Path Queries under Distortions: Answering and Containment

Gosta Grahne - Concordia University Alex Thomo - Suffolk University

Foundations of Information and Knowledge Systems (FoIKS '04)

The world is a database, and a database is a graph
Fact 1
Regular path queries are at the core of querying graph databases

Fact 2
Query containment is instrumental in query optimization and information integration

Postulate 2
Query optimization and information integration is the future

Viewing Data as Graphs

- Relational data
- Tuples are the nodes
- Foreign keys are the edges
- Object-oriented data
- Linked Web pages
- XML
- AI: Semantic Networks

Regular Path Queries and Distortions

Q: _* . Foto Afrati . Classes . Automata

- Will fetch the node of the automata course of Foto Afrati.
- However, suppose the user gives:

Q: _* . Foto Afrati . Automata

- For this the answer is empty!
- Well, we could distort the query by applying an edit operation - an insertion of 'Classes' in this case.
- However, Foto Afrati could also have some automata papers.
- But, "we" (DBA) know that Foto Afrati is a database person, so she probably doesn't have many automata papers.
- On the other hand, there at NTU, it's Foto who always teaches Automata.

- To reflect these facts about the world, the DBA could write:
(Foto Afrati . Automata, 1,
Foto Afrati . Classes. Automata)
+

(Foto Afrati . Automata, 5,
Foto Afrati . Papers. Automata)

Graph Database $D B$

- Set of objects/nodes $D_{\text {, edges labeled with }}$ symbols from a database alphabet Δ
$D B$

- Query Q : regular language over Δ

For example $\mathrm{Q}=\mathrm{ST}+\mathrm{T}+\mathrm{RR}$

- ans $(\mathrm{Q}, \mathrm{DB})=\{(\mathrm{x}, \mathrm{y})$ in $D x D$: there is a path from x to y in DB labeled by a word in $Q\}$

Computing the Answer

Construct an automaton $\mathbf{A}_{\mathbf{Q}}$ with $\mathbf{p}_{\mathbf{0}}$ initial state

Compute the set Reach ${ }_{\mathbf{a}}$ as follows.

1. Initialize $\mathbf{R e a c h}_{\mathrm{a}}$ to $\left\{\left(\mathrm{a}, \mathrm{p}_{0}\right)\right\}$.
2. Repeat $\mathbf{3}$ until Reach $_{\mathrm{a}}$ no longer changes.
3. Choose a pair $(b, p) \in$ Reach $_{\mathrm{a}}$. If there is a transition $\left(\mathbf{p}, \mathbf{R}, \mathbf{p}^{\prime}\right)$ in $\mathbf{A}_{\mathbf{Q}^{\prime}}$ and there is an edge ($\mathbf{b}, \mathbf{R}, \mathbf{b}^{\prime}$) in $\mathbf{D B}$, then add the pair (b's') to Reach ${ }_{\mathbf{a}}$.
Finally, $\mathbf{a n s}(\mathbf{Q}, \mathbf{a}, \mathbf{D B})=\{(\mathbf{a}, \mathbf{b}):(\mathbf{b}, \mathbf{s}) \in$
Reach $_{\mathbf{a}}$, and \boldsymbol{s} is a final state in $\left.\mathbf{A}_{\mathbf{Q}}\right\}$

Distortion Transducer T

- Query $Q=$ RTT

- $\operatorname{ans}_{\mathrm{T}}(\mathrm{Q}, \mathrm{DB})=\{(\mathrm{a}, \mathrm{d}, 2),(\mathrm{c}, \mathrm{b}, 2)\}$
- $\mathrm{d}_{\mathrm{T}}(\mathrm{u}, \mathrm{w})=\inf \{k$: u goes to w through T by k distortions $\}$
- $\operatorname{ans}_{T}(Q, D B)=\left\{(a, b, k): k=\inf \left\{d_{T}(u, w): u \in Q, a \rightarrow_{w} b \in D B\right\}\right\}$

Lazy Dijkstra Algorithm on Cartesian Product

$D B$

- Although the full cartesian product has $\mathbf{4 * 3 * 4 = 4 8}$ states, we needed only $\mathbf{3}$ states starting from ' a '.

A Sketch...

Construct an automaton $\mathbf{A}_{\mathbf{Q}}$ with $\mathbf{p}_{\mathbf{0}}$ initial state
Compute the set Reach ${ }_{\mathrm{a}}$ as follows.

1. Initialize Reach ${ }_{\mathrm{a}}$ to $\left\{\left(\mathrm{p}_{0}, \mathrm{~s}_{0}, \mathrm{a}, 0\right.\right.$, false $\left.)\right\}$.
/* The boolean flag is for the membership in the set of nodes for which we know the exact cost from source */
2. Repeat $\mathbf{3}$ until Reach ${ }_{\mathrm{a}}$ no longer changes.
3. Choose a ($\mathbf{p}, \mathbf{s}, \mathbf{b}, \mathbf{k}$,false $) \in$ Reach $_{\mathrm{a}}$, where \mathbf{k} is min

If [there is a transition $\left(\mathbf{p}, \mathbf{R}, \mathbf{p}^{\prime}\right)$ in $\mathbf{A}_{\mathbf{Q}}$] and [a transition ($\mathbf{s}, \mathbf{R} / \mathbf{S}, \mathbf{s}^{\prime}, \mathbf{n}$) in T] and [there is an edge (b, S, b') in DB]

Then

add ($\mathbf{p}^{\prime}, \mathbf{s}^{\prime}, \mathbf{b}^{\prime}, \mathbf{k}+\mathbf{n}$, false) to Reach ${ }_{\mathrm{a}}$ if there is no ($\mathbf{p}^{\prime}, \mathbf{s}^{\prime}, \mathbf{b}^{\prime \prime}, \ldots, \ldots$) in Reach ${ }_{\text {a }}$
relax the weight of any successor of ($\mathbf{p}, \mathbf{s}, \mathbf{b}, \mathbf{k}$, false) in Reach ${ }_{\mathbf{a}}$. update (p, s, b, k, false) to (p, s, b, k, true).

Finally, $\mathbf{a n s}_{\mathrm{T}}(\mathbf{Q}, \mathbf{a}, \mathbf{D B})=\left\{(\mathbf{a}, \mathbf{b}, \mathbf{k}):(\mathbf{p}, \mathbf{s}, \mathbf{b}, \mathbf{k}\right.$, true $) \in$ Reach $_{\mathbf{a}}$, and \mathbf{p} is a final state in $\mathbf{A}_{\mathbf{Q}}$, and \mathbf{s} is a final state in $\mathbf{T}\}$

- In other words, the priority queue of Dijkstra's algorithm is brought on demand (lazily) in memory.
- Complexity: If we keep the set Reach ${ }_{\mathrm{a}}$ in main memory we avoid accessing objects in secondary memory more than once.
- Data complexity (i.e. number of I/O's) is all we care in databases! ...And it is linear!

Redefining Query Containment

- Classical case: $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$ iff ans $\left(\mathrm{Q}_{1}, \mathrm{DB}\right) \subseteq$ ans $\left(\mathrm{Q}_{2}, \mathrm{DB}\right)$ on any DB.
- We can provide the answers of Q_{1} as answers for Q_{2} and be certain that they will be valid for Q_{2} on any $D B$.
- Suppose now that $\mathrm{Q}_{1} \not \subset \mathrm{Q}_{2}$. However, by using the distortion transducer some kind of containment might still hold.

An Example

- $\mathrm{Q}_{1}=\{\mathrm{R}, \mathrm{S}\}, \quad \mathrm{Q}_{2}=\{\mathrm{U}, \mathrm{V}\} \quad \mathrm{T}=\{(\mathrm{U} / \mathrm{R}, 1),(\mathrm{V} / \mathrm{S}, 3)\}$
- Suppose $(\mathbf{a}, \mathbf{b}, \mathbf{0}) \in \mathbf{a n s}_{\mathrm{T}}(\mathbf{Q}, \mathbf{D B})$--- what could be the DB ?

$$
\begin{aligned}
& D B_{1} \quad{ }^{a} \xrightarrow{R} T b \\
& (\mathbf{a}, \mathrm{~b}, \mathbf{0}) \in \mathrm{ans}_{\mathbf{T}}\left(\mathbf{Q}_{\mathbf{2}}, \mathrm{DB}_{3}\right) \\
& D B_{2}{ }^{\mathrm{a}} \xrightarrow{R}{ }^{\mathrm{b}} \\
& (\mathbf{a}, \mathrm{~b}, \mathbf{1}) \in \operatorname{ans}_{\mathbf{T}}\left(\mathbf{Q}_{\mathbf{2}}, \mathrm{DB}_{1}\right) \\
& D B_{3}{ }^{\mathrm{a}} \stackrel{S}{\bullet}{ }^{\mathrm{b}} \\
& (\mathbf{a}, \mathrm{~b}, \mathbf{3}) \in \operatorname{ans}_{\mathbf{T}}\left(\mathbf{Q}_{\mathbf{2}}, \mathrm{DB}_{2}\right)
\end{aligned}
$$

- $\mathrm{Q}_{1} \not \subset \mathrm{Q}_{2}$.

However, for any DB, if $(\mathbf{a}, \mathbf{b}, \mathbf{0}) \in \mathbf{a n s}_{\mathbf{T}}\left(\mathbf{Q}_{2}, \mathbf{D B}\right)$ then $(\mathbf{a}, \mathbf{b}, \mathbf{m}) \in \mathbf{a n s}_{\mathbf{T}}\left(\mathbf{Q}_{2}, \mathbf{D B}\right)$, where $\mathrm{m}<=0+\mathbf{3}$.

Another Example

- $\mathrm{Q}_{1}=\{R R R\}, \mathrm{Q}_{2}=\{R S T\} \quad \mathrm{T}$ is the edit transducer

- Suppose $\left.(\mathbf{a}, \mathbf{b}, \mathbf{1}) \in \mathbf{a n s}_{\mathrm{T}} \mathbf{(Q , D B}\right)$--- what could be the DB?

Query Containment (Continued)

- $\mathrm{Q}_{1} \subseteq(\mathrm{~T}, \mathrm{k}) \mathrm{Q}_{2}$
iff

$$
\begin{aligned}
& (\mathrm{a}, \mathrm{~b}, \mathrm{n}) \in \operatorname{ans}_{\mathrm{T}}\left(\mathrm{Q}_{1}, \mathrm{DB}\right) \Rightarrow(\mathrm{a}, \mathrm{~b}, \mathrm{~m}) \in \operatorname{ans}_{\mathrm{T}}\left(\mathrm{Q}_{2}, \mathrm{DB}\right) \text { and } \\
& \mathrm{m}<=\mathrm{n}+\mathrm{k} \text { on any DB. }
\end{aligned}
$$

$\mathrm{Q}_{1} \not \subset \mathrm{Q}_{2}$
$\mathrm{Q}_{1} \not \mathcal{C}_{(\mathrm{T}, 1)} \mathrm{Q}_{2}$
$\mathrm{Q}_{1} \subseteq(\mathrm{~T}, \mathrm{k})$
$\mathrm{Q}_{1} \subseteq(\mathrm{~T}, \mathrm{k}+1)$
Q_{2}
$\mathrm{Q}_{1} \subseteq \mathrm{~T}\left(\mathrm{Q}_{2}\right)$

- What's the \mathbf{k} ?

A tool for deciding k-containment

- We devise a method for constructing:
$\mathbf{Q}^{(\mathbf{T}, \mathbf{k})}$: the language of all Q-words distorted by T with cost at most k.
Clearly $\mathrm{Q}^{(T, k-1)} \subseteq \mathrm{Q}^{(\mathrm{T}, \mathrm{k})}$
- In this way we control how bigger we need to make Q_{2}.
- Suppose, that k is the smallest number, such that $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}{ }^{(T, k)}$.
- If d_{T} satisfies the triangle inequality property, we show that:

$$
\mathbf{Q}_{1} \subseteq(\mathrm{~T}, \mathrm{k}), \mathbf{Q}_{\mathbf{2}} \text { iff } \mathbf{Q}_{\mathbf{1}} \subseteq \mathbf{Q}_{\mathbf{2}}^{(\mathrm{T}, \mathrm{k})}
$$

About the Triangle Property of T

- There are transducers, whose word distance doesn't satisfy the triangle property. E.g. $\{(\mathrm{R}, 1, \mathrm{~S}),(\mathrm{S}, 2, \mathrm{~T}),(\mathrm{R}, 5, \mathrm{~T})\}$.

$$
d_{T}(R, S)=1, d_{T}(S, T)=2 \text {, but } d_{T}(R, T)=5>3
$$

- Nevertheless, there are large classes which, posses the triangle propety.
- The pure edit distance transducers. E.g. $\{(\mathrm{R}, 1, \mathrm{~S}),(\mathrm{S}, 1, \mathrm{~T}),(\mathrm{R}, 1, \mathrm{~T})$, ($\mathrm{S}, 1, R$), ($\mathrm{R}, 1, \varepsilon$), ($\varepsilon, 1, \mathrm{R}$)...\}.
- Transducers whose input and output of distortions do not have intersection. Such tranducers are idempotent wrt composition.

$$
\left(T \cup T_{i d}\right)^{\circ}\left(T \cup T_{i d}\right)=\left(T^{\circ} T\right) \cup\left(T^{\circ} T_{i d}\right) \cup\left(T_{i d}{ }^{\circ} T\right) \cup\left(T_{i d}{ }^{\circ} T_{i d}\right)=T \cup T_{i d}
$$

- In general, an idempotent transducer has the triangle property.
- uTv Λ vTw $\Rightarrow u^{\circ} T^{\circ} \mathrm{w} \Rightarrow \mathrm{uTw}$
- Hence, $\mathrm{d}_{\mathrm{T}}(\mathrm{u}, \mathrm{w})=\mathrm{d}_{\mathrm{T}^{\circ} \mathrm{T}}(\mathrm{u}, \mathrm{w})<=\mathrm{d}_{\mathrm{T}}(\mathrm{u}, \mathrm{v})+\mathrm{d}_{\mathrm{T}}(\mathrm{v}, \mathrm{w})$.

Triangle Property (Continued)

- The class of "range $(\boldsymbol{T}) \cap \operatorname{dom}(\boldsymbol{T})=\varnothing^{\prime \prime}$ transducers is indeed practical:
- Recall that it is the DBA who writes the reg. expr. for the distortion transducer.
- It is common sense that DBA has surely an idea about the $D B$.
- Hence, we can consider that all the words in range(T) match to DB paths.
- On the other hand, the words of the dom(T) can be considered not having a direct match on the database; otherwise why the system administrator would like them to be translated.

$$
\mathbf{Q}_{1} \subseteq{ }_{(T, k)}^{0} \mathbf{Q}_{2}
$$

- However, if we restrict ourselves in reasoning about those tuples in Q_{1} with weight 0 , then we don't need the triangle property for T .
- We obtain a relaxed definition for the k-containment:

$$
\begin{aligned}
& \mathrm{Q}_{1} \subseteq^{0}(\mathrm{~T}, \mathrm{k}) \mathrm{Q}_{2} \text { iff } \\
& (\mathrm{a}, \mathrm{~b}, 0) \in \mathrm{ans}_{\mathrm{T}}\left(\mathrm{Q}_{1}, \mathrm{DB}\right) \Rightarrow(\mathrm{a}, \mathrm{~b}, \mathrm{~m}) \in \operatorname{ans}_{\mathrm{T}}\left(\mathrm{Q}_{2}, \mathrm{DB}\right) \text { and } \\
& \quad \mathrm{m}<=\mathrm{k} \text { on any DB. }
\end{aligned}
$$

- Clearly, $(a, b, 0) \in$ ans $_{\mathrm{T}}\left(\mathrm{Q}_{1}, \mathrm{DB}\right)$ mainly correspond to the tuples of the pure answer of Q_{1} on DB.
- We are able to prove that $\mathrm{Q}_{1} \subseteq_{(T, k)}^{0} \mathrm{Q}_{2}$ iff $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}(\mathrm{~T}, \mathrm{k})$. (Even when the triangle property doesn't hold).

Computing $\mathrm{Q}^{(\mathrm{T}, \mathrm{k})}$ - I

- First we obtain a weighted transduction of Q by T.
- Let $\mathrm{A}_{\mathrm{Q}}=\left(\mathrm{P}_{\mathrm{Q}}, \Delta, \tau_{\mathrm{Q}}, \mathrm{P}_{\mathrm{Q}, 0}, \mathrm{~F}_{\mathrm{Q}}\right)$ be an ε-free NFA for Q
- Let $T=\left(P_{T}, \Delta, \tau_{T}, \mathrm{P}_{\mathrm{T}, 0}, \mathrm{~F}_{\mathrm{T}}\right)$ in standard form
- We construct the weighted transduction automaton of Q by T as
- $A=\left(P, \Delta, \tau, p_{0}, F\right)$, where $P=P_{Q} \times P_{T}, p_{0}=p_{Q, 0} \times p_{T, 0}, F=F_{Q} \times F_{T}$
- $\tau=\left\{\left((p, q), S, k,\left(p^{\prime}, q^{\prime}\right)\right):\left(p, R, p^{\prime}\right) \in \tau_{Q},\left(q, R, S, k, q^{\prime}\right) \in \tau_{T}\right\} \cup$ $\left\{\left((p, q), S, k,\left(p, q^{\prime}\right)\right):\left(q, \varepsilon, S, k, q^{\prime}\right) \in \tau_{\top}\right\}$
- Now, we should find all the paths in A, such that their weight is less than k. We denote it $\mathbf{k}(A)$.

Computing $Q^{(T, k)}$ - II

- Let A^{h} be the sub-automaton consisting of all the paths with weight h.
- $\mathbf{k}(A)=A^{0} \cup A^{1} \cup \ldots \cup A^{k}$
- We suppose that all the weights in A are 0 or 1 .
- If not, e.g. (p, R, m, q) we replace by $\left(p, R, 1, r_{1}\right), \ldots,\left(r_{m-1}, R, 1, q\right)$
- We number the states of $A: 1,2, \ldots, n$
- $A_{i j}$ is A, but with initial state i and final j.
- $\mathbf{O}(\mathrm{A})$ keeping only the 0 -weighted transitions in A .
- $\mathbf{1}_{\mathrm{ij}}(\mathrm{A})$ elementary two state (i and j) automata with the 1 -weighted transitions from i to j.

Computing Q ${ }^{(T, k)}$ - III

- $\mathbf{k}(A)=A^{0} \cup A^{1} \cup \ldots \cup A^{k}$
- $\mathrm{A}^{0}=\mathbf{0}(\mathrm{A})$, and for $1<=\mathrm{h}<=\mathrm{k}$
- $A^{h}=\cup_{i \in S, j \in F} A^{h}{ }_{i j}$
- $A^{h}{ }_{i j}= \begin{cases}\cup_{m \in\{1, \ldots, n\}} \mathrm{A}^{h / 2}{ }_{i m} \cdot A^{h / 2}{ }_{m j} & \text { for } h \text { even } \\ \cup_{m \in\{1, \ldots, n\}} \mathrm{A}^{(h-1) / 2}{ }_{i m} \cdot A^{(h+1) / 2}{ }_{m j} & \text { for } h \text { odd }\end{cases}$
- $A^{1}{ }_{i j}=\cup_{\{m, l\} \in\{1, \ldots, n\}} \mathbf{0}(A)_{\mathrm{im}} \cdot \mathbf{1}_{\mathrm{m}}(A) \cdot \mathbf{O}(A)_{\mathrm{lj}}$
- $\mathrm{A}^{1}{ }_{\mathrm{ij}}$ consists of A -paths starting from state i and traversing any number of $\mathbf{0}$ weighted arcs up to some state m, then a 1-weighted arc going some state i, and after that, any number of $\mathbf{0}$-weighted arcs ending up in state j .
- $A^{h / 2}{ }_{\text {im }}$ all the $\mathbf{h} / \mathbf{2}$-weighted paths of A going from state i to some state m.
- $A^{\mathrm{h} / 2}{ }_{\mathrm{mj}}$ all the $\mathbf{h} / \mathbf{2}$-weighted paths of A going from that "some" state m to state j .
- Since m ranges over all the possible states, $\mathrm{A}_{\mathrm{ij}}{ }^{\mathrm{h}}$ consists of all the possible \mathbf{h} weighted paths from state i to state j.

Computing $Q^{(T, k)}$ - IV

- E.g. Suppose that A is:
- $0(\mathrm{~A}):$

- $1_{12}(\mathrm{~A}):$

- $A_{12}^{1}=0(A)_{12} \cdot 1_{22}(A) \cdot O(A)_{22} \cup 0(A)_{11} \cdot 1_{12}(A) \cdot O(A)_{22}=\{R\}$
- $A^{1}{ }_{11}=\varnothing, A^{1}{ }_{22}=\{S R\}, A^{1}{ }_{21}=\varnothing$
- $A^{1}=A^{1}{ }_{12}=\{R\}$
- $A^{2}{ }_{12}=A_{12}^{1} \cdot A^{1}{ }_{22} \cup A_{11}^{1} \cdot A_{12}^{1}=\{R \cdot S R\} \cup \varnothing$

Computing $\mathrm{Q}^{(\mathrm{T}, \mathrm{k})}-\mathrm{V}$

- From $A^{\mathrm{h}}{ }_{\mathrm{ij}}=\cup_{\mathrm{m} \in\{1, \ldots, \mathrm{n}\}} \mathrm{A}^{\mathrm{h} / 2^{i m}}$. $A^{\mathrm{h} / 2_{m j}}$ (for simplicity assume h is power of 2)
- A^{2} ij is a union of n automata of size $2 p$ (p is polynomial in n)
- A^{4} is is a union of n automata of size $4 n p$
- $A_{i j}^{8}$ is a union of n automata of size $8 n^{2} p$
- A_{ij} is a union of n automata of size $4 n^{\operatorname{logh} h} p$
- Hence, the size of $A_{i j}^{h}$ is $\mathbf{4} \boldsymbol{\pi}^{\text {logh }} \boldsymbol{p}$.
- Had we used the equivalent $\mathrm{A}^{\mathrm{h}} \mathrm{ij}=\cup_{\mathrm{m} \in\{1, \ldots, \mathrm{n}} \mathcal{A}^{\mathrm{h}-1}{ }_{\mathrm{im}} . \mathrm{A}^{1}{ }_{\mathrm{mj}}$ we would get $p n^{h!}$!
- Conclusion: Computing $Q^{(T, k)}$ is polynomial in n and sub-exponential in k.

A broader perspective - semirings

- In the transducer, the weights were natural numbers and the specific operations were addition (+) along a path, and minimum (min) applied to path weights.
- This can be generalized to other weight sets, and to other operations.
- The weights, elements of a set K, can be multiplied along a path using an operation \otimes, and then summarized using an operation \oplus.
- Semirings: $(\mathrm{K}, \oplus, \otimes, 0,1)$
- $(\mathrm{K}, \oplus, \underline{0})$ commutative monoid with $\underline{0}$ as the identity element \oplus.
- $(\mathrm{K}, \otimes, \underline{1})$ monoid with $\underline{1}$ as the identity element for \otimes.
- \otimes distributes over \oplus :

$$
\text { - }(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c), c \otimes(a \oplus b)=(c \otimes a) \oplus(c \otimes b)
$$

- $\underline{0}$ is anihilator for $\otimes: \mathrm{a} \otimes \underline{0}=\underline{0}$.

The on focus semiring

- Tropical Semiring: $(\mathrm{K}, \oplus, \otimes, \underline{0}, \underline{1})$, where $\mathrm{K}=\mathrm{N}, \oplus=\mathrm{min}, \otimes=+, \underline{0}=\infty, \underline{1}=0$
- $(a \oplus b) \otimes c=\min (a, b)+c=\min (a+c, b+c)=(a \otimes c) \oplus(b \otimes c)$, hence \otimes distributes over \oplus.
- Why does Dijkstra's algorithms work?
- It is based on the assumption that no shortest path needs to traverse a cycle!
- This is true for the Tropical Semiring, because it is a bounded semiring. Boundedness is defined as:

$$
\underline{\mathbf{1}} \oplus \mathbf{a}=\underline{\mathbf{1}} \text { for each a, } \quad(\text { i.e. } \min (0, a)=0) .
$$

- Hence, if we have a cycle with weight a, we don't gain anything traversing it: $\underline{\mathbf{1}} \oplus a \oplus a \otimes a+a \otimes a \otimes a+\ldots=\underline{1}$
- In general, we can apply the Approximate Answering algorithm with any transducer whose weights are from a bounded semiring.

Other semirings

- Probabilistic: ([0,1], max, $\times, 0,1$)
- Fuzzy: ([0,1], max, min, 0, 1)
- Both of them are bounded.
- However, if we define the probabilistic semiring as: ($\mathrm{R},+, \times, 0$, 1), then we haven't a bounded semiring.
- Note: If C* is the weight of the shortest path, we produce as the answer from the Dijkstra algorithm the $\min \left(C^{*}, 1\right)$.
- In such cases, we can use the Floyd-Warshall algorithm, which doesn't require boundedness.

Future work

- The Floyd-Warshall algorithm is impractical for sparse graphs, and modifying it for secondary memory is not known.
- Extending the algorithm for computing $\mathrm{Q}^{(T, k)}$ in other semirings.

References

- Gösta Grahne, Alex Thomo. Query Answering and Containment for Regular Path Queries under Distortions. FoIKS 2004: 98-115
- Gösta Grahne, Alex Thomo. Approximate Reasoning in Semistructured Data. KRDB 2001

