
Noname manuscript No.
(will be inserted by the editor)

A Model for Learning the News in Social Networks

Krishnan Rajagopalan ·
Venkatesh Srinivasan ·
Alex Thomo

Received: date / Accepted: date

Abstract In social media such as Facebook, the most popular desire is to
learn the news about other people. In this paper, we study the following prob-
lem related to information propagation: Suppose that there is a set U of N
users in a social network. They meet online from time to time and share in-
formation they know about themselves and the other users in the network.
Whenever a group g ⊂ U of users meet, they want to know who has the latest
information about every user in U . A naive solution to this problem is to use
timestamps. However, there are drawbacks to this scheme including the burden
on the users to maintain reliable timestamps and the fact that the timestamps
grow unbounded over time. It is natural to ask if it is possible to learn the
latest information without using timestamps. We present an efficient method
which removes the need to timestamp user information (news). Instead, only
the meetings of the groups have to be indexed. Furthermore, we show that
this indexing can be performed using a finite set of labels so that each user
stores at most O(N2 logN) bits of information. We also show that this bound
can be improved in some cases if we have further information on the topology
of the network.
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1 Introduction

Today, it is hard to find people, at least from certain demographics, who are
not part of a social network, such as Facebook, Twitter, LinkedIn, and so
on. One of the main reasons for joining a social network is to satisfy the
inherent human need of learning “the news” about other people. In virtually
all the social networks, there are implicit or explicit groups formed for the sole
purpose of disseminating information. However, this bears the question of how
to determine the latest information about users in a network.

The setting we study in this paper is as follows. Suppose that there is a
set U of N users in a social network. They meet online in groups from time
to time and share information they know about themselves and other users in
the network. Whenever a group g ⊂ U of users meet, they want to know who
has the latest information about every user in U . We assume honest users who
are willing to share all they know with the other members of the group. A user
can be a member of more than one group, and thus serve as a “bridge” for
news propagation. Also we assume that during a group meeting each member
of the group gets up to date with respect to all the users that the other group
members have information (news) for. Therefore, for a given user u ∈ U , the
members of a group g, need to determine who (in the group) has the latest
information about u.

A naive solution to this problem is to use timestamps. However, there
are two problems with letting users timestamp their personal information.
First, there is the burden on each user to produce and use reliable timestamps
conforming to some standard. Second, there is an additional problem that the
label set for such timestamps grows unbounded over time. Can we avoid this?

In this paper, we present an efficient method to infer the latest information
without using timestamps for the user information. We present an algorithm
which is able to determine who has the latest information for a given user by
reasoning about a “latest information graph” structure we introduce. In this
algorithm, only the meetings of the groups have to be indexed (numbered).
These indexes can be considered as a form of rudimentary timestamps, but
they are on the group meetings level, not on the personal user information
level.

Our Contributions. More concretely, we make the following contributions in
this paper.

– We introduce the notion of the “latest information graph” that allows users
present in a meeting to compare and choose the latest information they
have about any other user in the network.

– For a network of N users with no restriction on the network topology, we
show that it is sufficient for each user to maintain O(N2 logN) bits of
information improving a previous bound of O(N3 logN)[9].

– For the special case of mesh topology, the n-dimensional hypercube, we
show that it is sufficient to maintain O(log3N) bits of information for
N = 2n users. This is a significant improvement over the general case.
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Related Work. “Gossiping” is a well studied problem in distributed systems [6].
In the traditional setting of this problem, a user has a piece of information
that needs to be communicated to all the other users and the goal is to design
a protocol that minimizes the total communication needed for a fixed network
topology.

Bounded time-stamps have been studied for a long time in various models
of distributed systems. Israeli and Li introduced this notion [7] for shared
memory model. Their results were further improved in [3] and [4]. However, we
study this problem for social networks that can be viewed as an asynchronous
communication model and their results are not comparable to ours. Another
direction of research studies this problem in the model of asynchronous cellular
automata that starts with a different assumptions for interaction (See [1], [2]).

Very recently, Lind et al. [8] use a simple model to understand information
propagation in scale-free and small-world networks and compare their results
to real empirical network of social acquaintances. Fan et al. [5] point out the
unreliability of time-stamps in the setting of relational databases and the need
to maintain data currency in the absence of timestamps.

Organization. In Section 2, we formally define our setting and give a charac-
terization lemma about latest information. Sections 3, 4 and 5 explain how
the users compare and update their latest information during meetings. We
outline our algorithm and its analysis is Section 6. In Section 7, we prove
our result on the special case of hypercubes. We end with our conclusions in
Section 8.

2 Groups, Meetings, Information

We denote by U the set of users in a social network and by G the set of groups
the users have created over time. Each group has a name, and for simplicity,
we will blur the distinction between a name and the group it names. There
are possibly many group meetings, and in each such occasion, the members of
the group exchange the latest information about themselves and other users
they know about in the network. We assume that a user, who belongs in more
than one group, does not participate in more than one meeting at the same
time. Also we assume that a group meeting can happen only if all the users
are available and willing to participate.

If two groups g, h have some user in common, we say that they are bridged.
Given a group g ∈ G, we denote its meetings by g1, g2, . . .. Consider a sequence
σ of meetings of different groups (e.g. g1h1g2k1h2). We say that a meeting hj
depends on a meeting gi, and write gi ≺ hj , if groups g and h are bridged, and
gi happened before hj in time. We denote by �∗ the reflexive and transitive
closure of ≺.

Latest Information. Given a sequence σ of meetings, and a user u, let gi be the
last meeting that u participates in. Let σu be the subsequence of σ containing
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only meetings which are “smaller” (�∗) than gi. Given another user t, let ej
be the last meeting in σu that t participates in (of course t ∈ ej). Clearly, the
information that u has about t corresponds to this meeting ej . We denote gi
by lastu(σ) and ej by lastu,t(σ).

For any three users u, v, and t, we have that lastu,t(σ) can be put in a �∗
relationship with lastv,t(σ). This is because both lastu,t(σ) and lastv,t(σ) are
meetings where t participates. In general the meetings where a user t partici-
pates are called t-meetings. Any two t-meetings can be compared with respect
to �∗. Therefore, �∗ is a total order for t-meetings. Purely for convenience of
notation, we assume that there is an initial meeting labeled 0 involving all the
users.

Figure 1 shows a communication sequence σ = f1g1h1g2 of four meetings.
There are four users u, v, w and x. Note that lastu(σ) = g2 and lastu,w(σ) =
h1. Furthermore, σx = f1g1h1 while σu = f1g1h1g2. g1 � h1 as they have a
user v in common. Also note that f1 �∗ g2 because f1 � h1 and h1 � g2.
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Fig. 1 An example

Lemma 1 Let u, v, and t be three users in the network, and let σ be a com-
munication sequence. Then one of the following holds.

(i) lastu,t(σ), lastv,t(σ) ∈ σu ∩ σv and
lastu,t(σ) = lastv,t(σ).

(ii) lastu,t(σ) ∈ σu ∩ σv, lastv,t(σ) ∈ σv \ σu and
lastu,t(σ) �∗ lastv,t(σ).

(iii) lastv,t(σ) ∈ σu ∩ σv, lastu,t(σ) ∈ σu \ σv and
lastv,t(σ) �∗ lastu,t(σ).
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Proof. Case 1. Since lastu,t(σ), lastv,t(σ) are t-meetings, and both in σv, we
have lastu,t(σ) �∗ lastv,t(σ). By a symmetric argument, substituting σu for
σv, we get lastv,t(σ) �∗ lastu,t(σ). Therefore, lastu,t(σ) = lastv,t(σ).

Case 2. One of lastu,t(σ) or lastv,t(σ) belongs to σu ∩ σv and the other does
not belong to σu ∩ σv. Suppose lastu,t(σ) ∈ σu ∩ σv and lastv,t(σ) ∈ σv \ σu.
Then, since lastu,t(σ) ∈ σv and we have lastu,t(σ) �∗ lastv,t(σ). A similar
argument holds for the other possibility.

Case 3. Let, if possible, lastu,t(σ) ∈ σu \ σv and lastv,t(σ) ∈ σv \ σu. Since,
lastu,t(σ) and lastv,t(σ) are both t-meetings, they must be totally ordered, i.e,
either (a) lastu,t(σ) �∗ lastv,t(σ) or (b) lastv,t(σ) �∗ lastu,t(σ). Suppose we
have (a). This means that lastu,t(σ) ∈ σv because σv is the subsequence of σ
containing all the meetings that are �∗ than lastv,t(σ). lastu,t(σ) ∈ σv is a
contradiction. A similar argument holds for the other possibility. ut

3 Latest Information Graph

The latest information that a user u has at the end of a meetings sequence σ
can be organized as a graph Gu(σ) = (Vu(σ), Eu(σ)), where

Vu(σ) = {(t, lastu,t(σ)) : t ∈ U}
Eu(σ) = {[(t, lastu,t(σ)), (t′, lastu,t′(σ))] :

lastu,t(σ) �∗ lastu,t′(σ)}.

Since �∗ is reflexive, a self-loop edge is also contained in Eu(σ) for each node
in Vu(σ).

Whenever two users u and v meet in some group meeting, they want to
decide who has the latest information about some other user t. For this we
present the following lemma.

Lemma 2 lastu,t(σ) �∗ lastv,t(σ), if and only if, there exists t′, t′′ ∈ U , such
that

lastu,t′(σ) = lastv,t′′(σ)

[(t, lastu,t(σ)), (t′, lastu,t′(σ))] ∈ Eu(σ)

Proof. (⇒). lastu,t(σ) �∗ lastv,t(σ). We have the following possibilities.

Case 1. lastu,t(σ) = lastv,t(σ). From Lemma 1, we have, lastu,t(σ), lastv,t(σ) ∈
σu ∩ σv, which implies

(t, lastu,t(σ)) ∈ Vu(σ) ∩ Vv(σ).

Since we always have self-loops in information graphs, we have
[(t, lastu,t(σ)), (t, lastu,t(σ))] ∈ Eu(σ). We set now t′ = t′′ = t and the claim
follows.

Case 2. lastu,t(σ) 6= lastv,t(σ). From Lemma 1, we have lastu,t(σ) ∈ σu ∩ σv
and lastv,t(σ) ∈ σv \ σu.

Let m be the �∗-greatest meeting in σu ∩ σv.
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Claim There exist two users t′, t′′ such that m = lastu,t′(σ) = lastv,t′′(σ).

Proof
Case 1. m 6= lastu(σ). Let t′ be a user such that t′ bridges m and a meeting
m′ ∈ σv \ σu. Similarly, let t′′ be a user that bridges m and a meeting m′′ ∈
σu \ σv. Then, m = lastu,t′(σ) and m = lastv,t′′(σ). If not, one of the two
meetings m′ and m′′ will be in σu ∩ σv.
Case 2. m = lastu(σ). We set t′ to be any user that participated in m and t′′

to be u. With this choice, it holds that m = lastu,t′(σ) and also m = lastv,t′′(σ)
because m is the last meeting in σv that u participates in.

ut
Since lastu,t(σ) is in σu ∩ σv and m = lastu,t′(σ) is the �∗-greatest meeting
in σu ∩ σv, we have lastu,t(σ) �∗ lastu,t′(σ). Thus, we obtain

[(t, lastu,t(σ)), (t′, lastu,t′(σ))] ∈ Eu(σ).

(⇐). To prove this direction, we observe that lastu,t(σ) �∗ lastu,t′(σ)
and lastu,t′(σ) ∈ σu ∩ σv. Therefore, lastu,t(σ) also belongs to σu ∩ σv. Now
it follows from Lemma 1 that lastu,t(σ) �∗ lastv,t(σ). From these facts the
claim follows. ut

4 Updating Latest Information

Let Gu(σ′) = (Vu(σ′), Eu(σ′)) be the latest information graph for u and
Gv(σ′) = (Vv(σ

′), Ev(σ
′)) be the latest information graph for v at the end

of communication sequence σ′. After a meeting h involving two users u and v,
each of them update their latest information for the communication sequence
σ = σ′h by constructing a common updated graph Guv(σ) = (Vuv(σ), Euv(σ))
as follows :

(i) Both Vuv(σ) and Euv(σ) are set to ∅.
(ii) Let the new meeting under which u and v have synchronized be labeled by

l. The process by which a new label l is assigned to the meeting is explained
later.

(iii) (u, l), (v, l) are added to Vuv(σ).
(iv) For each w ∈ U − {u, v}, the pair (w, e) is added to Vuv(σ), where e is the

latest of what u and v know about w(as given in lemma 2).
(v) For s ∈ {u, v} and for each w ∈ U − {u, v}, ((w, e), (s, l)) is added to

Euv(σ).
(vi) For all s, t belonging to U − {u, v}, ((s, e), (t, f)) is added to Euv(σ) if

there exists r, r′ ∈ U such that ((r, e), (r′, f)) ∈ Eu(σ′) ∪ Ev(σ′).

It can be easily seen that the update procedure ensures that each user
maintains not only the latest information about all other users, but also main-
tains any ordering that exists between these meetings.

From Lemma 2, we know that, to compare latest information, we only need
to look at the meetings which are currently in the latest information graph
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of each user. Recall that the vertices of Gu and Gv are identified by labels.
If a meeting e occurs in both Gu and Gv, then it must be given the same
label in both the graphs. Since the update procedure labels only the current
meeting, keeping the other meeting labels unchanged, this is ensured. So far,
we have achieved our goal of indexing meetings rather than timestamping user
information.

5 Achieving Boundedness of Label Sets

Now, a new label (index) has to be chosen for the current meeting. It must
be ensured that the label assigned to this meeting is consistent across the
system—i.e., if the same label appears in the current latest information graph
of different users, the corresponding meeting is actually the same.

Unfortunately, the users in a meeting gi cannot directly see all the g-
meetings which belong to the latest information graphs of the entire system.
A g-meeting e may be part of the latest information of user outside g.

To enable the users in g to know about all g-meetings in {Gu(σ)}u∈U , we
will maintain auxiliary information.

Auxiliary information. The auxiliary information of user u after σ, auxiliaryu(σ),
is a set of meetings of the form lastv,w(σlastu,v(σ)) for some v, w ∈ U . This is
the latest w-meeting which v knows about up to the meeting lastu,v(σ). We
abbreviate lastv,w(σlastu,v(σ)) by lastu,v,w(σ).

We represent each auxiliary meeting e = lastu,v,w(σ) in auxiliaryu(σ) as a
quadruple (u, v, w, e). However, we can think of the auxiliary information as a
set of meetings. Then, e ∈ auxiliaryu(σ) will indicate that for some v, w ∈ U ,
(u, v, w, e) ∈ auxiliaryu(σ).

Lemma 3 ([9]) Let σ be a communication sequence, u ∈ U and e a u-meeting
in σ. If e /∈ auxiliaryu(σ), then e is not a meeting in Gw(σ) for any user w ∈ U .

So, a user u can keep track of which of its labels are “in use” in the
system by maintaining auxiliary information. Each u-meeting e initially be-
longs to Gu(σ), and hence to auxiliaryu(σ) as well. As the computation pro-
gresses, e gradually “recedes” into the background and disappears from the
latest information graphs of the system. Eventually, when e disappears from
auxiliaryu(σ), u can be sure that e no longer belongs to Gw(σ) for any user
w ∈ U .

Since auxiliaryu(σ) is a bounded set, u knows that only finitely many of
its labels are in use at any given time. So, by using a sufficiently large finite
set of labels, each new meeting can always be assigned an unambiguous label
by the users which take part in the meeting.
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6 Our Algorithm

For convenience, the algorithm starts with an initial meeting involving all
the users. This meeting is denoted by 〈P, `0〉 for an arbitrary but fixed label
`0 ∈ L.

Subsequently, for any meeting of a group g, the users in g do the following:

(i) When a new g-labelled meeting e occurs, the users in g assign a label 〈g, `〉
to e which does not appear in auxiliaryu(σ) for any user u in g. Lemma 3
guarantees that this new label does not appear in Gw(σ) for any user w ∈ U .
Let N = |U |. Since each user keeps track of N2 auxiliary meetings and
at most N users can be at a meeting, there need be only N3 labels in L.

(ii) The users participating in e now compare and update their latest infor-
mation about each user w /∈ e by checking labels of meetings across their
latest information graphs as described in Lemma 2 and the update proce-
dure outlined in the previous section.

(iii) Auxiliary information can be locally updated once the users have decided
who has the best latest information—if u, v ∈ g and lastu,w(σ) is better
than lastv,w(σ) for w ∈ U , then any auxiliary information of the form
lastu,w,w′(σ) must necessarily be better than the corresponding informa-
tion lastv,w,w′(σ), for w′ ∈ U .

The Amount of Local Information.

Theorem 1 Each user u ∈ U needs to maintain at most O(N2 logN) bits of
information, where N = |U |.

Proof Each new meeting e is assigned a label of the form 〈g, `〉, where g was
the group of users that participated in e and ` ∈ L.

To write down g ⊆ U , we need, in general, N bits. This component of the
label is required to guarantee that all auxiliary meetings in the system have
distinct labels, since the set L is common across all users. However, we do not
really need to use all of g in the label for e to ensure this property. If we order
U as {u1, u2, . . . , uN}, it suffices to label e by 〈ui, `〉 where, among the users
in g, ui has the least index with respect to our ordering of U .

Thus, we can modify our automaton so that the users label each meeting
by a pair 〈u, `〉, where u ∈ U and ` ∈ L. This pair can be written down using
O(logN) bits.

The latest information of each user is stored in two parts:

– An array which stores for each user u ∈ U , the latest it knows about u.
This requires N logN bits.

– The edges of the latest information graph are stored in the form of an
adjacency matrix which requires N2 bits.

The auxiliary information of each user clearly requires O(N2 logN) bits.
Hence, the total information can be described in O(N2 logN) bits.
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In the following section, we show that when we consider particular case
of mesh network topology, the hypercube, we can improve the bound even
further. We believe that the hypercube is a good representative of a network
with “large” groups. A good understanding of this problem for hypercube is
relevant to study of social networks with large community sizes.

7 Hypercube

An n-dimensional hypercube, Hn, is a network of 2n users. The users are
numbered 0 through 2n − 1 and each user is identified by its binary represen-
tation. Each face of the hypercube represents a group of the users that meet
from time to time. That is, exactly those users which agree on the kth bit,
1 ≤ k ≤ n, can form a group. Thus each group involves 2n−1 users and there
are 2n possible groups. We will call the groups g1, g2, . . . , gn, gn+1, . . . , g2n,
with gi, i ∈ {1, . . . , n}, denoting a group of all the users that have a 1 in their
ith bit and gj , j ∈ {n+ 1, . . . , 2n}, denoting a group of all the users that have
a 0 in their (j − n)th bit.

We call two groups gi and gj complementary if either i = j−n or j = i−n.
This means that the set of the users that take part in gi and gj are disjoint
and together make up the set of all users in the system.

Note that two different g-meetings cannot be at the same time in the latest
information graph of any user during the computation. The following lemma
proves this.

Lemma 4 Let σ be a communication sequence. For any u, v, w ∈ U, let e
be a g-meeting and e = lastu,v(σ). Let f = lastu,w(σ). Then, f cannot be a
g-meeting different from e.

Proof Suppose, f is a g-meeting and f is different from e. Then either e �+ f
or f �+ e, since all g-meetings are totally ordered.

Without loss of generality, let e �+ f . Then, v is a user that participated
in f and e �+ f . Hence e 6= lastu,v(σ) which is a contradiction.

A similar argument hold for the other possibility.

In the case of the hypercube, the number of possible groups is just 2n and
there are 2n users. It follows that the latest information graph in general is
likely to have many copies of the same g-meeting for many groups g. So, can
we “collapse” all the occurrences of this meeting and maintain just one vertex
corresponding to that meeting in the graph? This will reduce the number of
vertices in the latest information graph from O(2n) to O(n). This motivates
the following definition for the latest information graph of a hypercube.

Latest Information Graph. Let σ be a communication sequence and u, v ∈
U . The latest information graph of u after σ is a directed graph Gu(σ) =
(Vu(σ), Eu(σ)) where

Vu(σ) = {e | ∃v ∈ P s.t e = lastu,v(σ)}
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Eu(σ) = {(e, f) | e �∗ f}

That is, the latest information graph is a directed graph in which each vertex
has a label of a meeting that corresponds to the latest information that u
knows about some other user in U . There is an edge from vertex e to f if e is
below f . Note that there are at most 2n vertices in this graph.

The latest information that any user u knows about any other user u′ in
the system can be recovered from the latest information graph of u by finding
all the meetings that u′ participates in and getting the �∗ − maximal meeting
from them. We only have to ensure that there exists a proper update procedure
to keep updating the graph after each meeting. The following section shows
how to maintain and update the latest information graph.

Updating Latest Information. As in the general case, we outline the procedure
by which two users can update their latest information when they meet. When
a meeting takes place, the users update their information pairwise, and finally
propagate the common updated graph to all the users that participated in the
current meeting. The peculiarity of the hypercube architecture is that either
two meetings are ordered or are complementary to each other. This fact results
in a simple update procedure which is outlined below.

Let Gu(σ′) = (Vu(σ′), Eu(σ′)) be the old graph for u, Gv(σ′) = (Vv(σ
′), Ev(σ

′))
be the old graph for v, and let Guv(σ) = (Vuv(σ), Euv(σ)) denote the common
updated graph for u and v where σ = σ′g. When two users u and v meet dur-
ing a g-meeting, each of them update their latest information by constructing
the new graph Guv(σ) as follows :

(i) A new label l is assigned to the current meeting g.
(ii) If either lastu(σ′) or lastv(σ

′) belongs to the set S = Vu(σ′) ∩ Vv(σ′):
If lastu(σ′) ∈ S:
Let G′uv(σ) = (V ′uv(σ), E′uv(σ)) be the initial updated graph. Then,

V ′uv(σ) = Vq(σ
′) ∪ l.

E′uv(σ) = Eq(σ
′) ∪ {(e, l) | e ∈ Vq(σ′)}.

We then remove the redundant meetings in G′uv(σ) to get the final updated
graph. We say a meeting e is redundant in G′uv(σ) if for all u′ taking part
in e, e �+ lastv,u′(σ). Let the set of redundant meetings be denoted by
Ruv(σ). Then,

Vuv(σ) = V ′uv(σ) − Ruv(σ).

If lastu(σ) ∈ S: Do the same with the roles of u and v reversed.
(iii) If neither lastu(σ) nor lastv(σ) belong to the set S:

Then,
Vuv(σ) = { lastu(σ) ∪ lastv(σ) ∪ l}.

Euv(σ) = {(lastu(σ), l), (lastv(σ), l)}.

The following lemmas show that the update procedure works correctly.
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Lemma 5 Let u, v ∈ U and σ be a communication sequence. Consider the set
S = Vu(σ) ∩ Vv(σ). Suppose lastu(σ) ∈ S. Then, for any u′ ∈ U,

e = lastu,u′(σ) �∗ f = lastv,u′(σ).

Proof In Gu(σ), e �∗ lastu(σ). Also, lastu(σ) ∈ Gv(σ) and f = lastv,u′(σ).
Hence, e �∗ f since all u′-meetings are totally ordered.

Lemma 6 Let u, v ∈ U and σ be a communication sequence. Consider the
set S = Vu(σ)∩ Vv(σ). Suppose both lastu(σ) and lastv(σ) do not belong to S.
Then,

– For all u′ that participated in lastu(σ), lastv,u′(σ) �∗ lastu,u′(σ).
– For all u′′ that participated in lastv(σ), lastu,u′′(σ) �∗ lastv,u′′(σ).

Proof Suppose that there exists a user u′ that participated in lastu(σ) such
that lastu,u′(σ) �∗ lastv,u′(σ). Then, lastu,u′(σ) ∈ σu ∩ σv. Hence, lastu(σ) ∈
S, which is a contradiction. A symmetric argument holds for the other part.

So, whenever two users meet, they can easily compare and update their
latest information provided a new label corresponding to the current meeting
can be chosen. As in the general case, this is done by looking at the auxiliary
information of users.

Eliminating Redundant Meetings Efficiently. We now show how to remove
redundant meetings much more efficiently than exhaustive search.

Lemma 7 Let σ be a communication sequence. Let u, v ∈ U and e ∈ V ′uv(σ).
e is redundant iff ∃f, f ′ ∈ V ′uv such that f and f ′ are complementary meetings,
e �∗ f and e �∗ f ′.

Proof ( ⇐= ) Since f and f ′ are complementary meetings, and each involves
2n−1 users, they together cover all the users in U . Therefore, since e �∗ f and
e �∗ f ′, there does not exist any user u′ ∈ U such that e is the latest that u
(or v) know about u′. Hence e is redundant.

( =⇒ ) Let e be a redundant meeting. Suppose e is a gk-meeting, k ≤ n,
i.e, e is a meeting of all the users that have a 1 in their kth bit.

Suppose there do not exist meetings f and f ′ such that they are comple-
mentary and e �∗ f and e �∗ f ′. Then, there can be at most n− 1 meetings
above e in V ′uv and each of them is of the form gi, i 6= k, k+n. Let T be the set
of these meetings. Now consider the user w ∈ U which has a bit representation
as follows :

– A 1 in the kth bit.
– For i ≤ n, i 6= k, a 0 in the ith bit if T contains a gi-meeting, 1 if T

contains a gi+n-meeting and either 0 or 1 in the other bits not covered by
meetings in T.
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It follows that for the user w, e is the latest meeting that u or v know about
w, which is a contradiction.

A similar argument holds if e is a gk-meeting, k > n.

So, in order to check if a meeting is redundant, it is sufficient to check if
this meeting is below two complementary meetings. This is much more efficient
than exhaustively checking if e is not the latest meeting for every user in e.

Auxiliary Information. Let σ be a communication sequence and u ∈ U . The
auxiliary information of u after σ, auxiliaryu(σ), is a directed graph Gsu(σ) =
(V su (σ), Esu(σ)) where

V su (σ) = {e | ∃u′, u′′ ∈ U such that e = lastu,u′,u′′(σ)}
Esu(σ) = {(e, f) | e �∗ f and ∃ u′, u′′, u′′′ ∈ U such that

e = lastu,u′,u′′(σ) and f = lastu,u′,u′′′(σ)}.

That is, the auxiliary information maintains, for each of the meetings e in
the latest information, the set of meetings which gives the latest information
that users in e know about every other user in the system. This is maintained
as a directed graph which has at most 2n maximal components, each of which
has at most 2n vertices.

Updating Auxiliary Information. Auxiliary information can be updated as and
when the latest information is being updated. Recall that when two users u
and v meet, there are the two possibilities corresponding to which the auxiliary
information is updated as given below :

Let σ be a communication sequence and let Gu(σ′) and Gv(σ′) denote the
initial latest information graphs of u and v respectively, i.e, before the occur-
rence of the current meeting g. Let σ = σ′g. We denote by Guv(σ), the common
updated latest information graph of u and v after the meeting g. Let Gsu(σ′)
be the auxiliary information of u and Gsv(σ′) the auxiliary information of v.
We denote by Gsuv(σ), the common updated auxiliary graph of u and v. Now,
when the u and v meet, the possibilities are :

– Case 1 : One of lastu(σ′) or lastv(σ
′) belongs to the set S.

Suppose lastu(σ′) ∈ S.
Let G′ be the union of all those maximal components of Gsq (σ′) such that
the maximal meeting in that component belongs to Ruv. Then, we get the
common updated auxiliary graph as follows:

Gsuv(σ) = ( Gsq (σ′) − G′ ) ∪ Guv(σ).

A symmetric argument holds for the other possibility.
– Case 2 : Neither lastu(σ′) nor lastv(σ

′) belong to the set S.
Then, Gsuv(σ) = Gu(σ′) ∪ Gv(σ′) ∪ (G = (V,E))
where V = {lastu(σ′), lastv(σ

′), l} and
E = {(lastv(σ

′), l), (lastv(σ
′), l)}. Remove redundant meetings from Gsuv(σ),

if any.
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In the first case, the above procedure works since if lastu(σ′) belongs to
S, then the auxiliary information of v is at least as good as the auxiliary
information of u.

In the second case, we have observed that the common updated latest
information graph has just three vertices : lastu(σ′), lastv(σ

′) and l. Since
lastu(σ′) and lastv(σ

′) are complementary meetings, for all the users u′ that
participated in g,

{lastv,u′,u′′(σ) | r = u or v and u′′ ∈ U} ⊆ {lastu(σ′), lastv(σ
′)}.

For any user u′ that did not participate in g (there are 2n−1 such users), since
the latest that u or v know about u′ is either lastu(σ′) or lastv(σ

′), we have,

{lastr,u′,u′′(σ) | r = u or v and u′′ ∈ U} ⊆ {e | e ∈ Vu or e ∈ Vv}.

So, we have shown that the update procedure for auxiliary information out-
lined earlier works.

The Amount of Local Information.

Theorem 2 Each user u ∈ Hn needs to maintain at most O(n3) bits of in-
formation.

Proof The local information for user u consists of its latest and auxiliary in-
formation. We estimate the number of bits required to store this.

The latest information of each user is stored in two parts:

– An 2n× 1 array which stores the labels of at most 2n meeting containing
latest information. Since we have shown, for the general case, that it suffices
to have N3 labels in the system, each label requires O(logN) = O(n) bits.
This component of the latest information therefore requires O(n2) bits.

– A 2n×2n adjacency matrix which stores the edges of the latest information
graph. This requires O(n2) bits.

Therefore, storing the latest information requires O(n2) bits in all.

The auxiliary information of each user is stored in two parts:

– An 2n×2n array which stores the labels of at most 4n2 auxiliary meetings.
This component of the auxiliary information therefore requires O(n3) bits.

– 2n adjacency matrices of dimension 2n × 2n which store the edges of the
auxiliary graph. This clearly requires O(n3) bits.

Therefore, the auxiliary information requires O(n3) bits in all. Hence, local
information of each users requires O(n3) bits.
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8 Conclusions

In this paper, we have studied a natural problem related to information dis-
semination in social networks in which users meet in groups over time and
are interested in learning the latest news known to the users present in the
meeting about all the other users in the network.

Identifying the user in the meeting with the latest information becomes
tricky if the users are only allowed to label each meeting with a string from
a finite, bounded set of labels. The main difficulty is to ensure that it is still
possible to compare and choose among two labels while the labels are being
recycled over time.

We have shown two interesting results:

– For a network of N users with no restriction on the network topology, we
have shown that it is sufficient for each user to maintain O(N2 logN) bits
of information improving the previous bound of O(N3 logN)[9].

– For the special case of mesh topology, the n-dimensional hypercube, we
have shown that is sufficient to maintain O(n3) bits of information for
N = 2n users. This is a significant improvement over the general case.

For future research, we would like to try and extend our results to other
topologies of interest. In particular, we would like to understand the struc-
ture and connectivity proerties of communities in social networks to see what
further assumptions can be made in the case of a scale-free network.
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