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Synonyms 

Social network privacy, anonymity, graph algorithms, privacy breach, complexity, adversarial 

knowledge 

Glossary 

Adversary: Somebody who, whether intentionally or not, reveals sensitive, private information 

Adversarial model: Formal description of the unique characteristics of a particular adversary 

Attribute disclosure: A privacy breach wherein some descriptive attribute of somebody is revealed 

Identity disclosure: A privacy breach in which a presumably anonymous person is in fact identifiable 

k-P-anonymity: A condition under which any instance of P appears at least k times 

Target: The particular social network member against whom an adversary is trying to breach privacy 

1. Definition 

As social networks grow and become increasingly pervasive, so too do the opportunities to analyze the 

data that arises from them.  Social network data can be released for public research that can lead to 

breakthroughs in fields as diverse as marketing and health care.  But with the release of data comes 

questions of privacy.  Is there any information that members of the social network would not want 

revealed publicly?  If it is released, can somebody (an adversary) attribute that information to them?   

Anonymization is the modification of data so that sensitive information remains private.  

Deanonymization is the converse: re-identifying somebody in an anonymized network – or even simply 

learning something about them that was meant not to be attributable to them. 

2. Introduction 

Say we the authors wanted to stimulate research on supervisory 

patterns among co-authors by releasing the small social network 

depicted in Fig. 1. The network contains an edge between two co-

authors if one supervises the other, and each vertex is labelled 

with the percentage that the author contributed to the research.  

Certainly, the labels are quite sensitive, and Alice, for example, 

may not want it publicly known that her contribution level was 

lower.  To protect the privacy of the co-authors, then, the social 

network must first be anonymized. In some cases, that might be a 

simple enough task: just remove the names and replace them with 

 

Fig. 1: Small example supervisor 

network.  An edge (a,b) exists if a 

supervises b or vise versa.  

Vertices are also annotated with 

contribution percentage. 
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random integers. 

Releasing the data makes it available for myriad analyses that the co-authors had not even anticipated.  

It also makes it available to Dean, an adversary who wishes to de-anonymize the data to uncover the 

sensitive information.  In particular, he may want to reveal Alice's contribution level and may know 

that Alice, from another affiliation, has no supervisory relationship with any other author.  Even after 

names have been stripped from the network, Dean can still exploit this background information about 

the structure of the social network graph to re-identify her and conclude her label (Backstrom, Dwork 

& Kleinberg 2007); viz., she is the only isolated vertex.   

 

Similarly, Dean may know that Erin co-supervises two of the co-

authors.  This is sufficient structural information to re-identify 

Erin, because she is the only vertex in the network connected to 

two other vertices who also have degree two.  Something more 

must be done to protect the identities of Alice and Erin, and that 

is going to have to involve distorting the network somehow, 

because it is the structure of the network that reveals their 

identities. This is social network anonymization: distorting a 

social network to the point that some assumed knowledge of an 

adversary is rendered uninformative. 

Now consider Fig. 2 in which the fictitious relationship between 

Alice and Gwen has been added.  Now,  Alice and Bob have the 

same degree; even if Dean knows the degree to be one, he cannot 

distinguish between them. Erin, too, is similarly unidentifiable, 

because now Frank is connected to two vertices of degree two.  In fact, no matter who Dean targets, 

even with the knowledge of the target's neighbour's degrees, he is left with a ½ chance of guessing who 

is his target. 

3. Key Points 

Throughout this example, we knew what knowledge Dean possessed.  As we continue in this chapter, 

we assume different levels of knowledge for Dean, and with each we ask: 

– Can we protect ourselves from Dean's knowledge while still releasing the data? 

– When can we do this? 

– If we cannot do this, why not? 

4. Historical Background 

The need for privacy in publicly released data is not new.  Relational (i.e., not social network) data has 

been shared for decades. Many of the ideas for social network anonymization stem from what has been 

researched and learned about anonymizing table data.  The pivotal idea of k-anonymization that we 

introduce shortly originated with publishing relational data (Sweeney 2002).  The privacy of individual 

table records can be well preserved if, under projection on quasi-identifying attributes (e.g., zip code, 

birthdate), the record is made identical to at least k-1 others by a series of data suppressions.   

With the onset of pervasive social networking in recent years, there has been a rush to adapt some of 

these ideas for social network (i.e., graph) data.  The task is challenging, however, because graph 

structure was shown by Backstrom et al. (2007) to quasi-identify people itself, before even considering 

 

Fig. 2: A 2-anonymization of Fig. 

1 by adding a fictitious edge 

among Alice and Gwen.  Notice 

now that no vertex degree is 

unique. 



the labels with which social networks are annotated.  Since then, research has focused on what can, 

indeed, conceal one's identity (i.e., prevent identity disclosure) in a social network and what can 

conceal the attributes that describe you (i.e., prevent attribute disclosure). 

5 Tools and Techniques for Anonymization and Deanonymization 

5.1 What it means to be identical: k-anonymization formalized 

In the examples from Section 2, the adversary Dean is assumed to know some local structural property 

P of his target (first, the degree of Alice and, second, the 1-neighbourhood of Erin).  But by adding one 

edge, Alice and Erin were protected because they became structurally identical to other vertices.  That 

is to say, the graph became k-P-anonymous: every vertex is identical to at least k-1 other vertices with 

respect to P. No matter who Dean targets with his knowledge of P in a k-P-anonymous graph, he is left 

with at best a 1/k chance of guessing the target's identity correctly. 

Definition 1. k-P-anonymous graph. A graph G=(V,E) is k-P-anonymous iff the vertices can be 

completely partitioned into disjoint subsets such that each subset has size at least k and, within every 

subset, every vertex is identical with respect to P. 

As a concrete example, P might be the degree of a vertex. The graph in Fig. 2 is 2-degree-anonymous.  

If an edge is added between Alice and Bob, the graph will become k-degree-anonymous for all k≤|V|, 

since every vertex will have degree two.  For a graph that is not k-P-anonymous, the task prior to 

release is to minimally distort it until it becomes k-P-anonymous. 

Problem 1. k-P-anonymization. Given an input graph G=(V,E), a structural property P, and a privacy 

threshold k, construct a graph G'=(V,E') such that G' is k-P-anonymous, E⊆E', and |E'| is minimized. 

5.1.1 Anonymity with random perturbation 

A first anonymization algorithm for a graph G is to first add m randomly chosen edges to produce an 

intermediate graph Gint, and then remove m randomly chosen edges from Gint to produce an 

anonymized graph G'  (Hay et al. 2007).  The choice of m is a balance between minimizing distortion 

of the graph and ensuring that ≥k vertices in G' could have plausibly originated as Dean's target.  By 

introducing randomness, Dean is forced to reason within possible world semantics and is confronted 

with at least k likely candidates as his target. So, although the resultant graph is not necessarily k-P-

anonymous, it does leave Dean with a 1/k chance guessing. 

5.1.2 k-Degree-anonymization with dynamic programming 

For degree-based attacks, one can build a greedy algorithm based on the degree sequence of G (Lui and 

Terzi 2008): 

Definition 2. Degree sequence.  Given a graph G=(V,E), where the degree of a vertex vi in V is denoted 

di, the degree sequence SG of G is a sorted sequence of integers of length |V| wherein the frequency of 

any integer i is exactly |{vj in V: dj=i}|. If the frequency of every integer is either zero or ≥k , the degree 

sequence is k-anonymous. 

A k-degree-anonymous graph G will have a k-anonymous degree sequence. The algorithm uses 

dynamic programming to produce a k-anonymous integer sequence nearest to the degree sequence of 

G, then tries to produce a graph with a degree sequence matching that integer sequence.  A graph can 

be produced from a sequence iff it meets the condition of the Erdos-Gallai Theorem for degree 

sequence realizability (Erdos and Gallai 1960).   If the sequence does not meet that condition, then, 

repeatedly until success, some random noise is added to the degree sequence of G, a new sequence is 



constructed, and the condition is rechecked. 

From the work of Lui and Terzi (2008), the dynamic programming proceeds as follows. First, let 

C([1,d]) be the cost of anonymizing the first d integers in the sequence and let S([a,b]) = Σa≤i≤b(db-di). 

Then: 

 For i≤2k: C([1,i]) = S([1,i]); 

 For i>2k: C([1,i]) = min { mink≤t≤i-k { C([1,t]) + S([t+1,i]) }, S([1,i]) }. 

If δi is the difference between the i'th integer and the largest within the same partition, then an optimal 

degree sequence partitioning is one which minimizes Σ δi. Minimizing C([1,|V|]) with this dynamic 

programming produces an optimal partitioning. The Lui and Terzi (2008) algorithm then checks the 

Erdos-Gallai condition for the new sequence constructed by increasing each i'th integer by δi and, when 

successful, adding δi edges to the i'th vertex. 

While this algorithm has no performance guarantees, experimental comparisons (Casas-Roma et al. 

2012; Ying et al 2009) show that it typically reaches a k-degree-anonymous solution with less distortion 

than the random perturbation techniques. On the other hand, it is slower to reach that solution. 

5.2 Broader Local Knowledge 

The algorithms in Section 2 can protect a social network against an adversary Dean when Dean's 

knowledge is limited to the degree of his target, as he knows about Alice.  But what if Dean is more 

powerful, as his knowledge about Erin?  Several formalizations exist of a more powerful Dean, one 

who knows a more identifying property P. Correspondingly, stronger notions of k-P-anonymity are 

required. 

5.2.1 Stronger adversarial models 

To keep the examples easier to understand, we use degree and neighbourhood as the structural 

knowledge P possessed by Dean.  The former leads to k-degree-anonymity (Lui and Terzi 2008). When 

Dean knows the entire neighbourhood of his target (every neighbour and how they are connected) 

(Zhou and Pei 2008), as he does with Erin, privacy requires k-neighbourhood-anonymity, in which the 

way neighbours are connected for every vertex must be identical to at least k-1 other vertices.  Many 

other models have been proposed.  For example, Dean may know the i-hop neighbourhood of his 

target: all the neighbours within a path of length i (Thompson and Yao 2009).  Yet stronger models 

have been proposed, too, based on isomorphisms (Cheng et al. 2010) and symmetry (Wu et al. 2010).  

While achieving each progressively stronger anonymity requirement offers greater privacy protection 

(presumably at the cost of graph utility), one must be careful of expecting too much, because, as shown 

in the next section, even reasonably modest adversarial models lead to NP-hard problems. 

5.2.2 Complexity of k-P-anonymity 

Interesting algorithms have been designed for many forms of anonymization or relation tables and 

social network graphs. These have been shown to perform quite well on real world data sets but do not 

have any theoretical performance guarantees. That is, there is no guarantee that these algorithms distort 

the input optimally in order to obtain the anonymized output. So, researchers investigated if there is an 

efficient algorithm, running in polynomial time, that can anonymize a given table or a graph using the 

minimum amount of modification required. 

For table anonymization, a sequence of results showed that it is NP-hard to anonymize a table using the 

minimum number of suppressions required. These results were shown using reductions from known 

NP-hard graph optimization problems. Using a reduction from Hypergraph Matching, Meyerson and 



Williams (2004) showed that k-anonymization of tables is NP-hard provided that the number of values 

an attribute can assume (alphabet size) is larger than the number of rows in the table. This result was 

improved by Aggarwal et al. (2005) who showed a hardness result for a ternary alphabet using a 

reduction from Partition into Triangles. Finally, Bonizzoni et al. (2009) obtained a hardness result for 

binary tables via a reduction from Minimum Vertex Cover. 

The hardness results for anonymizing tables were, in turn, used to show NP-hardness results for graph 

anonymization such as 1-neighbourhood anonymization (Zhou and Pei 2008) in vertex-labeled graphs 

and label-sequence anonymization in edge-labeled graphs (Chester et al. 2012c). We now illustrate the 

main idea behind the reductions in these papers using the reduction of Zhou and Pei (2008). Given a 

binary table T with n rows, l columns and anonymity parameter k, build a bipartite graph GT = (U, V, 

E). U is a set of n vertices labeled {r1 , r2 , . . . , rn } corresponding to the rows of the table. V is a set of 

k copies of 2l vertices labeled {c10 , c11 , c20 , c21 , . . . , cl0 , cl1 } corresponding to the columns of the 

table. If the (i, j)-entry of T is 0, draw k edges from vertex ri to the k vertices labeled cj0 . If the (i, j)-

entry of T is 1, draw k edges from vertex ri to the k vertices labeled cj1 . It can be shown that T can be k-

anonymized using at most s entry supressions if and only if the graph GT can be 1-neighbourhood-

anonmyized using at most ks edge additions. 

So, one can construct schemes to k-P-anonymize a graph, and those schemes can work well in practice 

and preserve the utility of the graph reasonably well.  But if the objective is to construct an optimal 

anonymization – or even just one with a fixed level of distortion – the problem is NP-Hard. 

5.2.3 Alternative formulations of k-anonymity 

Although most research models the problem of k-P-anonymity as in Problem 1, a few other approaches 

have been suggested as well. For example, one can try to achieve k-P-anonymity by adding vertices as 

well as edges to the input graph (Chester et al. 2012b), a formulation which is not yet know to be NP-

hard. Also, many social networks contain vertices that do not necessarily need to be anonymous 

because they do not represent typical users.  Consider Twitter accounts for major sports teams and 

celebrities, for example. In such instances, one can potentially achieve k-anonymity with very minimal 

distortion by aiming only for subset anonymity (Chester et al. 2012a). A particularly recent suggestion 

is to output a probabilistic graph wherein the anonymity requirement is satisfied by injecting 

uncertainty on edges rather than just adding and removing them (Boldi et al. 2012). 

5.2.4 Attribute disclosure 

In another type of attack, the adversary Dean is not necessarily 

interested in identifying his target, but merely inferring her label.  

Such an attack is called attribute disclosure.  Consider again the 

2-degree-anonymization in Fig. 2.  Despite knowing that her 

degree is one, Dean is unable to ascertain which vertex represents 

Alice and which represents Bob.  He can infer, however, that 

Alice's contribution is .05, because the label is the same for both 

vertices. 

The 2-degree-anonymization given in Fig. 3 achieves the same 

level of identity anonymization with the same number of 

additional edges as the anonymization in Fig. 2.  This time, 

however, Dean's knowledge of Alice's degree can only reveal 

Alice's contribution to be within the range [.05, .20],  because 

Alice is now in the same equivalence class as Gwen, not Bob. 

 

Fig. 3: An attribute-diversifying 2-

degree-anonymization of Fig. 1. 

Now the label range for degree-1 

vertices is [.05, .20]. 



The new anonymization also expands the label range for the degree-2 vertices from [.10, .40] to 

[.05, .40]. So, Fig. 3 offers an anonymization that better protects the sensitive information about 

everyone. 

If Dean can infer which vertex is Alice or if Alice's equivalence class has a small label range (like in 

Fig. 2), then attribute disclosure will occur.  So, k-anonymity is necessary, but in addition to that some 

attribute concealment condition must also be met.  The graph is l-diverse (an adaptation from the 

similar idea in table literature (Machanavajjhala et al. 2007)) if each equivalence class contains at least 

l different labels (Zhou and Pei 2008).  A graph could also be made α-proximal (an adaptation for 

graphs of t-closeness (Li et al. 2007)) if the distribution of labels in each vertex's neighbourhood is 

within α of the distribution across the entire network (Chester et al. 2012d). 

With distortions to a social network that sufficiently diversify attribute labels among equivalence 

classes (defined by P) that are sufficiently large, Dean's local knowledge about graph structure can, in 

fact, be rendered uninformative.  But what if Dean's knowledge goes beyond that? 

5.3 De-anonymization beyond local knowledge 

As we have discussed, a commonly used approach in anonymization of social networks is k-P-

anonymization. Before the data is released, any sensitive information associated with individual 

vertices of the social network graph is suppressed and a sanitized graph that only reveals edge 

relationships between users is released for data mining purposes. Does this method work well in 

practice? There is now sufficient evidence that it does not. It has been shown that de-anonymization 

attacks can be used to extract sensitive information about certain users from such an anonymized graph 

by an adversary whose knowledge is global in nature. 

Backstrom, Dwork and Kleinberg (2007) showed how active and passive attacks can be used to reveal 

true identities of specific users easily by an adversary whose only knowledge is an identity-anonymized 

version of the social network graph. An active adversary can create a small number of dummy nodes 

with a special edge pattern among themselves and with edges to users whose privacy it wishes to 

violate. Later, it easily finds this edge pattern to locate the dummy nodes in the released network and 

hence re-identify other users in the network. They also describe passive attacks in which a group of 

users can collude to discover their location in the anonymized graph using the knowledge of the edge 

structure among themselves. This information is in turn used to violate privacy of their immediate 

neighbours. It was pointed out by Narayanan and Shmatikov (2009) that this approach has some 

limitations in practice. For example, active attacks involving a large number of nodes may not be 

feasible in many real-world social networks such as a phone-call network. Furthermore, the lack of 

incoming edges to the dummy nodes in a directed graph could make the network operator suspect and 

identify an active attack. 

Another notable work on de-anonymization is by Narayanan and Shmatikov (2009), who show that the 

nodes in a fully identity-anonymized social network graph (targets) can be identified quite effectively 

when the adversary has available another (auxiliary) social graph that has a significant overlap with the 

target graph. Their experiments with a crawled Twitter graph as a target graph, and a Flicker graph as 

auxiliary graph showed that the Twitter nodes could be recognized (de-anonymized) with a low error 

rate. The method used is based on first discovering the mappings of a small set of nodes in the auxiliary 

graph, the “seeds”, to corresponding nodes in the target graph. Then these mappings are propagated to 

other nodes in the neighborhoods of the seeds, and the propagation continues similarly to 

neighborhoods of the nodes discovered so far, until no more nodes can be discovered any further. The 

mapping exploration crucially depends on matching the degrees of the nodes in the auxiliary graph to 

degrees of the nodes in the target graph. Despite the success of the Narayanan’s and Shmatikov’s 



method, what remains to be investigated is the amount of disruption that can be caused on its 

effectiveness when the target graph is degree-anonymized as opposed to only identity-anonymized. 

A more recent work by Srivatsa and Hicks (2012) used a method similar in spirit to Narayanan and 

Shmatikov's to de-anonymize mobility traces. Location-based services that release anonymized data 

about location traces of various users gathered from smartphones and GPS sensor data have become 

very popular. They show that such mobility traces can be de-anonymized if the adversary has auxiliary 

information in the form of a social network involving the participating users. For example, they were 

able to de-anonymize bluetooth contact traces of a set of conference attendees using their DBLP co-

authorship graph as auxiliary information. 

5.4 Differential privacy 

A rather different approach to anonymization is differential privacy, which does not require the release 

of data.  Differential privacy provides a model for privacy-preserving analysis of statistical databases, 

which are collections of records, or datasets, which contain statistical information about individuals. It 

is characterized by a property of algorithms operating on the data, typically computing some statistical 

function (query) of the data. In particular, a randomized algorithm K is differentially private if for all 

datasets D, D' which are close (i.e., one may be obtained from the other by the deletion of exactly one 

record,) and all S ⊆ Rng(K), 

Pr[K(D) ∈  S] ≤ e
ε
 · Pr[K(D') ∈  S]. 

This definition captures the intuitive requirement that the distribution of the output of a statistical 

function should not be significantly influenced by the participation of a particular individual. A natural 

concern here is the tradeoff between utility and privacy, in particular, whether it is possible to compute 

functions which are statistically useful while maintaining privacy. A natural approach to devising such 

functions is output perturbation, that is, the addition of some form of noise to the output of the 

statistical function. This must be done with care for example to avoid noise cancellation over a 

sequence of queries, but techniques based on the addition of Laplacian and other forms of noise have 

been proposed which provide differential privacy and lead to useful mechanisms for various problems 

in statistics (e.g. contingency table release) and learning theory. A further discussion of techniques and 

results in differential privacy is beyond the scope of this article; we refer the reader to the survey by 

Dwork (2008) for a detailed presentation. 

In the setting of graphs, two versions of differential privacy are immediately apparent, namely node 

differential privacy and edge differential privacy. The definitions of both will follow the pattern for 

database privacy, differing only on the notion of what it means for two graphs to be close. Graphs G, G' 

are close in the edge setting if one may be obtained from the other by the deletion of exactly one edge, 

and in the node setting if one may be obtained from the other by the deletion of exactly one node, and 

its adjacent edges. Edge differential privacy is introduced by Nissim, Raskhodnikova & Smith (2007), 

where it is shown how to compute differentially private approximations of minimum spanning tree cost 

and number of triangles. In subsequent work (Hay et al. 2009; Karwa et al. 2011) refined techniques 

that are used to obtain further results, including differentially private approximations of the degree 

sequence. A recent paper (Kasiviswanathan et al. 2013) considers node differential privacy for 

problems including edge counting, small subgraph couting, and degree distribution. 

6 Key Applications 

Social network anonymization is a pre-processing step, much like data cleansing.  Prior to the release 

of social network data, either to other parties or to the public in general, the data must be anonymized if 

the privacy of the network participants is to be protected.  Consequently, the applications are as diverse 



as the field of social network analysis. Differential privacy deserves particular note in this regard.  Any 

differentially-private analysis task relies on an anonymity-preserving algorithm. 

7 Future Directions 

The field of social network anonymization and the opposing field of social network deanonymization 

are both quite young and rapidly expanding.  Section 5.2.3 shows some ways in which the original 

notion of k-anonymity for graphs is being challenged, and assessing the merits of and extending these 

approaches needs to be done.  Many schemes and techniques do exist, but there is still little secondary 

literature reviewing these. Finally, one cannot necessarily release social network data and be fully 

confident that nobody can attack it.  Methods for preventing the global attacks described in Section 5.3 

must first be developed.   
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