finding all instances of a m atch

• Parenthesis

• Subst itut ing with s///

• t r , the t ranslate funct ion

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 24

Advanced uses of
m at ches

• You can assign pat t ern m em ory
direct ly to your own variable
names (capt uring):
($phone) = $value =~ /^phone\:(.+)$/;

• Read from right to left . Apply this pat tern
to the value in $value, and assign the
results to the list on the left .

($front,$back) = /^phone\:(\d{3})-(\d{4})/;

• Apply this pat tern to $_ and assign the
results to the list on the left .

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 25

M eaning of backslash le t t ers

• \n : newline
• \r: carriage return
• \t : tab
• \f: form feed
• \d: a digit (same as [0-9])
• \D: a non-digit
• \w: an alphanum eric character, sam e as [0-9a-z_A-

Z]
• \W: a non-alphanum eric character
• \s: a whitespace character, sam e as [\t \n\r\f]
• \S: a non-whitespace character

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 26

Rem inder: list or scalar
cont ext ?

• A pat tern m atch returns 0 (false) or 1 (t rue) in
scalar cont ext , and a list of matches in array
cont ext .

• Recall: There are a lot of funct ions that do
different things depending on whether they are
used in scalar or list context .

returns the number of elements

$count = @array

returns a reversed string

$revString = reverse $string

returns a reversed list

@revArray = reverse @array

• You m ust always be caut ious of this behaviour.

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 27

Pract ica l Exam ple of
Cont ext

$phone = $string =~ /^.+\:(.+)$/;

– $phone contains 1 if pat tern matches,
0 otherwise

($phone) = $string =~ /^.+\:(.+)$/;

– $phone contains the m atched st ring

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 28

Finding a ll inst ances of a
m at ch

• Use the ‘g’ m odifier with a regular
expression
@sites = $sequence =~ /(TATTA)/g;

– think g for global
– Returns a list of all the matches (in

order), and stores them in the array

– If you have n pairs of parentheses,
the array looks like the following:
• ($1,$2,…$n,$1,$2,…$n,…)

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 29

Perl is Greedy

• Perl regular expressions t ry to m atch the
largest possible st ring which m atches your
pat tern:

“lalaaaaagag” =~ /(la.*ag)/
• /la.*ag/ m atches laag, lalag, laaaaaag

• $1 contains “lalaaaaagag”
• If this is not what you wanted to do, use the
‘?’ modifier:
“lalaaaaagag” =~ /(la.+?ag)/

• /(la.+?ag)/ m atches as few characters
as possible to find m atching pat tern

•$1 contains “lalaaaaag”

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 30

M aking parent heses
forget ful

• Som et im es you need parentheses to m ake your
regular expression work, but you don’ t actually want
to keep the results. You can st ill use parentheses for
grouping.

• /(?:group)/

– Certain characters are overloaded; recall:

•\d? m eans 0 or 1 instances

•\d+? m eans the fewest non zero num ber of
digits

•(?:group) m eans look for the group of
atom s in the st ring, but don’t rem em ber
them

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 31

Exam ple of “ forget t ing”
#!/usr/bin/perl
Method 1

if (@ARGV && $ARGV[0] eq "-x") {
 $mod = "?:";
} else {
 $mod = "";
}

$pat1 = "\\w+";
$pat2 = "\\d+";

while (<STDIN>) {
 $_ =~ /($mod$pat1) ($pat2)/;
 print $1, "\n";
}

#!/usr/bin/perl
Method 2

if (@ARGV && $ARGV[0] eq "-x") {
 $ignore = 1;
} else {
 $ignore = 0;
}

while (<STDIN>) {
 $_ =~ /(\w+) (\d+)/;
 if ($ignore) {
 print $2, "\n";
 }
 else {
 print $1, "\n";
 }
}

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 32

M ore exam ples using
s///

• Subst itut ing one word for another
$string =~ s/dogs/cats/

• If $string was “ I love dogs” , it is now “ I love cats”

• Removing t railing white space
$string =~ s/\s+$//

• If $string was ‘ATG ‘ , it is now ‘ATG’

• Adding 10 to every number in a st ring
$string =~ /(\d+)/$1+10/ge

• Note pat t ern m em ory

• g m eans global (just like in regular expressions)

• e is specific to s, evaluate the expression on the right

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 33

tr funct ion
• t ranslate or t ransliterate
• General form:

tr/list1/list2/

• Even less like a regular expression than
s

• subst itutes characters in the first list
with characters from the second list :

$string =~ tr/a/A/

– every ‘a’ to t ranslated to an ‘A’
– No need for a global m odifier using tr.

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 34

M ore exam ples of tr
• convert ing nam ed scalar to lowercase

$ARGV[1] =~ tr/A-Z/a-z/

• count the num ber of “*” in $_
$cnt = tr/*/*/

$cnt = $_ =~ tr/*/*/

• change all non-alphabet ic characters to
spaces

tr/a-zA-Z/ /c

– not ice space + c = com plem ent search st ring

• delete all non-alphabet ic characters com pletely
tr/a-zA-Z//cd

– d = delete found but unreplaced characters

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 35

Using t he result s of m at ches
w it hin a pat t ern

• \1, \2, \3 refer to what a previous set of
parentheses m atched
“abc abc” =~ /(\w+) \1/ # matches

“abc def” =~ /(\w+) \2/ # doesn’t match

• Can also use $1, $2, etc. to perform som e
interest ing operat ions:
s/^([^]*) *([^]*)/$2 $1/ #swap first two words

/(\w+)\s*=\s*\1/ # match “foo = foo”

• other default variables used in m atches
– $` : returns everything before m atched st ring

– $& : returns ent ire matched st ring

– $’ : returns everything after matched st ring

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 36

Exam ple: Celsius
Fahrenheit

#! /usr/bin/perl -w
print "Enter temperature: \n";
$line = <STDIN>;
chomp($line);

if ($line =~ /^([-+]?[0-9]+(?:\.[0-9]*)?)\s*([CF])$/i) {
 $temp = $1;
 $scale = $2;
 if ($scale =~ /c/i) {
 $cel = $temp;
 $fah = ($cel * 9 / 5) + 32;
 }
 else {
 $fah = $temp;
 $cel = ($fah - 32) * 5 / 9;
 }
 printf("%.2f C is %.2f F\n", $cel, $fah);
}
else {
 printf("Bad format\n");
}

Universit y of Vict oria
Departm ent of Com puter
Science

SENG 2 65 : Soft w are Deve lopm ent
M et hods

Perl Regular Expression: Slide 37

Regex on com m and line

• We can execute simple regular
expressions on the com mand line:

$ perl –p –i –e 's/kat/cat/g' in.txt

– p : apply program to each line in file
in.txt

– i : write changes back to in.txt
– e : program between '…'

