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M
any people are surprised to learn

that Venn diagrams can be drawn to

represent all of the intersections of

more than three sets. This surprise is

perfectly understandable since small

Venn diagrams are often drawn with circles, and it

is impossible to draw a Venn diagram with circles

that will represent all the possible intersections of

four (or more) sets. This is a simple consequence of

the fact that circles can finitely intersect in at most

two points and Euler’s relation F − E + V = 2 for

the number of faces, edges, and vertices in a plane

graph. However, there is no reason to restrict the

curves of a Venn diagram to be circles; in modern

definitions a Venn diagram is a collection of simple

closed Jordan curves.This collection must have the

property that the curves intersect in only finitely

many points and the property that the intersection

of the interiors of any of the 2n subcollections of

the curves is a nonempty connected region.

If a Venn diagram consists of n curves then we

call it an nVenn diagram. The rank of a region is

the number of curves that contain it. In any nVenn

diagram there are exactly
(

n

r

)

regions of rank r .

Figure 1 shows a 2Venn and two distinct 3Venn

diagrams. Note that the diagram in Figure 1(c) has

three points where all three curves intersect. The

regions in the diagrams of Figure 2 are colored

according to rank.

The traditional threecircle Venn diagramhas an

appealing 3fold rotational symmetry, and it is nat

ural to ask whether there arenVenn diagramswith

annfoldrotationalsymmetryforn > 3.Grünbaum

[6] found a symmetric 5Venn diagram made from

ellipses. Henderson [10] noted the following neces

sary condition: if an nVenn diagram has an nfold
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rotational symmetry, thenn is prime. The reason is

as follows:

InanysymmetricnVenndiagramthefixedpoint

of the rotations, the center of the diagram, must

lie in the unique region of rank n. The unbounded

outer region has rank 0. Regions of rank 0 < r < n

must be distributed symmetrically and thus their

number,
(

n

r

)

, must be divisible by n. This property

holds exactly whenn is prime.

Why?Recall that
(

n

r

)

= n(n−1) · · · (n−r+1)/r !.

If n is prime and 0 < r < n, then note that n occurs

once in the righthand side and all other numbers

are less than n. On the other hand, if p is a nontriv

ial divisor of n, then the binomial coefficient with

r = p is the product of two integers
(

n

p

)

= n

p
·m

wherem = (n−1) · · · (n−p+1)/(p−1)!, butclearly

p cannot dividem, and thus n does not divide
(

n

p

)

.

The elegant necessary condition of Henderson

was long suspected to be sufficient, but it took

some 40 years before it was proven to be sufficient

by Griggs, Killian, and Savage [5]. In the interven

ing years, symmetric diagrams were discovered

for n equal to 5, 7, and 11. Some of these dia

grams are shown in Figure 2. The first symmetric

7Venn diagrams were discovered independently

by Grünbaum [7] and Edwards [3] (Fig. 2(b)); the

first symmetric 11Venn diagram was discovered

by Hamburger [8].

A Venn diagram is said to be simple if exactly

two curves pass through any point of intersection.

The diagrams of Figures 1(a), (b) and 2(a), (b) are

simple and the diagrams in Figures 1(c) and 2(c) are

not simple. Simple Venn diagrams exist for all n,

but no simple symmetricVenn diagramsare known

for n > 7. On the other hand, no known condition

precludes their existence for any primen.

Venn diagrams were originally proposed as

visual tools for representing “propositions and

reasonings” [15] and how they are actually drawn

in the plane will often influence how useful they

are as tools. The definition of Venn diagram that

we gave earlier is topological, but questions of

geometry have also played a significant role in

investigations of Venn diagrams. For example, one
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(a) (b) (c)

Figure 1: Symmetric nVenn diagrams for n = 2,3: (a) n = 2, (b) n = 3 simple, (c) n = 3 nonsimple.

Figure 2: Symmetric Venn diagrams: (a) n = 5, (b) n = 7, (c) n = 11.

can ask: Which Venn diagrams can be drawn with

all curves convex? For more than four sets, the

practical usefulness of Venn diagrams diminishes

but interesting mathematical questions arise. See

[14] for a list of open problems related to Venn

diagrams.

In this article we outline the technique of Griggs,

Killian, and Savage [5] for producing symmetric

Venn diagrams on a prime number of curves and

the more recent efforts of Killian, Ruskey, Sav

age, and Weston [13] to create simple symmetric

Venn diagrams. One of the diagrams from [13]

was selected by Stan Wagon as the basis for the

illustration shown on the cover; the method used

to produce the image is described in the “About the

Cover” description on page 1312.

Graph Theoretic Model

We first appeal to graph theory to get a “combinato

rial” condition for Venn diagrams.

A Venn diagram D can be viewed as a (multi)

graph V embedded in the plane: the vertices of V

are the points where curves of D intersect and the

edges ofV are the sections of the curves connecting

the vertices. We can take the (geometric) dual of an

embedding of a planar graph V by placing a vertex

vr in every region r ofV . If edge e separates regions

r and s in V , then join vr and vs by an edge in the

dual. The dualV∗ of a Venn diagram is a planar em

bedding of a graph whose vertices are the subsets

of [n] = {1,2, . . . , n}.
To construct a Venn diagram, then, one could

start with a graph whose vertices are the subsets

of [n]. The ncube Qn is the graph whose vertices

are the nbit strings with edges joining strings that

differ only in one bit. Since a subset S ⊆ [n] can be

viewed as an nbit string whose ith bit is ‘1’ if and

only if i ∈ S, the vertices of Qn are in onetoone

correspondence with the regions in a Venn dia

gram. ButQn is not planar for n ≥ 4, so we cannot

produce a Venn diagram simply by taking the dual

ofQn.

There is a theorem in graph theory that says: In

a planar graph G, if S is a bond, that is, a minimal

set of edges whose removal disconnects G, then the

edges in the dual G∗, corresponding to those in S,

form a cycle in G∗. For a proof, see West [16, The

orem 6.1.14]. This is exactly what is needed. If G∗

is to be a Venn diagram, then for each 1 ≤ i ≤ n,

the graph G∗ must have a corresponding cycle Ci
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Figure 3: (a) A symmetric chain decomposition in B4; (b) embedding with cover edges, with each
edge colored by its type.
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Figure 4: (a) An overlay with the dual of the graph in Figure 3(b); (b) the resulting Venn diagram
for 4 sets (the two vertices with arrows are identified).

to separate the sets containing i from those that do

not. The dual ofCi back inGwill be the set of edges

joining vertices representing sets that do contain i

to those that do not, and this must be a bond ofG.

A spanning subgraph ofQn is called monotone if

everynbit string with k ones is adjacent to a string

with k − 1 ones (if k > 0) and to a string with k + 1

ones (if k < n). In a monotone subgraph ofQn, for

each 1 ≤ i ≤ n, the edges joining vertices with ith

bit ‘1’ to those with ith bit ‘0’ form a bond. Thus the

following condition on a spanning subgraph G of

Qn will guarantee that the dual of G is a Venn dia

gram:G is planar and monotone. It is worth noting

that this condition is not necessary; there are Venn

diagrams for whichG is not monotone.

In the next section, we show how to build a

planar, monotone, spanning subgraph ofQn using

a symmetric chain decomposition in the Boolean

lattice.

The Combinatorics
Returnto the Boolean latticeBnwhose elementsare

the subsets of [n], ordered by inclusion. The Hasse

diagramofBn, regardedasagraph, is isomorphic to

Qn.Achain inBn isasequenceS1 ⊆ S2 ⊆ · · · ⊆ St of

elements ofBn such that |Si| = |Si−1|+1. The chain

is symmetric if |S1| + |St| = n. A symmetric chain

decomposition of Bn is a partition of the elements

ofBn into symmetric chains.

A significant result in order theory is thatBn has

a symmetric chain decomposition for every n ≥ 0.

One construction, due to Greene and Kleitman [4],

works as follows. Regard the elements of Bn as

nbit strings. View ‘1’ bits as right parentheses and

‘0’ bits as left parentheses and in each string, match

parentheses in the usual way. This process may

leave some ‘1’ or ‘0’ bits unmatched. From every

string x with no unmatched ‘1’ grow a chain as

follows. Change the first unmatched ‘0’ in x to ‘1’

to get its successor, y . Change the first unmatched

‘0’ in y (if any) to ‘1’ to get its successor. Continue

until a string with no unmatched ‘0’ is reached. The

chains shown in Figure 3(a), built using this rule,

give a symmetric chain decomposition ofB4.

These chains form a planar spanning subgraph

of Qn. But to make the subgraph monotone, we

need to add edges (without destroying planarity)

to “cover” the first and last elements of each chain.
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The chain starting at x can be covered by the chain

starting at y where y is obtained from x by chang

ing the last ‘1’ inx to ‘0’. Not only doxandy differ in

one bit, but so do the last elements of these chains.

Viewingy ’s chainas the parentofx’s chain, it canbe
shown that a preorder layout of the tree of chains

gives a planar embedding of the chains together

with their cover edges. A planar embedding of the

subgraph of Q4 consisting of the chains and the
cover edges is shown in Figure 3(b).

The dual graph is shown in Figure 4(a). Say that

an edge in the graph of Figure 3(b) has type i if

it joins vertices that differ in position i. In Figure

4(a), a dual edge is colored according to the type of
the edge it crosses. Figure 4(b) shows the resulting

Venn diagram.

This method gives yet another constructive

proof that for every n ≥ 0, Venn diagrams exist
for n sets. (A similar construction is implicit in

[2], although they make no mention of symmetric

chains.) So what about rotational symmetry? As de

scribed earlier, this is not possible ifn is composite.

But when n is prime, we can extract ideas from the
construction described here to achieve symmetry,

as shown in the next section.

Rotational Symmetry When n is Prime
When n is prime, the idea for constructing a rota
tionally symmetric Venn diagram is to somehow

work within “1/nth” ofBn (orQn) to get “1/nth” of

the Venn diagram embedded in a “1/nth” pieslice

of the plane and then rotate the result by 2πi/n for

1 ≤ i < n to complete the diagram. Fortunately,
when n is prime,Bn comes with a natural partition

into symmetric classes.

Forx = x1x2 · · ·xn, letσ denote the left rotation

of x defined by σ(x) = x2x3 · · ·xnx1. Let σ 1 = σ ,
and σ i(x) = σ(σ i−1(x)), where i > 1. Define the

relation△on the elements ofBn byx△y if and only

if y = σ i(x) for some i ≥ 0. Then △ is an equiv

alence relation that partitions the elements of Bn
into equivalence classescalled necklaces. Whenn is
prime, every nbit string, other than 0n and 1n, has

n distinct rotations, so its necklace has exactly n

elements.

In the hope of adapting the method of the pre
vious section, we ask: When n is prime, is there a

way to choose a set Rn of necklace representatives,

one from each necklace, so that the subposet of

Bn induced by Rn, Bn[Rn] has a symmetric chain

decomposition? Fortunately, the answer is yes (see
next section), so construction of a rotationally sym

metric Venn diagram can proceed as follows.

Startwith the strategically chosensetRn ofneck

lace representatives. Let Qn[Rn] be the subgraph

of Qn induced by Rn. The symmetric chain de
composition in Bn[Rn], together with appropriate

cover edges, gives a planar, spanning, monotone

subgraph P of Qn[Rn]. Embed P in a 1/nth pie

slice of the plane with 1n at the center and 0n at the
point at infinity. Note that, as graphs, Qn[Rn] and
Qn[σ

i(Rn)]are isomorphic for any bitwise rotation
σ i of the vertices. So Qn[σ

i(Rn)] has a subgraph
Pi isomorphic to P . Then rotating the embedding
of P by 2πi/n about the origin gives a planar em
bedding of Pi . Taken together, the embeddings of
the Pi give a rotationally symmetric planar em
bedding of a spanning monotone subgraph of Qn

and therefore the dual is a Venn diagram. Finally,
the dual is drawn in a symmetric way. The entire
process is illustrated for n = 5 in the sequence of
Figures 5(a), (b), (c), (d). The chains in Q5[R5] are
10000110001110011110 and 1010010110 (see
the lowest “hexagon” in Fig. 5(a)).

Choosing Necklace Representatives
Here is a way to choose a set Rn of necklace repre
sentatives, one from each necklace, so that the sub
poset of Bn induced by Rn has a symmetric chain
decomposition.

Define the block code β(x) of a binary string x
as follows. If x starts with ‘0’ or ends with ‘1’, then
β(x) = (∞).Otherwise,xcanbe written in the form:

x = 1a10b11a20b2 · · ·1at0bt

for some t > 0, where ai > 0, bi > 0, 1 ≤ i ≤ t , in
which case,

β(x) = (a1 + b1, a2 + b2, . . . , at + bt).
As an example, the block codes of the string
1110101100010 and all of its rotations are shown
below.

bit string block code bit string block code

1110101100010 (4,2,5,2) 1100010111010 (5,2,4,2)

0111010110001 (∞) 0110001011101 (∞)
1011101011000 (2,4,2,5) 1011000101110 (2,5,2,4)

0101110101100 (∞) 0101100010111 (∞)
0010111010110 (∞) 1010110001011 (∞)
0001011101011 (∞) 1101011000101 (∞)
1000101110101 (∞)

Whenn is prime, no two different rotations of an
nbit string can have the same finite block code. As
suming that block codes are ordered lexicograph
ically, in each necklace of nbit strings (except 0n,
1n) the unique string with minimum block code can
be chosen as the representative.

For n prime, let Rn be the set of nbit strings
that are the minimumblockcode representatives
of their necklaces. Build chains using the Greene–
Kleitman rule, except chains start with a string with
exactly one unmatched ‘1’ and end at a string with
exactly one unmatched ‘0’. Note that a node x and
its successory have the same block code, so ifxhas
the minimum block code among all of its rotations,
then so does y . Thus every element of x’s chain
is the (minimumblockcode) representative of its
necklace.
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Figure 5: Constructing a symmetric 5Venn diagram: (a) dual with symmetric chains highlighted,
(b) the curves corresponding to the first chain cover, (c) repeating in each sector,

(d) the final Venn diagram.

Simpler Venn Diagrams and Euler’s
Formula

Recall that a Venn diagram is simple if at most two

curves intersectatanygivenpoint.Thismeansthat,

viewed as a graph, every vertex of a simple Venn di

agramhasdegree 4.The numberof faces is2n, since

every subset of [n] corresponds to a region, and

the number of edges is half the sum of the vertex

degrees, so byV−E+F = 2, a simple Venn diagram

has 2n − 2 vertices. In contrast, the number of ver

tices in the Venn diagrams we have constructed via

symmetric chain decompositions is the number of

elements in the middle levels of Bn:
(

n

⌊n/2⌋

)

, which

is roughly 2n/
√
n. This means that the average

number of curves intersecting at any given point

is about c
√
n for some constant c. But a hidden

feature of the Greene–Kleitman symmetric chain

decomposition will allow a dramatic improvement.

Since the number of faces of a Venn diagram is

fixed and since V − E + F = 2, once E > V , more

vertices in the diagram mean the average degree is

smaller and thus, on average, fewer curves inter

sect at any point. If the Venn diagram is the dual

of a planar spanning monotone subgraph G of Qn
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Figure 6: (a) The dual with two simplifying edges added in pie slice. (b) The effect of the cyan
simplifying edge (compare with Fig. 5 (d)) is to increase the number of vertices from 10 to 15.

that has been embedded in the plane, we can in

crease the number of vertices of the Venn diagram

by increasing the number of faces of G. One way

to do this is to add edges of Qn to G, without de

stroying the planarity of G. The added edges join

vertices which differ in one bit. For example, Figure

6 shows the addition of ten simplifying edges to the

5Venn dual of Figure 5 and the effect that adding

the five cyan ones has on the resulting 5Venn di

agram. Note that the number of vertices increases

from 10 to 15.

The Greene–Kleitman symmetric chain decom

position provides a systematic way to do this: Any

face bounded by two chains and two (suitably cho

sen) cover edges can always be “quadrangulated”

by edges joining vertices that differ in one bit. This

is illustrated in Figures 7 and 8. Furthermore, it can

be shown that as n → ∞, the number of vertices in

the resulting Venn diagram is at least (2n − 2)/2,

so the averagenumber of curves intersecting at any

given point is at most 3. Since (2n − 2)/2 is half the

numberofvertices inasimpleVenndiagram, thedi

agrams of [13] were dubbed “halfsimple”. (Experi

ments suggest that as n → ∞, the construction is

doing better than 50%, perhaps closer to 60%.)

The construction is certainly not optimal. Fig

ure 9 shows that further simplifying edges of Qn,

beyond those specified by the construction, can be

added. To date the simplest symmetric 11Venn

diagram is due to Hamburger, Petruska, and Sali

[9]; their diagram has 1837 vertices and is about

90% simple.

Figure 9 was the starting point for the half

simple Venn diagram shown on the cover. Figure

10(a) shows the result of embedding the graph of

Figure 9 in a “1/11th” pie slice of the plane and

then rotating it by 2πi/11 for 1 ≤ i < 11 to get a

monotone, planar, symmetric, spanning subgraph

of Q11. Its dual, drawn by Wagon’s Mathematica

program and shown in Figure 10(b), is a half

simple, symmetric 11Venn diagram. The program

regards (a) as a planar map, so the regions have

been 4colored to highlight this interpretation.

Figure 11(a) shows one curve of the 11Venn dia

gram. Each of the 11 curves is a rotation of this one.

Figure 11(b) shows the Venn diagram with regions

colored by rank and with one curve highlighted.
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