Come and hear

Introduction to Implicit Modelling

by Brian Wyvill

With a little help from his students
Overview

• Introduction to Implicit Surfaces
• Blending, Warping, CSG
• Some Problems
• The BlobTree
• Blending
• Texturing
• Animation
• Hierarchical Implicit Surfaces
• Building Models
Introduction to Implicit Surfaces

Implicit Definition

\[
\begin{align*}
 f(x,y) > x^2 + y^2 & \Rightarrow r^2 > 1 \\
 \text{e.g. } r > 1 \\
 f)1-1 \Rightarrow 1!, 1!. 2 \pm 1 \text{ inside} \\
 f)1-1 \Rightarrow 2!, 2!. 2? 1 \text{ outside}
\end{align*}
\]

implies search space to find \(x,y \) to satisfy: \(f(x,y) > 1 \)

iso-surface: \(f(x,y) - c > 1 \)

Parametric Definition

\[
\begin{align*}
 x & > r \sin(\alpha) \\
 y & > r \cos(\alpha) \\
 0 \leq \alpha \leq 2\pi
\end{align*}
\]
The Geoff Function

Field Function

\[
F(r) = 1 - \left(\frac{4}{9} \frac{r^6}{R^6} \right) + \left(\frac{17}{9} \frac{r^4}{R^4} \right) - \left(\frac{22}{9} \frac{r^2}{R^2} \right)
\]

Proximity Blending:
Add contributions from generating skeletal elements in the neighbourhood
Blending and The Soft Train

1986

Polygonizer Info.

\[F_{total}(P) = \sum_{i=1}^{n} c_i F_i(r_i) \]
Skeletal Element Examples

Points Lines Polygons
Skeletal Element - Line Skeleton

\[
\frac{\vec{AC}}{\vec{AB}} = \frac{(\vec{AP}, \vec{AB})}{||\vec{AB}||^2}
\]

Torus

Polygon Offset Surface
Calculating The Implicit Value

\[F_{\text{total}}(P) = \sum_{i=1}^{i=n} c_i F_i(r_i) \]

- \(F_{\text{total}}(P) \) is the value of the field at \(P \)
- \(P \) is a point in space
- \(n \) is the number of skeletal elements
- \(c_i \) is a scalar value (+/-)
- \(F_i \) is the blending function
- \(r_i \) is the distance from \(P \) to the nearest point \(Q_i \) on the \(i_{\text{th}} \) element
Polygonization Algorithm
Edge-Surface Intersections

Linear Interpolation
Quick and dirty (see GTR video)

\[
\frac{f(A) - f(V_3)}{f(V_7) - f(V_3)} = \frac{A - V_3}{\text{Side}=1}
\]

\[f(A) = \text{iso-value} = 0.5\]

\[A = \frac{f(A) - f(V_3)}{f(V_7) - f(V_3)}\]

Binary Search - slower and more accurate (termination strategy)

For objects whose derivatives are known:
Newtons Method (Regula Falsi)
Calculating Normals

From the gradient, the normals can be averaged weighted by field.
For black box functions use numerical technique:
Sample the field at \(P \) and at \(P + d \)

\[
\overline{N} = \frac{f(x - \delta) - f(x + \delta)}{2\delta} \quad \frac{f(y - d) - f(y + d)}{2\delta} \quad \frac{f(z - d) - f(z + d)}{2\delta}
\]
Voxel Numbering

Address in table is 8 bits taking one bit from each vertex

Right: vertices with bit 0 set
Top: vertices with bit 1 set
Front: vertices with bit 2 set

<table>
<thead>
<tr>
<th>Vertex</th>
<th>If (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>00000001</td>
</tr>
<tr>
<td>1 01</td>
<td>00000010</td>
</tr>
<tr>
<td>2 010</td>
<td>00000100</td>
</tr>
<tr>
<td>3 011</td>
<td>00001000</td>
</tr>
<tr>
<td>4 100</td>
<td>00010000</td>
</tr>
<tr>
<td>5 101</td>
<td>00100000</td>
</tr>
<tr>
<td>6 110</td>
<td>01000000</td>
</tr>
<tr>
<td>7 111</td>
<td>10000000</td>
</tr>
</tbody>
</table>
Polygon Tables

Table 1

Table 2

No. of Polygons

No. of Edges

Polygon vertex numbers
Hash Table

#define NBITS 5
#define BMASK 037
#define HASH(a,b,c) (((a&BMASK)<<NBITS|b&BMASK)<<NBITS|c&BMASK)
define HSIZE 1<<NBITS*3

To find out if a cell has already been polygonised use the integer coordinates of the cell origin to compute an address in the hash table of cells.

In this case take 5 bits out of each of x,y,z and make a 15 bit address.

Pointers to cells including done flag
The Queue (FIFO)

The Queue is used as temporary storage to identify the neighbors for processing (others have used a stack (LIFO list) although there is some evidence that the queue processes the cubes in a more memory efficient order). The algorithm begins with a seed cube that is marked as visited and placed on the queue. The first cube on the queue is dequeued and all its unvisited neighbors added to the queue. Each cube is processed and if it contains part of the surface output to the second phase of the algorithm. The queue is then processed until empty. The continuation algorithm proceeds as indicated in the pseudo code.

begin
 Set seed cube’s done flag to true
 Add seed cube to the queue.
 while queue is not empty do
 begin
 remove one cube from the queue
 for each face of cube do
 begin if surface intersects face then
 begin select neighbour cube for that face
 if neighbours done flag is not true then
 begin set neighbours done flag to true
 add neighbour to queue
 end
 end
 end
 end
 end
 Pass cube to second stage
 end
 end
end
Reducing Implicit Function Evaluations (IFE)

Measure of Efficiency:

- IFEPT (IFE per Triangle)
- IFEPT can be reduced by pre-sorting skeletal elements to voxels.
- In 2-space:

For an arbitrary probe point \(P \) with skeletal elements polygon \(A \), line \(B \) and point \(C \).

\[
F_{\text{total}}(P) = F_A(P) + F_B(P)
\]
Sampling Problems

- Nothing is known about the surface between the sample points.

- Voxel Grid produces artifacts in animation
Tetrahedral Decomposition

Decomposing a cube into 5 tetrahedra

Decomposing a cube into 6 tetrahedra

Tetrahedra avoid the ambiguity and produces correct meshes. The table is only 16 entries (4 vertices), however many more polygons result. These decompositions introduce diagonals on the cube faces, thus determining the resulting face contours. Consider two faces, although their polarity configurations are the same, the orientation of the diagonal affects the connectivity of the surface vertices. Because this orientation is arbitrarily determined by the decomposition, topological correctness is not provided. In order to maintain topological consistency, the orientation of the five-tetrahedral decomposition must alternate between face-adjacent cubes. This insures that the diagonal introduced on a cube face agrees with that of its neighbor.
Warping

\[F_{\text{total}}(P) = \sum c_i F_i(|P - Q_i|) \]

Warp function w:

\[F_{\text{total}}(P) = \sum c_i F_i(|w(P) - Q_i|) \]
E.g. The Vector Warp

displace the evaluation point

\[r_i = F_i(P) = \text{dist}(w_i(P), Q_i) \]

- \(w_i(P) = P - \frac{v}{||v||}(v \cdot P) \)
- \(w_i(P) \) is the position of \(P \) in warped space

the value returned for \(Q \) is the value of \(P \) in unwarped space (in this case the contour value)
Warping

The bouncing ball example:

Region of Squash

y=y₀

Ground

y=0
Warping

Applying the squash warp to a bear:

Non-linear periodic warp:

Wave simulation as a warp applied over time:
Affine Transformations as Warps

E.g.

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = r^2
\]

\[
F_{\text{total}}(P) = \sum c_i F_i(|\text{rotate}(P) - P_i|)
\]

Ellipsoids defined in the canonical position and then rotated by warping. For efficiency these can be concatenated in the normal way.
Barr Operators

The Barr operators:

Twist Taper Bend

SHAPE MODELLING
Constructive Solid Geometry (CSG)

Primitives are combined using boolean set operations: Union, Intersection, Difference. Each primitive represents a half space, i.e. the set of points defining the half space.

E.g.

\[d(\text{sphere}, \text{cylinder}) \cup (\text{sphere}, i(i(\text{cylinder}, \text{plane1}), \text{plane2}))\]

The cylinder is infinite in extent it is first intersected with two half space planes.
CSG Tree

CSG Implementation

Boolean Expressions are usually represented as a binary tree.
CSG Intersections with Voxels

Object 1:

- In: \(A \) to \(p_1 \) to \(B \)

Object 2:

- Out: \(p_2 \) to \(p_2 \)

DIFF(1,2):

- In: \(p_2 \) to \(p_2 \) to \(p_2 \) to \(p_2 \)
- Out: \(p_2 \) to \(p_2 \)
CSG Intersection Value

Boolean Operations

Union and intersection of primitives, A and B may be respectively defined as a composition of the field values, \(F_A \) and \(F_B \)

\[
F_A \times F_B = \max(F_A, F_B)
\]

\[
F_A \cap F_B = \min(F_A, F_B)
\]

Difference use \(. \min (F_A, F_B) \)

(. in this case inverts inside and outside)
CSG - Min and Max

Union

\[f_{A\cap B}(p_0) = \text{Max}(f_A(p_0), f_B(p_0)) \]

Depending on position of \(p_0 \)

\[f_A(p_1) = \text{Max}(f_A(p_1), f_B(p_1)) \]

\[f_B(p_2) = \text{Max}(f_A(p_2), f_B(p_2)) \]
CSG - Min

Intersection

\[f_{A|B}(p_0) = \text{Min}(f_A(p_0), f_B(p_0)) \]

Depending on position of \(p_0 \)

- \(f_B(p_1) = \text{Min}(f_A(p_1), f_B(p_1)) = 0 \)
- \(f_A(p_2) = \text{Min}(f_A(p_2), f_B(p_2)) = 0 \)

Field = 0

Object A

Object B

P₁

P₀

P₂
CSG - Min

Difference

\[\text{Min}(f_A(p_0), 1 - f_B(p_0)) = 1 - f_{A|B}(p_0) \]

Depending on position of \(p_0 \)

\[\text{Min}(f_A(p_1), 1 - f_B(p_1)) = 0 \]

\[\text{Min}(f_A(p_1), 1 - f_B(p_1)) = f_A(p_1) \]
Polygonization Problems

X is the true intersection point for C_1 and C_2

Segment $P_1 P_2$ is far from x.

Estimate for x s.t. $f_1(x) \approx f_2(x) \approx 0$

We can apply a first order Taylor expansion to the difference: $n_{12} = x - P_{12}$

\[
\begin{align*}
1 &> f_1(x)^* \approx f_1(P_{12}) , \; n_{12}^* \approx f_1(P_{12})^* , \; \|n_{12} - f_1(P_{12})\| \approx 0 \\
1 &> f_2(x)^* \approx f_2(P_{12}) , \; n_{12}^* \approx f_2(P_{12})^* , \; \|n_{12} - f_2(P_{12})\| \approx 0
\end{align*}
\]
Iterating to the Surface

\[\lambda_1 = \frac{-f_1}{(\bigtriangledown f_1, \bigtriangledown f_1)} \]

so

\[n_1 = \frac{-f_1 \bigtriangledown f_1}{(\bigtriangledown f_1, \bigtriangledown f_1)} \]

and similarly

\[n_2 = \frac{-f_2 \bigtriangledown f_2}{(\bigtriangledown f_2, \bigtriangledown f_2)} \]
Adaptive Polygonisation

Diagram showing the process of adaptive polygonisation with points labelled as p_1, p_2, and p_3. The diagram illustrates the steps of polygon approximation, likely focusing on how the algorithm adapts to the distribution of points to create an efficient polygon representation.
CSWheels

Csoft Wheel before and after removal of artifacts
Canmore Coffee Grinder
Ray Traced
Canmore
Coffee
Grinder

by

Kees van Overveld
and
Brian Wyvill
Building the Piano

Parametric Bounding Curve

Cylinders intersected with bounding plane and parametric curve
Model of 9ft. Steinway Concert Grand

Plant by Dr. Prusinkiwicz
American Type 4-4-0
The BlobTree
A BlobTree Example
More BlobTree Nodes

Note the inclusion of the texture node.
Traversing The BlobTree

N - indicates a node in the BlobTree
L (N) - left child R (N) - right child
function F returns the field value for the node N at the point M

function F(N, M)
 1. Primitive: F(M)
 2. Warp: F(L(N), w(M)) (warp is a unary operator)
 3. Blend: F(L(N), M) + F(R(N), M))
 4. Union: max(F(L(N), M), F(R(N), M))
 5. Intersection: min(F(L(N), M), F(R(N), M))
 6. Difference: min(F(L(N), M), -F(R(N), M))
end