
Data Compression Using Dynamic Markov Modelling

G. V. CORMACK* AND R. N. S. HORSPOOL*
* Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G 1, Canada
* Department of Computer Science, University of Victoria, P.O. Box 1700, Victoria, B.G. V8W 2Y2, Canada (Address for correspondence)

A method of dynamically constructing Markov chain models that describe the characteristics of binary messages is developed. Such models can be used to 
predict future message characters and can therefore be used as a basis for data compression. To this end, the Markov modelling technique is combined with 
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encoded or decoded with just a single pass through the data. Experimental results reported here indicate that.the Markov modelling approach generally 
achieves much better data compression than that observed with competing methods on typical computer data.
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1. INTRODUCTION

All data compression methods rely on a priori assumptions
about the structure of the source data. Huffman coding,7 for
example, assumes that the source data consists of a stream of
characters that are independently and randomly selected
according to some (possibly unknown) static probabilities. The
assumption that we make in this paper is remarkably weak. We
assume only that the source data is a stream of bits generated
by a discrete-parameter Markov chain model.11 Such a model
is sufficiently general to describe the assumptions of Huffman
coding, of run-length encoding and of many other
compression techniques in common use. The survey paper by
Severance10 provides a good introduction to data compression
and to various compression techniques that might be
employed.

A similar assumption, that there is an underlying Markov
model for the data, is made in the Ziv-Lempel13.14 and the
Cleary-Witten1 techniques. In fact, it is provable that Ziv-
Lempel coding approaches the optimal compression factor for
sufficiently long messages that are generated by a. Markov
model.

The new direction taken in our work is an algorithmic
attempt to discover a Markov chain model that describes the
data. If such a model can be constructed from the first part of
a message, it can be used to predict forthcoming binary
characters. Each state in the Markov chain supplies
probabilities for the next binary character being a zero or a
one. After using the probability estimate in a data coding
scheme, we can use the actual message character to transfer to
a new state in the Markov chain. This new state is then used to
predict the next message bit, and so on.

If the probability estimates for binary characters deviate
from 0.5 and are reasonably accurate, they can be used as the
basis of a data compression method. In our implementation
they are used directly to control a minimum-redundancy
coding method known as arithmetic coding.9 We use a
particular form of arithmetic coding that was invented by
Guazzo.5 The combination of Markov chain model generation
with Guazzo encoding has turned out to be a very powerful
method of compressing data. As our experimental results
show, it compares very favourably with the competing
compression methods. Although some of our performance
results are similar to those achievable with the method of
Cleary and Witten,1 we argue that our method is intrinsically
simpler and in any case requires less storage and consumes less
CPU time.

Because the reader may not be familiar with Guazzo's
approach to data compression, this paper contains a fairly long
and intuitive description of the method. We believe that our
introduction will provide insights into the method that are not
readily available from reading the original paper. Following
this, we present a brief description of adaptive coding and then
we explain our method of automatically constructing Markov
chain models. Next we return to the Guazzo coding method
and discuss problems associated with the coding and decoding
algorithms. Full implementation details of these algorithms are
provided in an appendix to the paper. Finally, we present
results obtained from an implementation of our data
compression algorithm (which we will refer to as DMC, for
Dynamic Markov Compression). These results are compared
with other data compression techniques.

The main contribution of this paper is, perhaps, the Markov
modelling technique. The fact that this technique can be allied
with arithmetic coding to achieve an excellent degree of data
compression is a happy accident. As we point out in the
conclusions, the modelling algorithm may have other
applications. Unfortunately, the modelling technique does not
appear to be amenable to analysis. We have no results to prove
that the dynamically changing model converges, in some sense,
to the true model for the data. Such a result is unlikely in any
case, because the number of states in the model grows without
limit. The modelling technique can be judged only on the basis
that it works, and apparently works extremely well.

2. INTRODUCTION TO THE GUAZZO
CODING ALGORITHM

Guazzo's algorithm5 generates minimum-redundancy codes,
suitable for discrete message sources with memory. The term
'message source with memory' is used to describe a message
that has been generated by a Markov chain model. In practical
situations, messages almost always exhibit some degree of
correlation between adjacent characters, and this corresponds
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to the message source having memory.
To introduce the subject, we use a simple Markov model as

an example. In our example, we assume that the source
message string consists of binary digits where

0 is followed by 0 with probability 2/3
0 is followed by 1 with probability 1/3
1 is followed by 0 with probability 2/5
1 is followed by 1 with probability 3/5

and we also assume that the first digit in the message is equally
likely to be 0 or 1. The messages generated by this model have
the overall property that a zero digit is more likely to be
followed by another zero than by a one. Similarly, a one digit is
more likely to be followed by a one digit. The state transition
diagram for a model that exactly encapsulates these
probabilities is shown in Fig. 1.

Working with this particular model, we shall first examine
why the well-known Huffman coding7 is less than ideal, and
then we will proceed to see how Guazzo coding can achieve
near-optimal codes.

2.1. Huffman coding of message sources with memory

We begin by considering how Huffman coding can be used for
messages generated by the Markov model given in Fig. 1.
Huffman coding cannot be directly applied to a binary source
alphabet. Having to provide separate codes for a zero bit and a
one bit implies that compression is impossible.

The usual way around the problem is to create a large
source alphabet. This is easily done by grouping message
characters together. For example, we can choose to work with
groups of three bits, yielding an alphabet of size 8. Through an
analysis of the Markov model in Fig. 1, involving the
computation of equilibrium state probabilities, we have
calculated the probability of occurrence for each character in

Figure 1. An example Markov model.

Table 1.  Huffman coding for 3-bit groups

Source
form Probability

Huffman
code

000 0.2424 10

001 0.1212 010

010 0.0727 1101

011 0.1091 000

100 0.1212 011

101 0.0606 1100

110 0.1091 001

111 0.1636 111 

1 (60%)0 (67%)

1 (33%)

A

B C

0 (40%)

1 (50%)0 (50%)
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the new source alphabet. These probabilities can be used to
derive Huffman codes. Table 1 shows the probabilities and
corresponding codes, assuming that bits generated by the
model of Fig. 1 are grouped into threes.

If our Huffman codes for triples are used to encode a long
message generated by the Markov chain model, a moderate
degree of compression is achieved. In fact a long message will,
on average, be compacted to approximately 90.3% of its
original size. However, this number is considerably larger than
the information-theoretic lower bound. A simple calculation
of the entropy in the information source shows that
compression to 81.9% of the original size should be
achievable.

There are two reasons why a Huffman code does not
achieve the lower bound. The first reason is that Huffman
codes can be free of redundancy only if character frequencies
in the source alphabet are integer powers of 2. The second
reason is that the Huffman code is taking advantage of
correlations only between the bits that we have grouped
together. If, for example, our source message contains the two
adjacent groups

... 001 110 ...

the Huffman scheme encodes both groups independently. But
this ignores correlation between the last bit of the first group
and the first bit of the second group. Therefore, the second
group is encoded in a sub-optimal manner. These two
problems with the Huffman scheme are ameliorated only by
choosing larger groups of bits for constructing a source
alphabet. As we choose larger and larger groups, the coding
efficiency comes closer to the lower bound but the alphabet
size grows exponentially. The storage for tables needed to
hold Huffman encodings also grows exponentially, while the
computational cost of creating these tables becomes infeasible.

An alternative to imprudent expansion of the alphabet size
is to use multiple sets of Huffman codes. The choice of which
set of codes to use for the next message character is
determined by the preceding message characters. Such an
approach can be tuned to achieve a reasonable compromise
between compression performance and the total amount of
storage needed to hold tables of Huffman codes.2

2.2. Guazzo encoding applied to the Markov model

The Guazzo method does not suffer from either of the defects
noted for Huffman coding. For sufficiently long messages, the
method can generate encodings that come arbitrarily close to
the information-theoretic lower bound. The first step in
understanding the binary version of the Guazzo method is to
consider the output encoding as being a binary fraction. For
example, if the output encoding begins with the digits

0 1 1 0 1 ...

we should consider this as being the binary number that
begins '0.01101...'. (This is a number which has a value close to

 when expressed as a decimal fraction.) The job of the
encoding algorithm is, in effect, to choose a fractional number
between zero and one which encodes the entire source
message.

Given that the Guazzo algorithm has access to the Markov
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model shown in Fig. 1, we can trace the algorithm and see how
it would choose an encoding for an indefinitely long source
message that begins

0 1 1 1 0 0 1 ...

Initially, the Guazzo algorithm has freedom to choose binary
fractions that lie between

0.000...  and  0.111...

inclusive. Guazzo's algorithm determines from the Markov
model that the first digit of the source message is equally likely
to be zero or one. It therefore divides the space of binary
fractions into two equal halves, choosing all fractions in the
closed interval [0.000..., 0.0111...] to represent a source
message that begins with '0', and all fractions in the closed
interval [0.1000..., 0.111...] to represent messages that begin
with '1'. Our source message begins with zero and therefore
we must pick the first sub-interval. Since all binary fractions in
the selected sub-range begin with the digit '0', this effectively
determines that the first output digit is zero.

The first source digit takes us to the state labelled B in our
Markov model. In this state the next digit is twice as likely to
be a zero as a one. Guazzo's algorithm therefore determines
that the range of available binary fractions should be
subdivided into two parts in the ratio two to one. After the
split, the sub-interval [0.000...,0.010101...] represents source
messages that begin '00. ..' and the sub-interval [0.010101...,
0.0111...] represents messages that begin with '01'. The first of
these two sub-intervals has exactly twice the range of the
second. Since the second digit of the source message is one,
we are restricted to the second interval. And since this source
digit leads us to state C in the model, we now have to split the
available range of message encodings in a three-to-two ratio.

Rather than proceeding through the example at this level of
detail, we will skip a few steps. Continuing along the same lines
as before, the Guazzo algorithm will eventually determine that
our source message beginning with '0111001' should be
represented by some binary fraction in the interval

[0.011100110101..., 0.01110100101111...]

Since the lower and upper bounds of the interval begin with
the same five fractional digits, the encoding algorithm could
have already generated these digits (namely '01110').

If we consider the requirements of a practical computer
implementation, it is clear that interval bounds should not be
computed as binary fractions containing unlimited numbers of
digits. An implementation that requires only a small finite
number of bits to be retained in the calculations of the interval
bounds is essential. We defer consideration of this and other
practical issues to a later section of this paper.

To add some further intuition to our intuitive description of
the Guazzo algorithm, we offer a simple observation. The way
that the available space of binary encodings is subdivided at
each step of the algorithm distributes encoded messages as
evenly as possible throughout this space. It is important to
distribute encodings evenly, otherwise some encodings will be
unnecessarily close together – and two values that are almost
the same will usually require more bits to differentiate them
than two values that are farther apart.
The encoding process is easily reversible. The decoding
algorithm has access to the same Markov model for the
information source as was used by the encoder. It starts by
constructing the same interval [0.000..., 0.111...] of possible
encodings and by subdividing it in the same way as the encoder
subdivided it. Inspection of the leading bit(s) in the encoded
message then determines which of the two partitions must have
been used by the encoder and therefore determines what the
first source digit must have been. Once this first digit is known,
the decoding algorithm can select the appropriate partition and
repeat the division into two parts. Inspection of the encoded
message now determines the second digit, and so on.

3. ADAPTIVE CODING

Data compression has traditionally been implemented as a
two-pass technique. An initial pass through the source
message is performed to discover its characteristics. Then,
using knowledge of these characteristics, a second pass to
perform the compression is made. For example, if we are
using Huffman coding, the first pass would count frequencies
of occurrence of each character. The Huffman codes can then
be constructed before the second pass performs encoding. To
ensure that the compressed data can be decoded, either a fixed
coding scheme must be used or else details of the compression
scheme must be included with the compressed data. Although
a two-pass implementation for our new data-compression
technique would be easy to develop, we prefer to proceed
directly to a one-pass adaptive data-compression
implementation. One-pass implementations are preferable
because they do not require the entire message to be saved in
on-line computer memory before encoding can take place.

There is a one-pass technique for data compression that, in
practice, achieves compression very close to that obtained
with two-pass techniques. The basic idea is that the encoding
scheme changes dynamically while the message is being
encoded. The coding scheme used for the kth character of a
message is based on the characteristics of the preceding k-1
characters in the message. This technique is known as adaptive
coding. For example, adaptive version of Huffman coding
have been proposed and implemented.3,4,8 In practice,
adaptive Huffman coding achieves data compression that
differs insignificantly from conventional two-pass Huffman
coding, but at the expense of considerably more
computational effort.

The Ziv-Lempel12,13,14 and the Cleary-Witten1 mehods are
also adaptive coding techniques. The basic idea of Ziv-Lempel
coding is that a group of characters in the message may be
replaced by a pointer to an earlier occurrence of that character
group in the message. After a short learning period, these
pointers will consistently occupy fewer bits than the character
groups they replace. This algorithm can be implemented in
such a way as to be much faster than adaptive Huffman
coding, while achieving much better data compression.
Nevertheless, the Ziv-Lempel algorithm takes advantage only
of correlations among source characters that happen to be
grouped together: all context is discarded between such
groups. The scheme therefore suffers from the same defect as
that described in Section 2.1; the loss of context is ameliorated
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only by using longer and longer groups, with commensurate
consumption of memory resources.

The method of Cleary and Witten uses the preceding k
characters in a message to predict the probabilities for the
current message character, and uses these probabilities to drive
an arithmetic coding scheme. To this end, a table of all previous
occurrences of strings of length k is kept, along with the counts
of characters following each string. However, if the particular
combination of k characters has not appeared previously in the
message, we will be unable to estimate the probabilities using
the table. In this case, the Cleary and Witten method escapes to
use a table of the preceding k-1 characters which is more likely
to be able to make an estimate of probabilities. If the
combination of k-l preceding characters has not previously
occurred either, another escape will take place, and so on. (The
null string will always make a prediction.) Each table of size k
may be regarded as a sparse representation of a (very large) kth-
order Markov model. The main point is that the probabilities
used in the various Markov models are learned as the message is
being processed. Since the decoder can be programmed to learn
in the same way as the encoder, it is easy to construct an
adaptive compression algorithm.

The Guazzo coding algorithm is eminently suitable for use
in adaptive coding schemes. The only aspect of the algorithm
that need change dynamically is the source of probability
estimates for message characters. At each step of the encoding
process, the algorithm requires probability estimates for each
of the possibilities for the next message character. It does not
matter to the Guazzo algorithm whether these probability
estimates are derived from a static Markov model or from a
dynamically changing Markov model. In such a dynamic
model, both the set of states and the transition probabilities
may change, based on message characters seen so far. The
next section of this paper explains our method for dynamically
building a Markov model for the source message.

Decoding a message produced by an adaptive coding
implementation of the Guazzo algorithm should not prove to
be a problem either. All that the decoding algorithm needs to
do is to recreate the same sequence of changes to the
dynamically changing Markov model as were made by the
encoding algorithm. Since the decoding algorithm sees exactly
the same sequence of unencoded digits as the encoding
algorithm, there is no difficulty.

4. DYNAMIC CONSTRUCTION OF
PREDICTIVE MARKOV MODELS

A Markov chain model can be characterised as a directed
graph with probabilities attached to the graph edges. We can
distinguish two different aspects to the problem of creating
such a Markov model automatically. One part is the
determination of suitable probabilities to place on the edges of
the graph. The other part is the determination of the structure
of the graph itself. We consider these two parts separately,
beginning with the easier problem of choosing probabilities
for the transitions in a given model.

4.1. Choosing edge probabilities

To begin out explanation, we assume that we already have a
Markov model but that there are no probabilities attached to
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the transitions. We further assume, as a starting point, that
correlations exist between a message character and the
immediately preceding characters.

If we have been reading binary digits from a source
message, we could have been following the corresponding
transitions in the model and have been counting how many
times each transition in the model has been taken. These
counts provide reasonable estimators of the probabilities for
those transitions that have been taken many times. More
precisely, if the transition out of state A for digit 0 has been
taken n0 times and the transition for digit 1 has been taken n1
times, then the following probability estimates are reasonable:

Prob {digit = 0  | current state = A} = n0 / (n0 + n1)
Prob {digit = 1 | current state = A} = n1 / (n0 + n1)

The more often we have visited state A, the more confidence
we would have in these probability estimates.

Unfortunately, the adaptive coding technique requires us to
begin to make probability estimates before these transition
counts have grown to significant values. Furthermore, the
above formulae are undefined for a first visit to a state, and
yield transition probabilities of 0% and 100% on the next few
visits. We must be especially careful not to supply the Guazzo
algorithm with a 0% probability for any bit because the
generated encoding would have an infinite length if that bit
were actually observed. There are many ways in which the
probability formulae can be adjusted to take account of these
two concerns. The method which we used in our
implementation is, perhaps, the simplest. We adjusted the
formulae to be

Prob {digit = 0 | current state = A}
= (n0 + c) / (n0 + n1 + 2c)

Prob {digit = 1 | current state = A}
= (n1 + c) / (n0 + n1 + 2c)

where c is a positive constant. Using small values for c is
equivalent to having confidence in probability estimates based
on small sample sizes, whereas large values correspond to
having little confidence. On the other hand, an adaptive
algorithm will seem to 'learn' the characteristics of a source file
faster if small values for c are used, but at the expanse of
making poor predictions more often. If very large files are
being compressed, the choice of c becomes largely irrelevant.

4.2. Building the state transition graph

The method by which probabilities attached to transitions in
the Markov model change dynamically has just been explained.
What has not been explained is the method by which the set of
states in the model changes dynamically. We shall try to explain
this method through consideration of a simple scenario.
Suppose that we have a partially constructed model which
includes states named A, B, ... E, as drawn in Fig. 2(a). The
figure shows that there are transitions from both A and B to
C, and transitions from C to both D and E. Now, whenever
the model enters state C, some contextual information is lost.
In effect, we forget whether we reached state C from A or
from B. But it is quite possible that the choice of next state, D
or E, is correlated with the previous state, A or B. An easy way
to learn whether such a correlation exists is to duplicate state
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C (we call this process cloning), generating a new state C'. This
creates a revised Markov model as drawn in Fig. 2(b). After
this change to the model, the counts for transitions from C to
D or E will be updated only when state C is reached from A,
whereas the counts for C' to D or E will be updated only when
C' is reached from B. Thus the model can now learn the
degree of correlation between the A, B states and the D, E
states.

If the above cloning process is performed when, in fact, no
correlation between the previous state and the next state
exists, little has been lost. We have simply made the model
more complicated (more states) and made our probability
estimates more susceptible to statistical fluctuations (because
each state is visited less often). If such correlations do exist,
the improvements in the probability estimates can be dramatic.
Carrying on with the model of Fig. 2(b), it is possible that the
choice of next state (D or E) is not correlated with the
previous state being A or B but is correlated with the states
immediately before state A or state B. If this is the case,
cloning state A, cloning state B, cloning state C' and recloning
state C will enable our model to discover the correlations. In
general, the more cloning that is performed, the longer the
range of correlations that can be discovered and be used for
predictive purposes.

In light of the previous observation, our implementation
performs cloning as soon as practicable. Whether it is
practicable to clone a particular state depends on whether that
state has been visited a reasonable number of times from each
of two (or more) different predecessor states. Referring to Fig.
2(a), again, let us assume that the current state is A and a
transition is about to be made to state C. The desirability of
cloning state C should depend on whether the AC and BC
transition counts are both reasonably large. If, say, the BC
count is zero or is small compared to the AC count, then the
probabilities associated with the transitions leaving C will
reflect a correlation with the predecessor being A. Cloning
state C would enable correlations with state B to be discerned,
but there is little benefit to be gained if the BC transition is
rarely taken.

(a)

(b)

Figure 2(a). Part of a Markov model; (b) the Markov model 
after ‘cloning’

A C D

B E

0 0

1 1

A C D

B E

0 0

1
1

C’
1

0

It is assumed that the next transition to be followed in the
Markov chain model would transfer from the current state to
the candidate state, a state that is eligible for cloning.
Generalizing the scenario of Fig. 2(a), we have the following
cloning criterion. The candidate state is cloned if and only if
the number of observed transitions from the current state to
the candidate state is greater than MIN_CNTI, and the
number of observed transitions from all states other than the
current state to the candidate state is greater than
MIN_CNT2.

The full algorithm for implementing state cloning appears
in the appendix to this paper as Fig. A 1. The algorithm also
shows how transition counts are apportioned when a state is
cloned. By apportioning these counts, Kirchhoff's Laws* are
maintained. The assumption of Kirchhoff's Laws simplifies
the logic needed to determine how often the candidate state
has been visited from states other than the current state. The
choice of suitable values for MIN_CNTl and MIN_CNT2 is
discussed later in the paper.

4.3. Starting and stopping the model construction

Two important questions have not yet been answered. The
first question is: what Markov model should we begin with?
The simple answer is that we need only begin with a minimal
model capable of generating any message sequence. It
contains only one state. Both transitions out of this state (for
the digits 0 and 1) loop back to this single state. This model is
diagrammed in Fig. 3 (a). After operation of the cloning
algorithm, this single-state model rapidly grows into a complex
model with thousands of states.

In practice, there is some benefit to be gained from
beginning with a slightly less trivial initial model. Almost all
computer data is byte- or word-aligned. Correlations tend to
occur between adjacent bytes more often than between adjacent
bits. If we begin with a model that corresponds to byte
structure, the process of learning source message characteristics
occurs faster, leading to s8lightly better data compression. A
simple model for byte structure has 255 states, arranged as a
binary tree, with transitions from each leaf node returning to
the root of the tree. The general shape of this tree, but with a
smaller number of nodes, is diagrammed in Fig. 3 (b).

Although a tree-structured initial graph works well, it is
possible to do a little better. When the transition counts have
reached reasonable values, the counts have the potential to
show correlations between the individual bits of a byte. For
example, if it is the case that the third bit in a byte being a zero
implies that the seventh bit is always a one, the tree model
would be able to describe this correlation. In general, a state in
the kth level of the tree represents correlations with the
preceding k-1 bits. The amount of left context that is
correlated with the current state builds up from 0 bits to 7 bits
and then the correlation is discarded when a transition to the
top (root) of the tree is made. A more satisfactory model is
one that retains a constant amount of left context. Apart from

*. By this we mean that the count of transitions into some state from all its
predecessors should be the same as the count of transitions out of that state to
all its successors. In practice, the two counts may differ by one, because there
is always one more transition into the current state than there are transitions
that have been taken out of it.
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being aesthetically pleasing, such a model has the capability of
learning correlations between the last few bits of one byte and
the first few bits of the next byte. A model that keeps the
amount of left context constant is, unfortunately, difficult to
show in a diagram. It would be easiest to draw on the surface
of a torus. We call the model a braid because of the way in
which the transitions interweave when drawn out in two
dimensions. An algorithm for the construction of the braid
model appears in the appendix to this paper as Fig. A. 4.

The second question is: when should the cloning process be
halted? If it is not halted, there is no bound on the amount of
memory needed by our compression algorithm. On the other
hand, if it is completely halted, we lose the ability for our
algorithm to adapt if some characteristics of the source
message change. A possible solution is to set a limit on the
number of states. When the limit is reached, the Markov
model is discarded and we begin again with the initial model.
This drastic solution is more effective than it might appear.
However, a less drastic variation on the approach is easily
implemented. We can retain the last k bytes of the source
message that have been read in a cyclic buffer. When the limit
on the number of states is reached, the model is discarded as
before. Then, without adding to the encoded message, a new
model is constructed by processing the k bytes in the buffer.
This should yield a new model with a relatively small number
of states that corresponds to the characteristics of the last k
message bytes. Although some loss of data-compression
performance occurs at these storage reclamations, the loss is
not very great in practice and the compression algorithm
retains its adaptability.

5. PRACTICAL USAGE OF THE GUAZZO
ALGORITHM

Guazzo encoding was previously discussed without much
regard to the problems associated with a practical
implementation. There are two main problem areas which
must be addressed. The first problem is that the lower and
upper bounds of the interval are rational numbers which, as

(a)

(b)

Figure 3(a). An initial one-state Markov chain model. (b). 
An initial Markov chain model for 4-bit characters.

0 1

0 1

0 0

0 0 0 0

0 1
11

11 1 1
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the algorithm proceeds, must be calculated to ever greater
precision. The solution adopted by Guazzo is to weaken the
requirement that these bounds be calculated precisely.

At each step of the encoding algorithm, the interval is
divided into two parts. If the division is not performed exactly
in the same proportions as the ratio of the probabilities of the
next source digit being a zero or a one, there is no great loss.
The coding technique still works, in the sense that decoding
can be uniquely performed. All that is lost is a little coding
efficiency. Guazzo therefore proposed that a fidelity criterion
should be used to determine how precisely the division point
between the two sub-ranges is to be calculated. The tighter
this criterion is, the better the message encoding is, but at the
computational expense of having to calculate the division
point more accurately.

For our implementation of the algorithm, we chose the
more practical approach of retaining as many significant bits in
the calculation of the division point as will conveniently fit in
one computer word. And, as soon as message bits are
generated (when both bounds of the interval have one or
more identical leading digits), they are removed from both
variables that record the interval bounds. (They may be
removed by logical shift-left operations.) Thus a fairly constant
degree of accuracy (about 30 significant bits) is maintained by
our implementation. An algorithm organized along these lines
is provided in the Appendix as Fig. A. 2.

The second issue is one that was not addressed by Guazzo.
He assumed the message source to be unending. However, this
clearly does not suit typical computer applications for data
compression. In the example of the previous section, we
assumed that the source message was infinite and began with
the sequence

0111001...

and we discovered that the encoded message should be some
infinite sequence in the interval

[0.011100110101..., 0.01110100101111...]

Suppose, however, that the source message contains only
the 7 digits listed above. That is, when the encoding algorithm
attempts to read an eighth bit, it receives an end-of-input
indication. What should the algorithm do? Our encoded
message could be the finite sequence '011101' or it could be
'0111010' or '011100111' or ... Which of these encoded
messages will be correctly decoded?

If the decoding algorithm treats the finite encoded message
as though it were a normal binary fraction, that is, if it treats
'011101' and '011101' and '01110100' ... as being synonymous,
none of these messages will be decoded correctly. The binary
fraction '011101' has an exact value, and therefore the
decoding algorithm can continue subdividing intervals and
generating nonsensical message bits for ever.

Our solution to the problem is, in effect, to consider the
encoded message sequence '0111010' as representing a range
of values [0.0111010000..., 0.01110101111...]. In other words,
we treat the encoded message as being 0111010xxxx..., where
x represents an unknown bit value. The decoding algorithm
should subdivide intervals and generate message bits as long as
there is an unambiguous choice as to which half of the interval
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the value 0lll0l0xxx... belongs in. As soon as the choice
depends on the value of one of more of the digits denoted by
x, the decoding algorithm halts.

Clearly it is the responsibility of the encoder to make sure
that enough bits are present in the encoded message for the
decoder to reconstruct the entire original message without
ambiguity. This detail is taken care of in two places in the
algorithm of Fig. A 2. At the end of the algorithm (at label
999), the algorithm simply outputs all remaining bits held in
the variable MP up to, but not including, the rightmost one bit.
MP holds the tail of the binary encoding for the partition
point between the next two sub-ranges. Since the decoding
algorithm will discover an exact match between its input data
and this partition point, it cannot choose between the upper
part and the lower part of the interval. Thus no superfluous
output bit(s) will be created. Note that we stop just before
outputting the rightmost one bit in MP. If this bit were output,
the decoder would be able to deduce that the encoded
message is greater than or equal to MP, and this would cause
the decoder to generate a spurious one bit.

It is not sufficient to observe that no superfluous output bit
is created by the decoder. We must also guarantee that the
decoder can reconstitute the entire source message, without
losing any of the last few bits. To guarantee that no message
bits are lost, we force the calculation of MP to make the
rightmost bit a one. Thus, at the end of the algorithm, all but
the rightmost bit of MP must be output. Maximising the
number of bits output by the encoder like this disambiguates
any pending selections of interval partitions in the decoder.

The decoding algorithm closely mirrors the encoding
algorithm. Indeed, except for some delays when it cannot
immediately decide whether to select the upper or lower half
of the range partition, its calculations proceed almost in step
with the calculations of the encoder. The decoding algorithm
is given in the appendix as Fig. A.3.

Another implementation difficulty has, for simplicity, been
ignored in the implementations reproduced in Figs A.2 and
A.3. These two algorithms assume that the message can be
encoded as an arbitrary number of bits. In practice, the
encoded message would usually have to contain an integral
number of bytes (or, perhaps, words). If we simply truncate
the encoded message, dropping up to 7 bits, the decoder may
not be able to reproduce the last few bits of the original
message. And we cannot append extra bits to the encoded
message because these will, almost certainly, be converted into
spurious bits at the end of the decoded message. Provided the
original source message contains an integral number of bytes,
we have a solution to the problem.

The solution is to append seven extra bits to the source
message during the encoding process. Each of these seven
source bits is chosen to pessimise the encoding. The encoding
algorithm computes MP, the dividing point in the interval [LB,
HB], as before. Then it determines which of LB or HB has more
leading bits in common with MP (there cannot be a tie). If it is
LB, the extra bit is chosen to be zero; otherwise it is chosen to
be one. Apart from the way the extra bit is generated, it is
treated like any other message bit for encoding purposes. With
this choice of source bit, at least one new bit is appended to the
encoded message. The encoded message may now be safely
truncated. Any bits that are lost at the end of the encoded
message may cause some bits to be lost from the decoded
message. However, bits lost from the decoded message are
only some of the extra bits that were added by the encoder.
And because our seven extra bits were chosen to pessimise the
encoding process, the loss of one encoded message bit can, at
worst, cause the loss of one bit in the decoded message. Thus
when the message is decoded, 0-7 extra bits will be found at
the end of the message. The decoder ignores any incomplete
byte at the end of the message, so that no genuine information
is lost and no spurious information is gained.

6. RESULTS

Four different data-compression algorithms were tested with a
variety of data files found on the Berkeley UNIX system
(running on a VAX-11/780). These files were chosen because
of their large size, making them prime candidates for
compression, and because they were fairly typical of files on
this system. The file types included formatted documents,
unformatted documents (i.e. input to the troff formatting
program), program source code (in the C language), and
executable object files.

Our new coding algorithm, DMC (for Dynamic Markov
Compression), was compared against three other compression
programs. One program was an adaptive Huffman coding
algorithm, as implemented in the UNIX compact command.8
It should be noted that this program yields compression
results that are almost indistinguishable from a two-pass (non-
adaptive) Huffman coding algorithm.

The second program* was a variation, due to T. Welch,12 on
the Ziv-Lempel compression algorithm. This variation is
labelled LZW in Table 2. We actually tried out two versions of
the LZW program. The standard version remembers
sequences of bytes that have occurred in the file and replaces
subsequent occurrences of these same sequences with
pointers back to the first occurrences. Our second version of
LZW remembers sequences of bits (rather than bytes). This
bit-oriented version of Ziv-Lempel coding is labelled LZ-2 (2
for binary) in the table of results.

Table 2.   Comparative compression results (percentages)

Source file

Compression
program

Formatted
text'a

a. Formatted manual entry for the csh command (74510 bytes)

Unformatted
text'b

b. Unformatted version of csh manual entry (61536 bytes).

Object
code'c

c. Object code for csh command (68608 bytes).

C-source
code'd

d. Source code for finger command (31479 bytes).

Adaptive Huffman  (com-
pact)

59.7 61.6 79.6 62.9

Normal Ziv-Lempel 
(LZW)

38.2 42.9 98.4 40.8

Bit-oriented Ziv-Lempel
(LZ-2

74.2 83.6 91.3 86.7

Cleary and Witten
(CW)

26.5 30.2 69.4 26.3

Dynamic Markov
(DMC)

27.2 31.8 54.8 27.5

*. We used version 2.0 of the compress program. This program was origi-
nally authored by S. W. Thomas of the University of Utah and enhanced by J.
M. Orost of Perkin-Elmer Ltd.
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The third program was the Cleary-Witten compression
algorithm1 (called CW in the remainder of this paper). As
explained previously, this technique involves the construction
of kth-order Markov models, where k is a (small) number that
must be selected in advance. For the results shown in Table 2,
k was chosen to be 4.

The version of DMC used in Table 2 started with a braid-
structured initial model and was not subjected to any memory-
size constraints. Furthermore, we set the parameters that
control the cloning of states in the Markov model to values
that give good results. We will say what these values are after
discussing the main results.

We compared the five different compression programs on
several data files. The resulting compression factors are shown
in Table 2. A compression factor is computed as the ratio
between the size of the encoded (compressed) file and the size
of the original file. For example, a figure of 40% in our table
would indicate that a file was compressed to two-fifths of its
original size.

It is fairly easy to rank the different compression programs
in the order of their effectiveness. The only difficulty is in
comparing DMC against CW. For ASCII source files, DMC is
very slightly behind CW. But for object code files, DMC is well
ahead. In fact, DMC is very well suited for files that do not
have a homogeneous nature, and UNIX object files have a
non-homogeneous structure.* This is because our algorithm is
more flexible, continually adapting itself to the data. Although
the adaptive Huffman algorithm, the Ziv-Lempel algorithm,
and the Cleary-Witten method can all adapt themselves after a
change in file characteristics, they take a relatively long time to
adapt. Adaptability is important in some applications, such as
in compressing data sent over a communication link. Since this
data would normally be formed from a long series of short
unrelated messages, we would expect the characteristics of the
data to change frequently.

We now return to some of the practical details of our
compression algorithm. When the dynamic Markov modelling
method was described earlier, two free parameters

Table 3.  Varying the cloning parameters

Parameter
values

Maximum
graph size
(number of nodes)a

Compression
performance
(%)

(1, 1)b

(2,2)
(4,4)
(8,8)
(16, 16)
(32, 32)
(64, 64)
(128, 128)
(256, 256)

> 194000
150901
84090
44296
23889
12089
6347
3211
1711

34.7 

33.8
35.8
38.9
42.7
46.5
50.6
54.6
58.6

a. The subject file contained 97393 characters of ASCII text. (It
was the terminal capability database /etc/termcap.)

b. The compression program ran out of storage for graph nodes in
the first experiment with parameter values (1,1). The program had com-
pressed more than 90% of the source file when it aborted.

*. These files have several sections – including an instruction area part, a
data area part, a relocation dictionary and a symbol table.
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(MIN_CNTI and MIN_CNT2) were present in the algorithm.
Our experiments have shown that these parameters should be
chosen so that cloning occurs very early. The results of one
such experiment are shown in Table 3. In this experiment we
set the two parameters equal and tried values of 1, 2, 4, 8, ...,
up to 128. Smaller values lead to earlier cloning and therefore
to more states in the Markov model. However, the table also
shows that small values give the best compression factors.
Similar results are obtained if the parameters are varied
independently. Our general observation is that promotion of
rapid growth in the model leads to the best results. All other
results involving our compression algorithm reported in this
paper used parameter values of (2, 2).

Another detail to be considered is exactly how the number
of states in the Markov model should be limited. As Table 3
illustrates, the number of states exceeded 150000 for an input
file holding fewer than 100000 bytes. A scheme for limiting
the model size was previously outlined. We impose an upper
limit on the number of nodes in the graph. When the graph
grows to reach this limit, the entire graph is discarded and we
start over again with the initial small graph. To avoid losing
too much compression performance while the compression
algorithm 'relearns' the structure of the source data, we buffer
the last k bytes of the source input. These k bytes are used to
rebuild a reasonably small Markov model after a storage
reclamation. This leads to two, related, practical questions.
First, how is compression performance affected when the
number of states in the model is limited? Second, how large
should the buffer be? Table 4 may be  helpful in providing
some answers to these questions.

As one would expect, compression performance improves
both as the maximum graph size is increased and as the buffer
size is increased. Therefore the best choices of limits depend on
trade-offs between compression efficiency, storage size and
execution speed. Increasing the maximum graph size improves
compression performance and reduces execution time (because
storage reclamations are less frequent). Increasing the buffer size
improves compression performance too, while increasing both
the storage requirements and the execution time (because more
model rebuilding work is performed at each storage reclamation
and because reclamations will occur more frequently). However,
if the buffer size is made too large the maximum graph size may
be reached while rebuilding the graph.

Table 4.  Choosing limits on the Markov model size

Buffer
size
(bytes)

Maximum number of nodes in graph (%)a

a. The subject file contained 97394 characters of ASCII text. (It was
the terminal capability database /etc/termcap). For results in the rightmost
column, four storage reclamations occurred. For results in the leftmost col-
umn, as many as 50 reclamations occurred.

5000 10 000 15000 20000 25000 30000 35000

 100
 200
 500
1000

53.6
51.9
50.9
50.0

48.3
48.8
46.7
46.1

46.3
47.4
45.6
45.0

45.4
43.4
43.9
43.5

44.5
44.8
44.5
43.5

44.0
44.2
43.8
42.7

43.0
42.0
42.8
41.4
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7. DISCUSSION AND CONCLUSIONS

DMC is a general data-compression algorithm that, to the best
of our knowledge, achieves some of the best compression
results reported in the literature. Text files, for example, are
compressed to such an extent that each character requires little
more than two bits, on average. Depending on the file, we
observed figures in the range of 2.2 to 2.6 bits.

Of the compression algorithms compared in Table 2, the
LZW algorithm is by far the fastest, while the CW method is
the slowest. In terms of storage requirements, the adaptive
Huffman algorithm uses the least amount of storage and the
CW method normally uses the most. However, this
observation must be qualified by the fact that the storage used
by the LZW and DMC algorithms increases without bound as
the source message is processed. As a practical requirement,
the amount of storage available for use by LZW and DMC
must be artificially limited.

Although DMC has strong competition from the LZW and
CW methods, we argue that DMC is a more general approach
that has several advantages. Both the LZW and CW methods
are, for practical purposes, byte-oriented. It is indeed possible to
implement bit-oriented versions of LZW and CW but, in the
case of LZW (as seen in Table 2), the results are poor. This is
because the learning period for LZW becomes much longer,
too long for LZW to achieve reasonable compression on typical
files. A bit-oriented version of CW is impractical for a different
reason. If it is desired to achieve the same effect as a fourth-
order Markov model for bytes, it would be necessary to use a
32nd-order Markov model for bits. The amount of memory
required for table storage would simply be astronomical.

On the other hand, DMC is not strongly biased towards
byte-oriented data at the expense of bit-oriented data. The use
of a byte-oriented starting model (the braid structure) does not
cause DMC to perform poorly if the data is not, in fact, byte-
oriented. Therefore we argue that DMC is more general and
can be applied to files, such as files that have already been
subjected to some form of compression, that do not preserve
byte alignment. To some extent, this also explains why DMC
outperforms the other compression methods on object code
files. The instruction area part of an object file contains small
groupings of bits, such as instruction operands, that are not
generally aligned within a byte.

However, the implementation of the DMC algorithm
described in this paper requires a considerable amount of
computation and requires a large amount of memory. We have
performed some preliminary work on a fast method of
performing Guazzo encoding and have obtained some excellent
performance figures. This method, which uses a finite-state
automaton instead of performing range calculations, will be
reported in a future paper. But further work needs to be done
to see if it is possible to reduce the storage requirements of
DMC without losing too much compression performance.
Further experimentation is also needed to study the best
choices of values for the parameters that control the cloning
process in the DMC algorithm. There is, of course, no reason to
require that these values should be static.

A slightly different direction for further research lies in
generalising the algorithm to compress two-dimensional
images, such as those generated for raster-type devices. The
problem here is that we would like the model to take account
of correlations between adjacent scan lines as well as between
adjacent points on the same scan line.

We also see applications of the dynamic Markov modelling
method to problems other than data compression. For
example, a computer system could use the method to predict
access to records in a database and use these predictions to
pre-fetch records. Another possible use of the modelling
technique is in game-playing programs to model the playing
strategy of a human opponent. This idea was used in a
program to play the children's game 'Rock, Scissors, Paper'.6
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APPENDIX

The algorithms for cloning states, for implementing Guazzo
encoding and decoding, and for constructing a braid as the
initial graph model appear below. These algorithms are
expressed in Pascal, but we have used some additional
operators for bit manipulation where desirable. These
operators are shl and shr for left and right logical shifts, and
550 THE COMPUTER JOURNAL, VOL. 30, NO.6, 1987
'&' and' '|' for bitwise logical and and or operations. The
identifier N represents the number of significant bits that the
algorithms use for range calculations. When implemented on a
computer with 32-bit integers and with double-length integer
multiplication and division instructions N can be chosen to be
31.
{ NEXT STATE[S.D] = state reached from S after transition on digit D
  TRANS_CNT[S.D]  = numher of ohservations of input D vhen in state S
  STATE           = number of current state
  LAST_STATE      = largest state number used so far
  MIN_CNT1      = minimum number of transitions from the current
                    state to state S hefore S is eligible for cloning
  MIN_CNT2      = minimum numher of visits to a state S from all
                    predecessors of S other than the current state
                    before S is eligible for cloning }
while not eof do
  begin
    read( B );            { read one input hit }
    TRANS_CNT[STATE,B] := TRANS CNT[STATE,B] + 1;
    NXT                := NEXT STATE[STATE,B];
    NXT_CNT            := TRANS_CNT[NXT,0] + TRANS_CNT[NXT,1];
    if (TRANS_CNT[STATE,B] > MIN_CNT1) and
          ((NXT_CNT - TRANS_CNT[STATE,B]) > MIN_CNT2) then
      begin
        LAST_STATE := LAST_STATE + 1;
        NEW := LAST_STATE;  { Obtain a nev state number }
        NEXT_STATE[STATE,B] := NEW;
        RATIO := TRANS_CNT[STATE,B] / NXT_CNT;
        for B := 0 to 1 do
          begin
            NEXT_STATE[NEW,B] := := NEXT_STATE[NXT,B];
            TRANS_CNT[NEW.B] := RATIO * TRANS_CNT[NXT,B];
            TRANS_CNT[NXT,B] := TRANS_CNT[NXT,B] - TRANS_CNT[NEW,B]
          end;
        NXT := NEW
      end;
    STATE := NXT
  end;

Figure A.1. The cloning algorithm.

{ MEANINGS DF VARIABLES:
  The binary message interval Is LB to HB. InclusIve. MP Is the
  dividing point for the interval partlon, LB. HB and MP are all
  scaled by 2**N. PO and PI are integers that give the relative
  probabilities for the next message bit heing 0 or 1. }
MSBIT := 1 shl (N-l);  MSMASK := (1 shl N) - 1;
LB := 0;               HB := MSMASK;
repeat
  { At this point. knowledge of the Markov model or some other
    external source of Information Is used to estimate the relative
    probahlli ties of tbe next source digit heing 0 or 1 These
    (unnormalized) probabilities are assigned to PO and P1 in the
    statements helov. }
  PO := ..;    PI := ...;
  { Calculate the range partition )
  MP : = (P1 * LB + PO * HB + PO + P1 - 1) div (PO + P1);
  if MP = LB then MP := MP + 1;
  MP := MP | 1;   { force rightmost bit to 1 }

  { Assertion:
LB < MP S HB
if eof then goto 999;
read ( B );
ifB=lthen

LB := MP
el..

HB '= MP - 1; { pick lover part of range}
while (LB ~ MSBIT) = (HB ~ MSBIT) do
begin .
vrite ( LB .h. (N-l) );
LB : = (LB .hl 1) ~ MSMASK;
HB : = (HB .hl 1) ~ MSMASK + I;
end;
until false;
{ read one bit }
{ pIck upper part of range}
{ output one bIt} { remove the bit }
999{ Output all hut rIghtmost bit In MP }
while MP <> MSBIT do
begin
vrlte( MP .h. (N-l) );
MP : = (MP .hl 1) ~ MSMASK
end
{ output one bit } { remove the hit }

Figure A.2. The Guazzo encoding algorithm.
 

{ MEANINGS OF VARIABLES:
  LB. HB. MP. PO and PI have the same meanIngs as in Figure 5,
  IN_MSG holds a sequence of encoded message bits; the sequence
  begins at the high-order end, LAST BIT holds a single bit in the
  same position as the last sign1ficant bit of the sequence in IN_MSG 
}
MSBIT := 1 shl (N-l);  MSMASK := (1 shl N) - 1;
LB := 0;               HB := MSMASK;
IN_MSG := 0;            LAST_BIT := 1 shl N;
repeat
  { At this point, we estimate the relative probabilities for the
    next decoded hit to he zero or one. This estimation process uses
    exactly the same information as vas available to the encoder at
     the same point in the original source message  }
  PO := ...;  P1 := ...;

  { Calculate tbe range pht1t1on }

  MP := (P1 * LB + P0 * HB + P0 + P1 - 1) div (P0 + P1);
  if MP = LB then MP := MP + 1;
  MP := MP | 1;
  { Assertion:  LB < MP <= HB  }
  repeat
    if (IN MSG | (LAST_BIT-1)) < MP then
      begin  B := 0;  HB = Mp - 1  end
    else if IN_MSG > MP then
      begin  B := 1; LB := MP end
    else
      begin
        if eof then goto 999; {exit at end-of-flle }
        read( B );  { read one bit}
        LAST_BIT : = LAST_BIT shr 1;
        if B <> 0 then IN_MSG := IN_MSG | LAST_BIT;
        B := -1
      end
  until B > 0;
  write ( B );  { output one bit }
  while (LB & MSBIT) = (HB & MSBIT) do
    begin
      LB := (LB shl 1) & MSMASK;
      HB := (HB shl 1) & MSMASK) | I;
      IN_MSG := (IN_MSG shl 1) & MSMASK;
      LAST_BIT := LAST_BIT shl 1;
    end
until false;
999:  { exit here vhen finished decoding} 

Figure A.3. The Guazzo decoding algorithm.

{ LAST_STATE, TRANS_CNT[S.O] and NEXT_STATE[S.D] have the same
  defInitIons as in Figure A.1; The following code initia1izes the
  arrays for S = zero up to S = NBITS*STRANDS - 1 }
const
  NBITS = 8;       { Number of hits per byte }
  STRANDS = 256;   { 2 ** NBITS }

for I : = 0 to NBITS-l do
  for J : = 0 to STRANDS-l do
    begin
      STATE := I + NBITS*J;
      K := (1+1) mod NBITS;
      NEXT_STATE[STATE,O] := K + ( 2*J ) mod STRANDS) * NBITS;
      NEXT_STATE[STATE,1] := K + (2*J+1) mod STRANDS) * NBITS;
      TRANS_CNT[STATE,O] : = I;
      TRANS_CNT[STATE,1] : = I
    end;
 
LAST_STATE := NBITS*STRANDS - 1;

Figure A.4. Tbe Braid construction algorithm.
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