Path Queries under Distortions: Answering and Containment

Gosta Grahne – Concordia University Alex Thomo – Suffolk University

Foundations of Information and Knowledge Systems (FoIKS '04)

The world is a database, and a database is a graph

Fact 1

Regular path queries are at the core of querying graph databases

Fact 2

Query containment is instrumental in query optimization and information integration

Postulate 2

Query optimization and information integration is the future

Viewing Data as Graphs

- Relational data
 - Tuples are the **nodes**
 - Foreign keys are the edges
- Object-oriented data
- Linked **Web** pages
- XML

• AI: Semantic Networks

Regular Path Queries and Distortions

Q: _* . Foto Afrati . Classes . Automata

- Will fetch the node of the automata course of Foto Afrati.
- However, suppose the user gives:

Q: _* . Foto Afrati . Automata

- For this the answer is **empty**!
- Well, we could distort the query by applying an edit operation – an *insertion* of 'Classes' in this case.
- However, Foto Afrati could also have some automata papers.
- But, "we" (DBA) know that Foto Afrati is a database person, so she probably doesn't have many automata papers.
- On the other hand, there at NTU, it's Foto who always teaches Automata.

• To reflect these facts about the world, the DBA could write:

```
_* . (
    (Foto Afrati . Automata, 1,
    Foto Afrati . Classes. Automata)
    +
    (Foto Afrati . Automata, 5,
    Foto Afrati . Papers. Automata)
) *
```

Graph Database *DB*

• Set of objects/nodes *D*, edges labeled with symbols from a **database alphabet** Δ

- Query *Q* : regular language over Δ For example Q = ST + T + RR
- ans(Q,DB) = {(x,y) in D x D: there is a path from x to y in DB labeled by a word in Q }

Computing the Answer

Construct an automaton **A**_Q with **p**₀ initial state

Compute the set **Reach**_a as follows.

- 1. Initialize **Reach**_a to $\{(a, p_0)\}$.
- 2. Repeat **3** until **Reach**_a no longer changes.
- 3. Choose a pair $(b,p) \in \mathbf{Reach}_a$.

If there is a transition (**p**,**R**,**p'**) in **A**_Q, and there is an edge (**b**,**R**,**b'**) in **DB**, then add the pair (**b'**,**s'**) to **Reach**_a.

Finally, **ans(Q, a, DB)**={(**a, b**) : (**b,s**)∈ **Reach**_a, and **s** is a final state in **A**₀}

Distortion Transducer 7

• $ans_T(Q,DB) = \{(a,d,2), (c,b,2)\}$

- $d_T(u,w) = \inf\{k : u \text{ goes to } w \text{ through } T \text{ by } k \text{ distortions}\}$
- $ans_T(Q,DB) = \{(a,b,k) : k = inf\{d_T(u,w) : u \in Q, a \rightarrow_w b \in DB\}\}$

Lazy Dijkstra Algorithm on Cartesian Product

R

5

а

 Although the full cartesian product has 4*3*4=48 states, we needed only 3 states starting from `a'.

A Sketch...

Construct an automaton A_Q with p_0 initial state Compute the set **Reach**_a as follows.

1. Initialize **Reach**_a to $\{(p_0, s_0, a, 0, false)\}$.

/* The boolean flag is for the membership in the set of nodes for which we know the exact cost from source $\ast/$

- 2. Repeat **3** until **Reach**_a no longer changes.
- 3. Choose a (**p**, **s**, **b**, **k**,**false**) ∈ **Reach**_a, where **k** is **min**
 - If [there is a transition (p, R, p') in A_Q] and [a transition (s, R/S, s', n) in T] and [there is an edge (b, S, b') in DB]

Then

add (p', s', b', k+n, false) to Reach_a if there is no (p', s', b', _, _) in
Reach_a
relax the weight of any successor of (p, s, b, k, false) in Reach_a.

update (p, s, b, k, false) to (p, s, b, k, true).

Finally, **ans_T(Q, a, DB)**={(**a, b, k**) : (**p, s, b, k,true**)∈ **Reach**_a, and **p** is a final state in **A**_Q, and **s** is a final state in **T**}

- In other words, the priority queue of Dijkstra's algorithm is brought on demand (lazily) in memory.
- Complexity: If we keep the set Reach_a in main memory we avoid accessing objects in secondary memory more than once.

 Data complexity (i.e. number of I/O's) is all we care in databases! ...And it is **linear**!

Redefining Query Containment

- Classical case: Q₁ ⊆ Q₂ iff ans(Q₁,DB) ⊆ ans(Q₂,DB) on any DB.
 - We can provide the answers of Q₁ as answers for Q₂ and be **certain** that they will be valid for Q₂ on any DB.
- Suppose now that Q₁ ⊄ Q₂. However, by using the distortion transducer some kind of containment might still hold.

An Example

- $Q_1 = \{R, S\}, Q_2 = \{U, V\} T = \{(U/R, 1), (V/S, 3)\}$
- Suppose $(a,b,0) \in ans_T(Q, DB)$ --- what could be the DB?

• $Q_1 \not\subset Q_2$. However, for any DB, if $(a,b,0) \in ans_T(Q_2,DB)$ then $(a,b,m) \in ans_T(Q_2,DB)$, where m<=0+3.

Another Example

- $Q_1 = \{RRR\}, Q_2 = \{RST\}$ T is the edit transducer
- Suppose $(a,b,1) \in ans_T(Q, DB)$ --- what could be the DB?

 $(a,b,0) \in \operatorname{ans}_{T}(Q_{2}, DB_{1})$

T/R.1

R/R.0

S/R.l

- $(a,b,1) \in ans_T(Q_2, DB_2)$
- $(a,b,3) \in ans_T(Q_2, DB_4)$
- $Q_1 \not\subset Q_2$. However, for any DB, if $(a,b,1) \in ans_T(Q_2,DB)$ then $(a,b,m) \in ans_T(Q_2,DB)$, where m<=1+2.

Query Containment (Continued) • $Q_1 \subseteq_{(T,k)} Q_2$

iff

 $(a,b,n) \in ans_T(Q_1,DB) \Rightarrow (a,b,m) \in ans_T(Q_2,DB)$ and $m \le n + k$ on any DB.

 $\begin{array}{l} Q_1 \not\subset Q_2 \\ Q_1 \not\subset_{(T,1)} Q_2 \\ \cdots \\ Q_1 \subseteq_{(T,k)} Q_2 \\ Q_1 \subseteq_{(T,k+1)} Q_2 \\ \cdots \\ Q_1 \subseteq \mathsf{T}(Q_2) \end{array}$

• What's the **k**?

A tool for deciding k-containment

- We devise a method for constructing:
 Q^(T,k) : the language of all Q-words distorted by T with cost at most k.
 Clearly Q^(T,k-1) ⊆ Q^(T,k)
- In this way we **control** how bigger we need to make Q_2 .
- Suppose, that k is the smallest number, such that $Q_1 \subseteq Q_2^{(T,k)}$.

• If d_T satisfies the triangle inequality property, we show that: $Q_1 \subseteq_{(T,k)} Q_2$ iff $Q_1 \subseteq Q_2^{(T,k)}$.

About the Triangle Property of T

• There are transducers, whose word distance doesn't satisfy the triangle property. E.g. {(R,1,S), (S,2,T), (R,5,T)}.

 $d_T(R,S)=1, d_T(S,T)=2, but d_T(R,T)=5>3$

- Nevertheless, there are large classes which, posses the triangle propety.
- The pure edit distance transducers. E.g. {(R,1,S), (S,1,T), (R,1,T), (S,1,R), (R,1,ε), (ε,1,R)...}.
- Transducers whose input and output *of distortions* do not have intersection. Such tranducers are **idempotent** wrt composition.
 (T∪T_{id})°(T∪T_{id})= (T ° T) ∪(T ° T_{id}) ∪(T_{id} ° T) ∪(T_{id} ° T_{id}) = T∪T_{id}
- In general, an idempotent transducer has the triangle property.
 - **u**Tv Λ vT**w** \Rightarrow uT°Tw \Rightarrow uTw

S/T.2

• Hence, $d_T(u,w) = d_{T^{\circ}T}(u,w) \le d_T(u,v) + d_T(v,w)$.

Triangle Property (Continued)

- The class of "*range(T) dom(T)=Ø*" transducers is indeed practical:
 - Recall that it is the DBA who writes the reg. expr. for the distortion transducer.
 - *It is common sense that DBA has surely an idea about the DB.*
 - Hence, we can consider that all the words in range(T) match to DB paths.
 - On the other hand, the words of the dom(T) can be considered not having a direct match on the database; otherwise why the system administrator would like them to be translated.

- However, if we restrict ourselves in reasoning about those tuples in Q₁ with weight 0, then we *don't need the triangle* property for T.
- We obtain a relaxed definition for the k-containment: $Q_1 \subseteq_{(T,k)}^0 Q_2$ iff $(a,b,0) \in ans_T(Q_1,DB) \Rightarrow (a,b,m) \in ans_T(Q_2,DB)$ and $m \le k$ on any DB.
- Clearly, (a,b,0) ∈ ans_T(Q₁,DB) mainly correspond to the tuples of the pure answer of Q₁ on DB.
- We are able to prove that $Q_1 \subseteq {}^0_{(T,k)} Q_2$ iff $Q_1 \subseteq Q_2^{(T,k)}$. (Even when the triangle property doesn't hold).

Computing Q^(T,k) - I

- First we obtain a **weighted** transduction of Q by T.
- Let $A_Q = (P_Q, \Delta, \tau_Q, p_{Q,0}, F_Q)$ be an ε -free NFA for Q
- Let $T = (P_T, \Delta, \tau_T, p_{T,0}, F_T)$ in standard form
- We construct the weighted transduction automaton of Q by T as
- A = (P, Δ , τ , p₀, F), where P = P_Q × P_T, p₀ = p_{Q,0} × p_{T,0}, F = F_Q × F_T
- $\tau = \{ ((p,q), S, k, (p',q')) : (p,R,p') \in \tau_Q, (q,R,S,k,q') \in \tau_T \} \cup \{ ((p,q), S, k, (p,q')) : (q,\epsilon,S,k,q') \in \tau_T \}$
- Now, we should find all the paths in A, such that their weight is less than k. We denote it k(A).

Computing Q^(T,k) - II

- Let A^h be the sub-automaton consisting of **all** the paths with weight h.
 - $\mathbf{k}(\mathbf{A}) = \mathbf{A}^0 \cup \mathbf{A}^1 \cup ... \cup \mathbf{A}^k$
- We suppose that all the weights in A are 0 or 1.
 - If not, e.g. (p,R,m,q) we replace by (p,R,1,r₁), ..., (r_{m-1},R,1,q)
- We number the states of A: 1,2,...,n
- A_{ii} is A, but with initial state i and final j.
- **O**(A) keeping only the 0-weighted transitions in A.
- 1_{ij}(A) elementary two state (i and j) automata with the 1-weighted transitions from i to j.

Computing Q^(T,k) - III

- $\mathbf{k}(\mathbf{A}) = \mathbf{A}^0 \cup \mathbf{A}^1 \cup ... \cup \mathbf{A}^k$
- A⁰ = **0**(A), and for 1 <= h <= k
- $A^{h} = \bigcup_{i \in S, j \in P} A^{h}_{ij}$ • $A^{h}_{ij} = \begin{cases} \bigcup_{m \in \{1, \dots, n\}} A^{h/2}_{im} \cdot A^{h/2}_{mj} & \text{for } h \text{ even} \\ \bigcup_{m \in \{1, \dots, n\}} A^{(h-1)/2}_{im} \cdot A^{(h+1)/2}_{mj} & \text{for } h \text{ odd} \end{cases}$

•
$$A^{1}_{ij} = \bigcup_{\{m,l\} \subset \{1,...,n\}} \mathbf{0}(A)_{im} \cdot \mathbf{1}_{ml}(A) \cdot \mathbf{0}(A)_{lj}$$

- A¹_{ij} consists of A-paths starting from state i and traversing any number of **0-weighted** arcs up to some state m, then a **1-weighted** arc going some state i, and after that, any number of **0-weighted** arcs ending up in state j.
- $A^{h/2}_{im}$ all the **h/2-weighted** paths of A going from state **i** to some state **m**.
- $A^{h/2}_{mj}$ all the **h/2-weighted** paths of A going from that "some" state **m** to state **j**.
- Since m ranges over all the possible states, A^h_{ij} consists of all the possible h-weighted paths from state i to state j.

Computing Q^(T,k) - IV

- E.g. Suppose that A is: • 0(A): • 0(
 - $1_{12}(A)$:
 - $A_{12}^1 = 0(A)_{12} \cdot 1_{22}(A) \cdot 0(A)_{22} \cup 0(A)_{11} \cdot 1_{12}(A) \cdot 0(A)_{22} = \{R\}$
 - $A_{11}^1 = \emptyset, A_{22}^1 = \{SR\}, A_{21}^1 = \emptyset$
 - $A^1 = A^1_{12} = \{R\}$
 - $A_{12}^2 = A_{12}^1 \cdot A_{22}^1 \cup A_{11}^1 \cdot A_{12}^1 = \{ R.SR \} \cup \emptyset$

Computing Q^(T,k) - V

- From $A_{ij}^h = \bigcup_{m \in \{1,...,n\}} A^{h/2}_{im}$. $A^{h/2}_{mj}$ (for simplicity assume *h* is power of 2)
 - A_{ij}^2 is a union of *n* automata of size 2p(p is polynomial in n)
 - A⁴_{ij} is a union of *n* automata of size 4*np*
 - A_{ij}^8 is a union of *n* automata of size $8n^2p$
 - ...
 - A^h_{ij} is a union of *n* automata of size $4n^{logh-1}p$
- Hence, the size of A^h_{ij} is **4***n^{logh}p*.
- Had we used the equivalent $A^{h}_{ij} = \bigcup_{m \in \{1,...,n\}} A^{h-1}_{im}$. A^{1}_{mj} we would get pn^{h} !

• **Conclusion**: Computing $Q^{(T,k)}$ is polynomial in *n* and sub-exponential in *k*.

A broader perspective – semirings

- In the transducer, the weights were natural numbers and the specific operations were addition (+) along a path, and minimum (min) applied to path weights.
- This can be generalized to other weight sets, and to other operations.
- The weights, elements of a set K, can be multiplied along a path using an operation ⊗, and then summarized using an operation ⊕.
- Semirings: (K, ⊕, ⊗, 0, 1)
 - (K, \oplus , $\underline{0}$) commutative monoid with $\underline{0}$ as the identity element \oplus .
 - $(K, \otimes, \underline{1})$ monoid with $\underline{1}$ as the identity element for \otimes .
 - \otimes distributes over \oplus :
 - $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c), c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b)$
 - $\underline{0}$ is anihilator for \otimes : $\mathbf{a} \otimes \underline{\mathbf{0}} = \underline{\mathbf{0}}$.

The on focus semiring

- Tropical Semiring: (K, \oplus , \otimes , $\underline{0}$, $\underline{1}$), where K=N, \oplus =min, \otimes =+, $\underline{0}$ = ∞ , $\underline{1}$ =0
- (a ⊕ b) ⊗ c = min(a, b) + c = min(a+c, b+c) = (a ⊗ c) ⊕ (b ⊗ c), hence
 ⊗ distributes over ⊕.
- Why does Dijkstra's algorithms work?
- It is based on the assumption that no shortest path needs to traverse a cycle!
- This is true for the Tropical Semiring, because it is a **bounded** semiring. Boundedness is defined as:

 $\underline{1} \oplus \mathbf{a} = \underline{1}$ for each a, (i.e. min(0, a) = 0).

- Hence, if we have a cycle with weight **a**, we don't gain anything traversing it: <u>1</u> ⊕ **a** ⊕ **a**⊗**a** + **a**⊗**a**⊗**a** + ... = <u>1</u>
- In general, we can apply the Approximate Answering algorithm with any transducer whose weights are from a **bounded semiring**.

Other semirings

- Probabilistic: ([0,1], max, ×, 0, 1)
- Fuzzy: ([0,1], max, min, 0, 1)
- Both of them are bounded.
- However, if we define the probabilistic semiring as: (R, +, ×, 0, 1), then we haven't a bounded semiring.
 - Note: If C* is the weight of the shortest path, we produce as the answer from the Dijkstra algorithm the min(C*, 1).
- In such cases, we can use the **Floyd-Warshall** algorithm, which doesn't require boundedness.

Future work

- The Floyd-Warshall algorithm is impractical for sparse graphs, and modifying it for secondary memory is not known.
- Extending the algorithm for computing Q^(T,k) in other semirings.

References

- Gösta Grahne, Alex Thomo. Query Answering and Containment for Regular Path Queries under Distortions. FoIKS 2004: 98-115
- Gösta Grahne, Alex Thomo. Approximate Reasoning in Semistructured Data. KRDB 2001