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Abstract. Differential privacy (DP) has attracted considerable atten-
tion as the method of choice for releasing aggregate query results making
it hard to infer information about individual records in the database. The
most common way to achieve DP is to add noise following Laplace dis-
tribution. In this paper, we study differential privacy from a utility point
of view for single and multiple queries. We examine the relationship be-
tween the cumulative probability of noise and the privacy degree. Using
this analysis and the notion of relative error, we show when for a given
problem it is reasonable to employ a differentially private algorithm with-
out losing a certain level of utility. For the case of multiple queries, we
introduce a simple DP method called Differential (DIFF) that adds noise
proportional to a query index used to express our preferences for having
different noise scales for different queries. We also introduce an equation
capturing when DIFF satisfies a user-given relative error threshold.
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1 Introduction

Publishing analysis results of massive data collections, while providing substan-
tial potential for research and public advantage, brings up the matter of privacy.
Protecting sensitive information about participants has become one of the funda-
mental problems in society. For example, consider databases of medical records.
Public release of statistical information over such data is prone to disclosing
sensitive details about the health of individuals.

In recent years, ϵ-differential privacy [5] (DP for short) has become one of
the foremost methods to protect information contained in individual records.
DP guarantees that the privacy of an individual or a group is highly unlikely
to be breached by participating in the computation of the aggregate results.
The most common approach to achieve DP is by adding random noise with
Laplace distribution to query answers, where the scale of noise is calibrated
by the sensitivity of queries (the maximum difference in query answers on two
databases differing by one tuple).

In this paper, we analyze when it is “reasonable” to use DP. We quantify
reasonable in terms of the relative error, which is the ratio of the noise to the
true query answer. The notion of relative error is important. For example, adding
a noise of 60 to a query answer of 30 obviously is not reasonable from a utility
point of view.



We examine the relationship between the cumulative probability of noise and
the privacy degree. For single queries, we analyze when it is reasonable to employ
DP without losing a certain level of utility.

Turning to the case of multiple queries, when using the method of [5], the scale
of noise is the same for all the queries. To see the problem with this approach,
consider two count queries, the small and the big, with answers 30 and 30,000,
respectively. Having the same amount of noise, suppose 30, added to the answers
of each query with the same probability will cause different “harm” to each query.
While big easily tolerates this amount of noise without significantly affecting the
utility of the answer, adding this amount of noise to small makes the released
answer quite useless.

In order to alleviate this problem, we introduce a simple method called Dif-
ferential that adds noise guided by a “query index,” which is a set of numbers
used to express our preferences for the noise scales to each query. For instance, in
the above example the query index can be {1, 1000}. We show that Differential
satisfies DP.

Our contributions are as follows.

1. We analyze the relationship between the cumulative probability of noise, the
sensitivity, and the privacy degree (Section 3).

2. We examine when employing DP does not harm the utility beyond a certain
level. We perform the analysis for two categories, single query (Section 4)
and multiple queries (Section 5).

3. We propose Differential, a mechanism that, for the case of multiple queries,
achieves DP while adding noise guided by a query index. Also, we analyze
when Differential satisfies a user-given relative error threshold. (Section 6).

Related Work. There are several works that aim at controlling noise produced
by DP mechanisms ([1, 8, 7, 2]). These works study different settings from ours.
They focus on reducing absolute error (not relative) and have consistency con-
straints (e.g. marginals that add up to some specific number).

A method, similar to our Differential, is introduced by Xiao et al. [11]. Their
method called Proportional computes for a set of queries a set of noise scales that
are proportional to the magnitude of query answers on the databases they are
applied to. Proportional is shown to not satisfy DP. Another approach that [11]
introduces is called iReduct. The latter is an iterative algorithm using a sophis-
ticated procedure to minimize relative errors with respect to a database.

On the other hand, here we are interested in minimizing the relative error
based on a query index. These preference weights might reflect the proportion of
magnitudes of query answers on some static database1, but this is not necessary.

1 For example if we are to privately release mortality counts for different diseases for a
hospital serving a big city, we can set the index to reflect the proportions of mortality
rates of diseases in the city or country where the hospital is located. Certainly, such
an index will approximately match the disease mortality proportions in the hospital,
but this is public information, not a privately sensitive aspect of the data in the
hospital database.



In fact, we can have different weights even if the magnitudes of the queries are
the same. In such a case we release a more accurate answer to some query at
the expense of less accurate answers to other queries in the set.

2 Background

Let q be an aggregate query. For example, q can be a count or a sum query
on database D. Such a query can also be considered as a function q : D → R,
where D is the set of all databases. Thus, we use the terms query and function
interchangeably. We denote by q(D) the true answer of q on database D.

The definition of differential privacy (DP) uses the notion of neighboring
databases. Two databases D1 and D2 are called neighbors if one of them can be
obtained from the other by adding or removing at most one record.

Definition 1. (Differential Privacy [5]) A randomized algorithm M satisfies ϵ-
differential privacy (ϵ-DP) if and only if for any two neighboring databases D1

and D2, and for any subset S ∈ Range(M),

Pr[M(D1) ∈ S] ≤ exp(ϵ) · Pr[M(D2) ∈ S].

Dwork et al. showed in [5] that ϵ-DP can be achieved by adding appropriately
chosen random noise to the true query answer q(D). Specifically, noise follows a
Laplace distribution with probability density function

f(x) = 1
2λe

−|x|/λ (1)

denoted as Lap(λ), where λ is called noise scale.

Definition 2. (Sensitivity [5]) For q : D → R, the sensitivity of q is

∆(q) = max
D1,D2

|q(D1)− q(D2)|

for all neighboring databases D1 and D2.

Dwork et al. prove that an algorithm that sets the noise scale to be λ =
∆(q)/ϵ enjoys ϵ-DP. Namely, when a query q is posed to database D, the output
of the randomized algorithm M will be

q(D) + Lap(∆(q)/ϵ).

The parameter ϵ is the privacy degree and one can think of it typically as 0.01
or 0.1.



The ϵ-DP can also be obtained for any sequence of queries q1, q2, . . . , qm on
a single database by running the algorithm M with noise distribution

Lap

(∑
i

∆(qi)

ϵ

)

on each computation [5].

In [4] Dwork et al. address the matter of overall privacy when the privatized
output of multiple queries are released together.

Theorem 1. ([4]) A sequence of m computations over a database D, each pro-
viding ϵi-DP, satisfies (

∑
i ϵi)-DP.

This is also called sequential composition in the literature (cf. [9]).

3 Noise and Utility

It is clear that the scale of the noise added to q(D) is independent of the real
magnitude of q(D). Note that sensitivity is a characteristic of the computation
(query) and does not depend on the database (cf. [3]).

To illustrate, for a count query q, whether q(D) is for example 30 or 30,000
does not have any influence on the value of noise scale. This is because sensitivity
is equal to 1 for any count query. Thus, for a given ϵ, the noise scale will be
λ = 1/ϵ. Therefore, an amount of noise, say 69 (a plausible value as we will
show), might be added to the answer of the query with the same probability
regardless of the magnitude of the true answer. While a noise value of 69 does
not affect significantly the “utility” of the query answer of 30,000 magnitude, it
renders the privatized answer of the query of 30 magnitude almost useless.

Therefore, we analyze in this section the practicality of differential privacy
from a utility point of view.

Let q(D) be the true answer and p be the released privatized answer to
query q. We can evaluate the utility of the released answer using relative error
as follows.

RE =
|p− q(D)|

q(D)
(2)

This is similar to the definition of relative error in [6, 10]. Practically, we can
think of acceptable values of RE as 10% or 15%.

The cumulative distribution function of Laplace distribution in an interval
[−z, z] can be computed by the following integral.

Pr(−z ≤ x ≤ z) =

∫ z

−z

1
2λe

−|x|
λ dx = 1− e

−z
λ .



Therefore,

Pr(|x| ≥ z) = e
−z
λ . (3)

Let pr = Pr(|x| ≥ z). Value z for a specified cumulative probability pr can be
calculated using equation (3) as

z = −λ · ln(pr),

and with λ = ∆(q)/ϵ we have

z = −∆(q)
ϵ · ln(pr). (4)

Fig. 1 illustrates the minimum absolute noise z as a function of cumulative
probability pr for three different values of ϵ when ∆(q) = 1. Each point (pr, z)
on the curve for a given ϵ means that

pr percent of the time the random noise has an absolute value of at least
z.

For example, for ϵ = 0.01, we have that 50% of the time the absolute value of
noise is at least 69, and 30% of the time it is at least 120. This means that the
query answer needs to be considerably higher than 69, or even 120, in order for
the privatized (released) answer to have some utility.
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Fig. 1. Noise vs Probability (∆(q) = 1)

Next, we introduce measures to study the utility of the privatized (released)
answers.



4 Single Query

Let q be a query with a single numerical output. Using Equations (2) and (4)
we can compute the minimum true (query) answer (MTA), such that, with
probability 1− pr, RE is below a threshold re.

The RE formula (Equation (2)) can be written as

RE =
|z|

q(D)
, (5)

where z is the amount of noise added to the true answer of query q on database
D. In order for RE to be below a threshold re, by Equation (4), we should have

q(D) ≥ |z|
re

= −∆(q) · ln(pr)
ϵ · re

.

Thus,

MTA = −∆(q) · ln(pr)
ϵ · re

. (6)

Example 1. Let q be a count query, and let ϵ = 0.01. Let us consider pr = 10%,
i.e. we want to be 1− pr = 90% sure about the relative error statements.

Recall that the sensitivity for any count query is 1. From Equation (4), we
have that

z = − 1

0.01
ln(10%) ≃ 230.

That is, 10% of the time the absolute value of the random noise of scale λ =
1

0.01 = 100 is at least 230. Using Equation (6), for an application specific RE
threshold re = 10%, we get

MTA =
230

10%
= 2300.

In plain language, the query answer should have a magnitude of at least 2300 in
order for the privatized answer to have an acceptable utility (RE ≤ 10%) 90%
of the time.

Fig. 2 illustrates MTA as a function of ϵ for three different values of pr when
re = 10%. Each point (ϵ,mta) on the curve for a given pr shows that:

The query answer should have a magnitude at least mta, in order for the
relative error to not be higher than 10%, 1− pr of the time under noise
of scale λ = 1/ϵ.



If we substitute re for ϵ in the x-axis of Fig. 2 we get MTA as a function of
relative error, with ϵ fixed to 0.1. Each point (re,mta) on the curve of a given
probability pr will show that:

If a query answer is at least mta, adding random noise of scale λ =
1/0.1 = 10 (ϵ = 0.1) will satisfy 1 − pr of the time the requirement of
having relative error at most re.
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Fig. 2. MTA vs Epsilon (re = 10%). We can substitute re for ϵ and get MTA as a
function of relative error threshold.

5 Multiple Queries

In the case of two or more queries on a single database, a randomized algorithm
satisfying ϵ-DP adds Laplace noise with scale λ =

∑
i ∆(qi)/ϵ (see Section 2).

The MTA in this case will be possibly larger than what it would be if only one
of the query answers were to be released. This is because the noise scale, being
equal to λ =

∑
i ∆(qi)/ϵ, is larger.

For example, in the case of two count queries, if a record affects both counts

(at most by one), then λ will be double, λ = ∆(q1)+∆(q2)
ϵ = 1

ϵ + 1
ϵ . However,

applying noise with identical scale to both may distort one of the answers a lot
more than the other.

Example 2. Let ϵ = 0.01. Suppose q1(D) = 3000 and q2(D) = 30, 000 are the
true answers to two count queries on a database D. We have ∆(q1)+∆(q2) = 2,



and λ = 2
0.01 = 200. Based on Equation (4), with probability 10%, the absolute

noise will be at least

z = −200 · ln(10%) ≃ 460.

Observe that each query answer is distorted twice than if they were considered
in isolation. If the threshold on relative error is set to 10%, then the MTA for
each query needs to be at least 4600.

Now, adding noise 460 to the true query answers, we have

RE1 = 460
3000 ≃ 0.15

RE2 = 460
30000 ≃ 0.015.

This example shows that whereas adding this amount of noise to the answer of
q2 is reasonable for threshold re = 10%, it distorts the answer of q1 too much,
thus failing to satisfy threshold re.

Differential noise problem. Can we find an algorithm for a set of queries that
satisfies DP by adding noise that has different scales for different queries?

In the sequel, we introduce a simple method called Differential (DIFF). DIFF
satisfies DP and adds noise to each query answer guided by a “(differential) query
index”. A query index is a set of numbers, one for each query, used to express
our preference for the scale of noise used for each query.

We note here that Xiao et al. have also proposed a method in [11], called Pro-
portional, which is similar to what we propose here. However, in their method,
the noise scales depend on each database that the randomized algorithm is ap-
plied to. They show that Proportional does not satisfy DP.

6 Differential

Let {q1, . . . , qm} be m queries. Also, let ϵ be the privacy degree we seek for the
query set. In the DP mechanism of [5] (analyzed in Section 5), all queries in the
set will have the same noise scale λ. Another way to view this mechanism is as
follows.

If we denote ∆(qi)
λ by ϵi, for i ∈ [1,m], we have

ϵ =

∑m
i=1 ∆(qi)

λ
=

m∑
i=1

ϵi.

Thus, query qi, for i ∈ [1,m], bears weight ϵi toward achieving overall degree of
privacy ϵ.

Here we propose Differential (DIFF) which assigns each query its own noise
scale λi. Let Γ = {γ1, . . . , γm} be the query index (a set of numbers, one for
each query). DIFF sets each λi to be proportional to the corresponding γi value.
That is,

λi = α · γi (7)



where i ∈ [1,m], and α is some constant.

Now, query qi, for i ∈ [1,m], bears weight ϵi =
∆(qi)
λi

toward achieving overall

degree of privacy ϵ =
∑m

i=1 ϵi.

Constant α can be computed by substituting (7) in equation ϵ =
∑m

i=1
∆(qi)
λi

.
We get

α =
1

ϵ

∑
i∈[1,m]

∆(qi)
γi

(8)

and then each λi is computed using Expression (7).

A randomized algorithm with λi’s thus computed will satisfy ϵ-DP. To verify
this, let D1 and D2 be two such databases. The following equation shows that
privatized answers pi’s for queries qi’s are almost as likely on D1 as on D2 with
DP privacy degree of ϵ. Namely, we have

Pr[p1, . . . , pm on D1]

Pr[p1, . . . , pm on D2]

=

∏m
i=1 exp(−|pi − qi(D1)|/λi)∏m
i=1 exp(−|pi − qi(D2)|/λi)

=

m∏
i=1

exp

(
−zi,1
λi

+
zi,2
λi

)

≤
m∏
i=1

exp

(
−zi
λi

+
zi +∆(qi)

λi

)

= exp

(
m∑
i=1

∆(qi)

λi

)
= exp(ϵ)

where zi,j is the noise added to the true answer qi(Dj), and the last step is

based on equation ϵ =
∑m

i=1
∆(qi)
λi

. Note that α is not a user defined constant
and depends on ϵ, on the sensitivity of the queries, and on the query index.

One might be interested in knowing whether using indexed noise as above can
satisfy for each query a user given relative error threshold re with a cumulative
probability pr on database D.

From Equations (4), (5), (7), and (8) we have

REi =
−λi · ln(pr)

qi(D)

=
−α · γi · ln(pr)

qi(D)

= −

(
1

ϵ

m∑
i=1

∆(qi)

γi

)
· γi · ln(pr)

qi(D)



Thus, it can be inferred that if the equation

m∑
i=1

∆(qi)

γi
≤ −rei

γi
· ϵ · qi(D)

ln(pr)
(9)

is true for a set of m queries on a database D, then at least 1 − pr percent of
the time DIFF satisfies a user given relative error threshold rei for qi. From this
we derive the MTAs for each query qi to be

MTAi = −
γi ·
∑m

i=1
∆(qi)
γi

· ln(pr)
ϵ · rei

. (10)

Observe that in the case of one query, the above becomes the same as Equa-
tion (6).

Example 3. Consider again Example 2. Let Γ = {1, 10} be the query index for
the two count queries. From (10), we have

MTA1 = −1 · (1/1 + 1/10) · ln(10%)

0.01 · 0.10
≃ 2533

MTA2 = −10 · (1/1 + 1/10) · ln(10%)

0.01 · 0.10
≃ 25328.

Since the answers of q1 and q2 are greater than their respective MTAs, we can
satisfy the relative error threshold by using mechanism DIFF.

Specifically, we set λ1 = α and λ2 = 10α. Using Equations (8) we have
α = 1

ϵ (
1
1+

1
10 ) = 110 (ϵ = 0.01) and from Equation (7), λ1 = 110 and λ2 = 1100.

Using Equation (4) we have that 10% of the time the noise added to the true
answers of q1 and q2 has an absolute value of at least 253.3 and 2532.8, respec-
tively (compare these values to noise value of 460 for both queries in Example 2).
Now the noise added will not violate the error threshold of 10%.

7 Conclusions

We have analyzed differential privacy from a utility perspective. We studied the
connection between the cumulative probability of noise, and the privacy degree.
Using the concept of relative error we explored the practicality of DP algorithms
for single and multiple queries. Namely, we analyzed the circumstances when DP
can be used reasonably without exceeding a given threshold for relative error.
For multiple queries, we proposed the Differential (DIFF) method that adds
noise with scales guided by a query index. We showed that DIFF satisfies DP.
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