
-
Shrinkwrap: An eÆcient adaptive algorithm for

triangulating an iso-surface

C.W.A.M. van Overveld
Department of Mathematics and Computing Science

Eindhoven University of Technology
PO Box 513, 5600 MB Eindhoven, The Netherlands

Email: wsinkvo@win.tue.nl
and

B.Wyvill
Department of Computer Science

University of Calgary
Address: 2500 University Drive N.W.,
Calgary, Alberta,Canada, T2N 1N4

Email: blob@cpsc.ucalgary.ca

Abstract

An algorithm is presented which generates a triangular mesh to approximate an iso-surface.
It starts with a triangulation of a sphere and next applies a series of deformations to
this triangulation to transform it into the required surface. These deformations leave the
topology invariant, so the �nal iso-surface should be homeomorphic with a sphere. The
algorithm is adaptive in the sense that the lengths of the sides of the triangles in the
mesh vary with the local curvature of the underlying surface. A quantitative analysis of
the accuracy of the algorithm is given along with an empirical comparison with earlier
algorithms.

keywords:

iso-surfaces, implicit surfaces, polygonization

1 Introduction

For a scalar function V de�ned on IR
3, an iso-surface1 is the collection of points r where

V (r) takes a given value, V (r) = V0. Iso-surfaces play a signi�cant role in computer
visualisation. Various researchers have used skeletal iso-surfaces for modelling: ([?], [?],
[?], [?]) and several of the surfaces that are of interest in pure mathematics, physics, or
chemistry are iso-surfaces ([?]).

In order to visualise iso-surfaces, ray tracing is an often used technique ([?]) which produces
high-quality images. In the case of all but trivial cases, however, it is an arduous task to

1Also called implicit surface

1

compute points on the iso-surface and the computational burden of ray tracing often imposes
restraints on its application.

An alternative to ray tracing is the conversion of the iso-surface into polygon meshes which
are rendered afterwards; an additional advantage of this approach is the availability of
a full 3-D approximation of the iso-surface which allows for fast viewing from arbitrary
directions, as well as the application of post-processing techniques such as mesh reduction
([?]), relaxation ([?]) or free-form deformation ([?]). Also, the resulting polygon mesh is a
closed manifold, so it may be used in B-rep-based CSG operations ([?]).

Most currently existing techniques for the polygonisation of iso-surfaces are based on data
structures that allow spatial indexing: either a voxel-based structure ([?]) or the hash-table
structure of ([?]) may be used.

Some inherent disadvantages of these data structures exist:

First, the data structure comprises a partitioning of the space rather a tesselation of the
surfaces to be polygonalised. Especially in the case of animation (e.g. in the computer
animation "The great train rubbery", [?]), this is likely to cause geometric artifacts that
are �xed with respect to space, thus moving in an incoherent way over every moving surface.

Second, there is an apparent mismatch between the number of triangles that is generated
by these algorithms and the complexity of the surface that is approximated: even relatively
smooth and
at segments of an iso-surface usually result in large amounts of facets. Bloo-
mental ([?]) uses an adaptive version of the spatial indexing data structures, an octree in
order to reduce the amount of polygons produced in tesselating an iso-surface. This indeed
reduces the amount of polygons generated, but full advantage of large cells can only be taken
if the
at regions of the surface happen to fall entirely within the appropriate octants. The
same observation applies to the approach to adaptive tesselation using the geometry of a
tetrahedron rather than a cubical structure.

Third, in earlier approaches using space partitioning with packed cubes, a value is sampled at
each cube vertex and a check is made to see if the vertex is inside or outside the surface ([?]).
A table determines the polygons which are used to replace each cube. Unfortunately this
method has various ambiguous cases where there are alternative con�gurations for certain
in-out combinations. Ning and Bloomenthal ([?]) explore this problem and point out tht
each cube may be subdivided in 5 or 6 tetrahedra which may be replaced unambiguously by
triangles. However, such an algorithm produces many unnecessary triangles. The algorithm
presented in this paper does not su�er from such ambiguities.

In this paper, a di�erent approach to the tesselation of a class of iso-surfaces is taken. This
class is de�ned in ??. The proposed approach is adaptive to the local behavior of the surface
rather than being imposed by an octtree with a priori de�ned cutting planes; this causes
the tesselation to move along with the surface in the case of (smooth) animations. Finally,
as a side e�ect of the algorithm we propose, a coordinate system can easily be introduced
on the surface which can be useful e.g. for applying surface texturing.

In section ?? the intuition behind the algorithm is sketched, and the algorithm proper is
presented. It makes use of the notion of "acceptable edge", and this will be discussed in a
more quantitative manner in relation to the accuracy of the algorithm in section ??. The

2

results are summarised in section ??.

2 An algorithm to arrive at an adaptive triangulation for an

iso-surface

First we de�ne the class of iso-surfaces for which our algorithm should produce triangu-
lations. Next the algorithm, together with an intuitive motivation are given, and some
aspects are discussed in further detail .

2.1 The de�nition of the iso-surface

An iso-surface is the collection of points r in 3-D space such that a given function V (r) = V0.
We consider the class of functions V where V (r) =

P
i

�i
jr�Rij

. The summation over i
indicates that the function is composed of a number of components with relative strength
(weight) �i. Components can be thought to be generated by di�erent types of geometric
primitives: points, line segments or convex polygons.

If a component is generated by a point, then Ri is the location of this point, and the set
�i

jr�Rij
= V0 designates a sphere with radius �i=V0 round Ri.

The element can also be a line segment, say ab. In that case Ri depends on r; Ri is the
projection of r onto ab and the set �i

jr�Rij
= V0 designates a cylinder with hemi-spherical

caps with radius �i=V0 and ab as the axis.

Similarly, elements can be triangles or other convex polygons in which case a projection of
r onto that polygon has to take place in order to obtain Ri. In these cases the designated
surface is an o�set surface of the original polygon with cylindrically rounded edges. Another
way to envisage the designated surface is as the Minkowsky sum of a sphere with radius
�i=V0 and the geometric object (point, line segment or convex polygon).

The collection of points, line segments and convex polygons that de�ne V (r) is called the
skeleton; each geometric object in the skeleton is called a skeletal element ([?]).

The addition of the several components results in an iso-surface which is a smoothly blended
union of the several iso-surfaces associated with the individual skeleton elements.

2.2 Intuitive introduction of the shrinkwrap algorithm

The basic idea that underlies the algorithm is that the iso-surface is to be sampled with
suÆcient density in order to capture all shape detail; further, that these samples are con-
nected by edges to form a triangular mesh. In voxel-based methods, such edges result from
intersecting the surface with voxel boundaries, and hence their directions all lay in one of
three orthogonal planes (the XY, YZ or ZX planes of some world coordinate system). These
directions have no apparent relations with the iso-surface, and therefore many unnecessarily
short edges, and consequently, small triangles, result. In the algorithm proposed here, the

3

edges should adjust themselves to the shape of the surface. This means that e.g. in a cylin-
drical part of the surface, there should be relatively long edges directed more or less along
the axis of the cylinder and relatively short edges in directions perpendicular to the axis.
This allows for an adaptive triangulation. In order to let edges gradually adjust themselves
to the shape of the surface, we develop an iterative approach where the surface develops
in several steps from a sphere to the �nal shape. Indeed, the original shape (a sphere) has
uniform curvature, and hence adaptivity plays no role there; the triangulation of a sphere
in order to achieve an initial estimate for the mesh topology is simple. There are two nat-
ural ways to have an iso-surface develop itself from a sphere: One method operates by �rst
collapsing the entire skeleton into a point and gradually expanding back ("in
ating") to
the desired skeleton geometry. The second method ("shrinking"), which allows a slightly
simpler mathematical analysis, and which will be chosen therefore for our algorithm, is
based on the following observation.

Consider color plate 1. It depicts a 2-dimensional cross section through a distribution of
some point skeleton elements; colors indicate the function value V (r) in a point. The iso-
contour we are interested in is at the boundary between the yellow and the magenta regions.
We observe that iso-surfaces

fr 2 IR
3j
X
i

�i
jr �Rij = V0g

with V0 < 1 have a shape which is less involved, whereas iso-surfaces with V0 > 1 are more
involved. An extreme case of the �rst example is V0 = 0, which produces a sphere with an
in�nitely large radius.

So an algorithm could start by setting V0 to a value close to 0, and providing a triangulation
for the resulting sphere. This triangulation should consist of approximately equilateral
triangles, since the curvature is the same anywhere.

Next the value of V0 should be increased, in a number of steps, and with each step the
surface shrinks a bit towards its �nal shape and size. With every shrink step, the vertices
of the triangulation should move towards the new surface. This is discussed in section
??. Also, in order to meet with accuracy requirements, to be discussed in ??, it might be
necessary to split edges and triangles. But we note that edges and triangles are only split
when necessary, so there should be fewer unnecessarily small triangles at the end of the
porcess than with voxel-based methods.

Of course, this gradually shrinking of the triangulation will only work as long as the topo-
logical structure of the surface stays equivalent (homeomorphic) to the sphere that we start
with. The issue of topological changes during the shrink process has been studied in ([?])
and will be published elsewhere ([?]). However to make this paper self-contained, we give
a coarse outline of the proposed technique to deal with topological changes (ruptures and
holes) in Appendix B (topological changes).

4

2.3 getting the vertices onto the surface

Using the stepwise approach, and assuming the di�erence in iso-values V0 from one step
to the next suÆciently small2, we will use a Newton-Raphson method to displace vertices.
So we make use of a �rst order3 Taylor expansion to compute a �rst estimate for the
new location of a vertex when increasing V0 with an amount �V to V0 +�V , and, when
necessary, iterate. Assume r is on the V = V0 surface: V (r) = V0. Next we look for a new
location, r + Æ, such that

V (r + Æ) = V0 +�V:

Taylor expansion round Æ = 0 gives:

V (r + Æ) = V (r) + (Æ � rV (r)) +O(jÆj2) = V0 +�V;

or

�V � (Æ � rV (r)):

Of course, this does not tell us in which direction the step Æ should be taken. A reasonable
choice seems to be to set

Æ = �rV (r)

which gives

� =
�V

(rV (r) � rV (r)) :

So the new location is

r +
�VrV (r)

(rV (r) � rV (r)) (1)

2.4 The shrinkwrap algorithm

We are now able to write down the total shrinkwrap algorithm. Vertices are de�ned as
tuples (r;E; V; d) 2 IR

3 � IR
3 � IR � IR

3; the r-attribute is the location; E is the gradient
rV (r); V is the value of the function V (r), and d is the displacement vector that should
apply to this vertex in order to get it to the surface with next higher iso-value.

Edges contain two references e1 and e2 to the vertices in the extremes, and two references
to the two adjacent triangles. Furthermore, an edge has a boolean n to indicate if it is

2and assuming that no topological changes occur between this step and the next
3See section ?? for a proposal for a more sophisticated approach.

5

non-acceptable (the acceptability of an edge is discussed in section ??; for now it suÆces to
observe that edges should be in some way close to the underlying surface in order to make
quantitative statements about the accuracy of the triangulation; this can be obtained by
splitting edges that are non-acceptable).

The di�erence �V is an entire fraction of V0, say �V = V0=Nsteps, and for V0 the value
V0 = 1 will be used. When using this convention, the interpretation of the value �i is simply
"the radius of the o�set surface if component i was the only one skeleton element".

The issue of the number of steps Nsteps in relation to the robustness of the algorithm is
discussed in section ??.

Initially, the set of vertices consists of the vertices in the initial object (a triangulated sphere
with more or less equilateral triangles); this object is assumed to be suÆciently large to be
outside the entire iso-surface even for iso-value V0 = 1=Nsteps. All vertices v have v:V = 0;
v:E is pointing radially outwards, and v:d is proportional to v:E=(v:E � v:E) (as derived in
??).

The global structure of the algorithm (in pseudo-Pascal) reads as follows:

begin

V0:=0;

while V0 < 1.0 do

begin

V0:=V0+DeltaV;

S1;

{ all vertices are on the surface;

for every vertex v we

have v.V=V(v.r)

v.E=grad V(v.r)

v.d=(V0-v.V)*v.E/(v.E,v.E)}

S2;

{...and all edges are acceptable}

end;

{ all vertices are on the surface;

all edges are acceptable,

and V0=1.0 }

end;

The statement S1 reads:

for all vertices v do

repeat

v.r:=v.r+v.d;

v.V:=V(v.r);

v.E:=grad V(v.r);

v.d:=(V0-v.V)*v.E/(v.E,v.E);

until |v.d|< Epsilon;

6

The statement S2 reads:

unlabel all triangles;

for all edges c do

begin

c.n:="c is non-acceptable";

{ Use the analysis of

section 3.2 and 3.3 to decide

acceptability.}

end;

while edges are unacceptable do

begin

for all edges c with c.n=true do

begin

create a new vertex w for edge

c by splitting the edge;

move w to the surface similar as

in S1;

label the two triangles

adjacent to e; create two

new edges for c's

fragments, c1 and c2;

c1.n:="c1 is non-acceptable";

c2.n:="c2 is non-acceptable";

remove edge c;

end;

{ all initially unacceptable edges

have been split, but new unacceptable

edges may have been introduced }

for all labeled triangles t do

begin

split triangle t

create 2, 3 or 4 new triangles;

unlabel the new triangles;

create 1, 2 or 3 new edges, ci;

for the new edge(s) ci, do ci.n:="ci

is non-acceptable";

remove triangle t;

end;

{ all triangles bounded by initially

unacceptable edges

have been split,

but new unacceptable edges may

have occurred }

end;

{ end of the while loop; all

7

edges are accpetable}

In the next two sections we discuss how to split edges and how to split triangles.

2.5 How to split edges

We have not de�ned yet what an acceptable edge is. For now it suÆces to state that an
acceptable edge should be short enough so that the surface cannot bend away too much
between the two extremes of the edge. Conversely, an unacceptable edge is an edge which is
too long. So we see that the remedy to an unacceptable edge is to split it, and to make sure
that the new midpoint is again on the iso-surface. A naive way to do so is depicted in the
left column of �gure 1 (�gs. 1a-1d). The original edge is A�B1 in �g. 1a; M1 = (A+B1)=2.

The array of dotted curves indicate the direction of the gradient of the function V (r) in
the neighbourhood of the iso-surface; the thick curve represents the iso-surface proper. If
we move the point M1 in accordance with the local gradient, we arrive at M 0

1, as indicated
by the dash-dotted arrow. Note that although M 0

1 will be close to the surface, since we
only use a linear approximation for V = V (r), it will not lie on the surface in general. In
order to get it closer to the surface, we have to iterate as in statement S1 above. Now M 0

1

will be a new vertex. The edge M 0
1 � B1 is very likely acceptable, but it may be much

shorter than needed. On the other hand, A�M 0
1 is probably still unacceptable. As shown

in �g. 1b, we therefore have to repeat the process on edge A � B2 (B2 is the M 0
1 from

the previous phase), which yields M 0
2. As a result, we end up with a series of unnecessary

short edges, as depicted in �g. 1d. The main cause for this unfortunate behaviour is that
we use information about the geometry of the function V (r) and its gradients in the points
M1, M2, M3,, which are possibly far from the surface. Evaluating the gradients in these
points may yield misleading information on the geometry of the iso-surface, causing a slow
convergence and many unnecessary short edges.

A more eÆcient splitting strategy therefore should make use of reliable information only,
that is information in points that are already on the surface. In �g. 1e, the same con-
�guration is shown as in fg. 1a. The dashed thick curve is a curve which passes through
the extremes A and B and is perpendicular to the normal vectors nA and nB, respectively.
Moreover, it is the smoothest curve with these properties; Appendix A contains a derivation
of an analytical expression for this curve. This curve serves to approximate a curve that
lies in the iso-surface V (r) = V0 through A and B, i.e. the thick solid curve in the �gure.
Based on the dashed thick curve, we propose point M , i.e. its parametric midpoint as a
next point to evaluate the function's gradient. Point M in �g. 1e is likely to be closer to the
iso-surface than M1 in �g. 1a, so the gradient computed inM is likely to be more adequate
to get acceptable edges than the gradient in M1. In this case, M � B already might be
acceptable (the edge C � B in �g. 1f); A�M (the edge A� C in �g. 1f) might need one
more subdivision as depicted in �g. 1f.

8

2.6 How to split triangles

In case one or more edges are unacceptable, they have to be split. Fig. 2 shows a splitting
scheme which illustrates how a triangle can be subdivided into smaller triangles. In the
top row one of the edges is subdivided; the bottom row shows the case of three subdivided
edges. In the case of two subdivided edges, two possible schemes exist; in case jMAC�Bj <
jMBC �Aj we choose the �rst alternative; otherwise we choose the second one.

3 Robustness and accuracy

In order to make quantitative statements about the behaviour of the shrinkwrap algorithm,
we have to address several issues:

� a. what assumptions have to be made about the iso-surface V (r) = V0;

� b. based on the assumptions of (a), how can we assure that the shrinkwrap process
captures all large-scale structure of the developing iso-surface, in other words how
can we prevent a situation like �gure 3 happening (this regards the robustness of the
algorithm);

� c. assuming we can guarantee robustness with respect to (b), how can we enforce
bounds on the di�erence between the triangulation and the underlying surface (this
regards the accuracy of the algorithm);

� d. what is the minimal value for Nsteps;

These items will be discussed in the subsequent sub-sections.

3.1 Requirements of the iso-surface

The shrinkwrap algorithm constructs a discrete model of a continuous object by means of
sampling. This means that the sampling density should be suÆciently high in order to
capture all shape detail of the surface. Since in shrinkwrap the samples are vertices of a
piecewise planar mesh, all curved regions of the surface require samples to be suÆciently
close together. If the local curvature radius of the surface is known to be nowhere smaller
than a given value �, then we can de�ne a sample density (that is, the maximal radius
of a sphere round any sample such that no other sample lies within that sphere) that is
guaranteed suÆcient to capture all surface detail.

So we assume that for every value of V0;k that is to be used as an iso-value in the k-th step
of shrinkwrap, a value of �k is available such that the radius of curvature of the surface
V (r) = V0;k is nowhere less than �k.

The value of the local curvature in a point r, V (r) = V0;k can be computed using standard
calculus, by �tting a quadratic polygonomial Vquad(r) = (r:x; r:y; r:z; 1)A(R:x; r:y; r:z; 1)T

with suitable coeÆcient matrix A which approximates V (r) in the neighbourhood of r,

9

and deducing the curvature of this quadric using the coeÆcients in A. However, for an
arbitrary iso-surface V (r) = V0;k it is in general not possible to compute the globally
smallest curvature radius analytically. Exhaustively sampling the space in the vicinity of
the surface to estimate this curvature would be computationally prohibitive. Instead, the
values of �k should be provided beforehand by the user. The requirement that the values
�k be known beforehand seems to be impractically restrictive. However, three observations
apply.

� First, this requirement is not unique for shrinkwrap. The correctness of all purely
point-sampling-based methods for visualising iso-surfaces, such as ray tracing, uni-
form voxel-space algorithms and occtree- or tetrahedron-based algorithms, relies on
the assumption that the curvature radius of the surface is bounded by a given con-
stant. More sophisticated sampling techniques, such as interval artihmetic and aÆne
arithmetic may provide useful here, but these techniques apply in the context of
shrinkwrap as well.

� For a function V (r) as de�ned in ?? that consists of one single component, the �k;i for
that component i can be straightforwardly given. Indeed, since the iso-surface is then
an o�set surface4 with radius �i=V0;k de�ned on the skeleton element, �k;i = �i=V0;k.
Superposition of several elements (all with positive �i) usually causes the minimal
curvature radius to become larger, and in these cases �k = MIN(�k;0; �k;1; �k;2; � � �)
is appropriate. Care should be taken, however for con�gurations such as depicted
in �gure 4 where the value for �k for the higher values V0;k should be taken smaller.
Finally, notice that the user should only be concerned about the value �k for the value
of V0;k = 1 for the �nal step. For an earlier step k0, we can set �k0 =

�kV0;k
V0;k0

.

� In case the curvature radius of the surface should be locally smaller than the value for
�k provided by the user, then this only deteriorates the quality of the approximation
in the vicinity of this region with high curvature: the rest of the surface (with suÆcient
large curvature radius) is not a�ected.

3.2 Capturing large-scale structure

Assume that the iso-surface has nowhere a smaller curvature radius than �k. Consider a
triangle ABC of adjacent samples A, B, and C that are all on the surface. Let the gradients
in these points be nA, nB , nC ; they are normalised such that jnAj = jnBj = jnC j = 1.
Consider the points a = A� �knA, b = B � �knB and c = C � �knC (see �gure 5). These
points will be called the adjoint points of A, B, and C, respectively. Because the surface
has nowhere a curvature radius less than �k, it stays outside ("above" in �gure 5) the
three spheres with radius �k centered around a, b and c. Now if in the triangle abc the
circle sectors with radius �k and centres a, b and c cover triangle abc (that is, no point of
the triangle abc falls outside all three circle sectors), the iso-surface cannot penetrate the
triangle abc. Indeed: in order to penetrate the triangle abc there should be a region in abc

4in other words: since it is the Minkowski sum of the skeletal element and a sphere with radius �i=V0;k,
it follows that for convex skeletal elements, the curvature radius is nowhere smaller than the radius of this

sphere.

10

which is outside the spheres with radius �k and centres a, b, and c as is illustrated for a
2-D case in �gure 5b. Now since the iso-surface cannot penetrate triangle abc, it can not
move too far from triangle ABC, because ABC and abc cannot be too far from each other.
Hence the portion of the iso-surface that is approximated by ABC is bounded from below
by triangle abc. More precisely: since no point of ABC is further away than �k from triangle
abc, the entire triangle ABC can be nowhere further away than �k from the iso-surface. In
other words: there cannot be a portion of the surface that "escapes" between the samples
A, B and C as in �gure 3.

Now a suÆcient (although in general too restrictive) condition for abc to be covered by
three circles with radius �k round its corners a, b, and c is that ja� bj < �k

p
3 and similar

for bc and ca, as follows from the geometry of an equilateral triangle (see �gure 5c).

A similar construction should be made for a triangle a0b0c0 which is on the other side of ABC
so that a0 = A + �knA etc., to make sure the iso-surface cannot "escape" in the upward
direction. So the portion of the iso-surface approximated by ABC is bounded between abc
and a0b0c0.

Thus in order to guarantee that the large-scale structure of the surface is captured, an edge
AB should be suÆciently5 short that

jA� �knA �B + �knB j < �k
p
3: (2)

jA+ �knA �B � �knB j < �k
p
3: (3)

This is the �rst condition (robustness) for acceptability for an edge. This condition should
hold throughout the shrinkwrap process for every iteration k. Notice that we used no
assumptions about the iso-surface except that its curvature is bounded by �k, so these
conditions are valid for all types of skeletal elements.

3.3 Error bounds

In this section we derive a condition for the length of an edge AB, such that no point in
the interior of a triangle ABC is further away than a prede�ned distance ��k, � << 1, from
the iso-surface. Similar as in the previous section, we construct a plane that bounds the
iso-surface from below (and one to bound the surface from above). This time the plane has
to be at distance ��k from ABC. This means that we have to introduce points a", b" and
c" with a" = A�nA��k= sin ÆA where ÆA is the angle between the gradient nA and the plane
through ABC. Similar for b" and c". The triangle a"b"c" is also intersected by the three
spheres, centered round a, b, and c with radius �k, and we have to derive a condition such
that the intersected sectors cover the entire area of a"b"c" in order to enforce the iso-surface
to be close to ABC. Therefore we consider the plane � through A and a, perpendicular to
the plane through ABC. See �gure 6. The point labeled m indicates the intersection of �
with a"b"c" and the sphere round a, and it can be seen that a circular sector with radius

5observe that this condition always can be satis�ed: if we take A and B closer together, as is the case

when splitting edges, nA and nB have to get closer together, too.

11

ja"�mj round a" in a"b"c" falls entirely within the intersecting sector between a"b"c" and
the sphere round a with radius �k. The distance x = ja" �mj can be computed from the
cosine rule in triangle a"ma. We have that

ja"� aj = �k(1� �= sin ÆA) (4)

and

jm� aj = �k; (5)

so

�2
k = x2 + �2

k(1� �= sin ÆA)
2 + x�k(1� �= sin ÆA) cos(ÆA): (6)

This gives for x:

x = �k(
�

sin ÆA
� 1) cos ÆA + �k

p
2� sin ÆA � �2 + cos2 ÆA: (7)

or

x = �k(
�

sin ÆA
� 1) cos ÆA � �k

p
2� sin ÆA � �2 + cos2 ÆA: (8)

By substituting for � = 0 we should �nd that x = 0, so the +-sign option in ?? applies.

We note that the radius of the intersecting sectors is bounded by a number which is de-
pendent of ÆA, and this angle can of course be di�erent from ÆB and ÆC . To facilitate our
further analysis, we will assume that ÆM = MAX(ÆA; ÆB ; ÆC) and derive a safe condition
stating that the iso-surface does not penetrate a"b"c". Notice that replacing ÆA, ÆB , and ÆC
by their maximum means that we should actually compute the ÆM for every triangle before
we can apply the acceptability test.

Then again we have, from the geometry of the equilateral triangle, that ja" � b"j < x
p
3

and similar for b"c" and "c"a" where x follows from ??. A similar argumentation holds for
the plane a000b000c000 where a000 = A+ nA��k= sin ÆA, etc.

So in order to guarantee that the surface is nowhere further away from the triangular mesh
than ��k, an edge AB should be suÆciently6 short that

jA� nA��k= sin ÆA �B + nB��k= sin ÆB j < x
p
3; (9)

jA+ nA��k= sin ÆA �B � nB��k= sin ÆB j < x
p
3; (10)

.

6observe that this condition also always can be satis�ed for the same reasons as in section ??

12

Now have arrived at the second condition for acceptability for an edge (accuracy). This
condition should only hold towards the end of the shrinkwrap process when V0;k approaches
the �nal value of 1. A useful strategy therefore is to decrease � gradually from 1 to the
desired �nal value during iteration. This causes the �rst iterations to take place with
relatively few triangles.

Notice that conditions ?? and ?? are less critical than ?? and ??: failure of ?? or ?? does
not jeopardize the global structure of the triangulation. Therefore, instead of the global
value for �k, we may dare to use a local approximation of �k, which may be di�erent for
each triangle ABC, derived from the angles between nA, nB and nC and the plane through
A, B, and C. In this way, again triangles in relatively
at areas of the surface are allowed to
be larger which results in an even better adaptation. The experiments in the results-section
were made using this optimisation.

3.4 The number of steps

One parameter of the shrinkwrap algorithm has received no attention yet: the choice for
Nsteps. On the one hand, Nsteps should be as small as possible to give a small number
of evaluations and hence an eÆcient algorithm. On the other hand, a large value of �V
may impede the Newton Raphson iteration in statement S1 from converging. Therefore a
possible implementation could be to apply relatively large steps of �V and as soon as a
convergence problem occurs, go back one iteration and reduce �V .

However in practice it works better to take a value of �V slightly smaller than the maximally
allowable value for Newton Raphson convergence: even if convergence occurs, it may happen
that the distribution of small and large triangles is not very well adapted to the curvature
of the surface if the vertices have to move a large distance between each iteration and
the next one (this is e.g. the case with the penguin in table ?? for 3 and 4 iterations).
Moreover, due to edge splitting underway, it is obvious that during the �rst Nsteps� 3 or so
iterations signi�cantly less vertices have to be updated than during the last few iterations.
This means that the amount of processing is very much concentrated in the last 3 or 4
iterations, whatever the number of iterations is. So if N is a minimal value for Nsteps such
that convergence marginally occurs, then N + 2 or N + 3 is a much safer value which only
costs a small amount of additional computing e�ort (this can be seen from table ??). This
issue is discussed further in section ??.

4 Results, future research

The algorithm described has been implemented. In color plate 2, its qualitative behaviour is
depicted: while increasing V0 in 9 steps from 0.1 to 1.0, we see a penguin emerge from what
starts of as a feature-less large spherical shape. Note how gradually the details become
visible, �rst the most protruded ones (for this reason we equipped the penguin with an
oversized bill), later on the more subtle ones. Color plate 3 shows the �nal object together
with the triangle mesh. Here, the adaptiveness of the algorithm is clearly visible, e.g. the
bill consists of mostly very slender triangles, whereas in the spherical part of the head we

13

�nd more obtuse ones. Also, in the concave regions, having a relatively high curvature, the
triangle mesh has a much higher resolution than elsewhere.

Some of the quantitative features are presented in the graph in �gure 7. Here, we see the
increase of the number of triangles while iterating the penguin. It follows that the majority
of the triangles is only created towards the �nal (few) iterations. As a result, the eÆciency
of the algorithm is not as bad as one might expect from an iterative approach: the work of
the �rst few iterations is very small compared to the work in the �nal phase of the process.
For instance, when we apply 7 steps, the total number of function evaluations called is
7640, whereas the �nal version contains 2152 triangles; that is 3.55 function evaluation per
triangle. If we apply smaller steps for V0, the result is of course worse; e.g. with 10 iterations
we have 9389 function evaluations and 2118 triangles in the �nal object, so 4.43 overhead.

So, as can be seen in table 1, the eÆciency of the method is not extremely sensitive to the
number of iterations we use.

4.1 Comparison with earlier algorithms

In this version of the algorithm we do not attempt to reproduce the precise shapes as
produced by other algorithms; to provide a full comparison, the faithfulness to the surface
of the polygonal approximation would have to be measured. This could be done by taking
samples for each triangle and computing the error from the true surface. The sum of such
an error could be averaged over all the triangles. Polygonisation algorithms for iso-surfaces
can be divided into two classes, adaptive and non-adaptive. For a given number of triangles
an adaptive algorithm should have a smaller error than for a non-adaptive algorithm.

In order to �nd the surface, polygonisation algorithms such as the one described in this
paper, must evaluate a function V (r) for a number of points in space. An exhaustive
comparitive analysis is beyond the scope of this paper, however it is likely (and certainly
true for the algorithms we have tested) that the performance of such algorithms depends
on the number of such function evaluations (FE's), averaged over the number of triangles.
(FE per triangle - FEPT).

Shrinkwrap was compared with an earlier algorithm as indicated below:

� method 1: Shrinkwrap, as described in this document.

� method 2: Soft Objects, based on ([?]).

The voxel-based algorithm that we consider for comparison performs some processing to
�nd a point of the surface by intersecting the surface with one of the voxel boundaries. The
point of intersection is then calculated. Since this can be done by a variety of techniques
(e.g. regula falsi, binary search) this part of the algorithm should be the same for each,
thus it is not counted in the total number of FEPTs. Another area where the algorithms
di�er is the method chosen for computing the normal. In the algorithm of this paper the
normal is computed as a by-product of the search technique. The technique from ([?]) takes
components computed from V (X + h) � V (X � h) where h is 0:01 the length of a voxel

14

Algorithm Sphere 2 Spheres 3 lines penguin

Shrinkwrap 8.03 8.56 3.22 2.03 (Nsteps = 3; incomplete triangulation)
Shrinkwrap 2.46 (Nsteps = 4; incomplete triangulation)
Shrinkwrap 2.91 (Nsteps = 5; triangulation OK)
Shrinkwrap 3.25 (Nsteps = 6; triangulation OK)
Shrinkwrap 3.55 (Nsteps = 7; triangulation OK)
Shrinkwrap 3.83 (Nsteps = 8; triangulation OK)
Shrinkwrap 4.14 (Nsteps = 9; triangulation OK)
Shrinkwrap 4.43 (Nsteps = 10; triangulation OK)
Shrinkwrap 5.78 (Nsteps = 15; triangulation OK)
Soft Objects 12.56 12.58 12.61 12.59

Table 1: Comparison of two polygonisation algorithms in terms of FEPTS

side. In fact algorithm 2 without computing normals has an FEPT count about 20 times
less than with the normal calculation.

Three typical modelling situations were chosen (a single sphere, where there is no adaptivity;
2 spheres that blend together: and three blended line segments) to be tested along with a
more complicated model, the penguin. Although the primitives produce similar models for
both methods, the penguin surface depends on the style of blending chosen as well as the
precise position for the �nal iso-surface. Thus �gures for the penguin can only be thought
of as a guide.

The data was used by both algorithms and the following results computed and shown in
Table ??. The numbers are FEPTS (Function Evaluations Per Triangle).

When the penguin is triangulated with 3 or 4 iterations, we �nd that the bill is not com-
pletely triangulated due to convergence failures with the Newton Raphson process. With
5 or more iterations, the triangulation is OK. Notice that the number of FEPTS increases
sublinearly with the number of iterations.

4.2 Future research

Experiments show that the version of the shrinkwrap algorithm as discussed in this paper
seems to be a promising approach to eÆcient adaptive triangulation of a relevant class
of iso-surfaces. It is therefore interesting to look at some obvious improvements of the
algorithm.

� the skeleton elements need not necessarily be limited to points, line segments and
convex polygons. In fact, any geometric primitive that allows a di�erentiable distance
function is appropriate.

� the method to move vertices onto the surface for every next value of V0;k uses a
Newton-Raphson algorithm. This algorithm computes the distance a vertex should

15

move along a straight line (namely the gradient direction). If the distance between
the iso-surface for k and k + 1 is too large (that is, if �V is too large), this straight
line can be a bad approximation of the curved �eld line that the vertex should ideally
follow. Therefore, the steps �V cannot be too large, and hence Nsteps cannot be too
small. The algorithm therefore could be made much more eÆcient if the algorithm to
move the vertices were not based on a �rst order Taylor expansion, but on a second
order expansion. In that case, the curvature of the ideal trajectory of the moving
vertex could be approximated better, and a vertex could move over a longer distance
in one (curved) step. We are currently investigating this option.

� the criterion for acceptability of an edge is too strict. Indeed, irrespective of the local
curvature, an edge (and hence, a triangle) is split as soon as one of the accuracy
conditions is violated. It is, however, only essential that the surface is checked in
samples that are not further away than the indicated distances; it is not necessary
that the triangles are split if samples in the interior of such a triangle would indicate
that the iso-surface is suÆciently close to the plane of the triangle. So a further
reduction of the number of triangles in
at regions could be obtained by a slightly
more sophisticated splitting criterion.

� along the same line, we can even a�ord to leave out sampling the surface with a
sample density in accordance with the criteria ?? and ?? if a test could indicate that
the entire region of an iso-surface within a triangle is suÆciently close to the plane of
that triangle. Such a test should employ interval arithmetic or aÆne arithmetic on
the bounding box of the triangle where a coordinate transformation should be applied
such that the plane of the triangle becomes parallel to one of the coordinate planes.
Then a very thin bounding box results, and the range of values of V (r) on this box
could be established with very few evaluations only.

� as indicated in Appendix B, the restriction of iso-surfaces that are homeomorphic to
sphere can be easily lifted.

5 Conclusion

We have presented a new algorithm for polygonizing an iso-surface, de�ned by a set of
skeletal elements. Whereas earlier approaches depend on a grid structure, the approach
presented here is adaptive in the sense that the tiling is at arbitrary locations on the
surface. The algorithm produces triangles of di�erent sizes and shapes according to the local
curvature of the surface o�ering an approximation with a known accuracy. The advantages
of this technique are summarized as follows:

� Adaptive mesh

� No artifacts due to motion in �xed grid

� Vertex Normals are calculated essentially for 'free'

� Faster (fewer FEPTs) than previous adaptive algorithms.

16

A disadvantage of this algorithm, is that it can only cope with a single closed surface without
holes. However, since the submission of the �rst version of this paper, we have devised an
extension of this approach to solve this problem; this is outlined in Appendix B.

6 Acknowledgements

We would like to thank Jules Bloomenthal and Geo� Wyvill for their continuing interest and
enthusiasm for this research. Also, the other members of the U. of Calgary graphics lab. (the
GraphicsJungle) who have helped with the ongoing research on iso-surfaces. This research
was partly sponsored by the Natural research and Engineering Council of Canada. One
of the authors (CWAMvO) thanks the Department Board of Mathematics and Computing
Science of EUT for giving him the opportunity of his sabbatical leave.

7 Appendix A: a smooth interpolation curve

The method for splitting edges as explained in ?? is based on �nding a curve that should
lay close to the iso-surface and that passes through two given points, say p0 and p3 (the
A and B from section ??). Since it should be close to the iso-surface, it should also be
perpendicular to the normals in these two points, say n0 and n3. We approximate this
curve by a cubic Bezier curve, and we demand it to be optimally smooth. Call this curve
p(t), 0 < t � 1, with control points p0, p1, p2, and p3. Thus the extremes of the edge are
p0 and p3; the normal vectors in these points are n0 and n3. The unknown variables are p1
and p2. The boundary conditions of perpendicularity to the normal vectors are expressed
by

n0 � (p1 � p0) = 0 (11)

and

n3 � (p2 � p3) = 0: (12)

We solve this problem by minimising the average curvature of the curve subject to ?? and
?? by introducing the Lagrange multipliers �0 and �3. Then the minimisation problem is
expressed as "minimise �(p1; p2)", where

� =

Z 1

0

j �p(t) j2 dt+ �0(n0 � p1 � p0) + �3(n3 � p2 � p3) (13)

subject to ?? and ??.

Let us express the curve p(t) into the cubic Bernstein polynomials (they provide a complete
base for cubic polynomials, and cubic polynomials are known to minimise the average
curvature as expressed in the integral):

p(t) = p0(1� t)3 + 3p1t(1� t)2 + 3p2t
2(1� t) + p3t

3

17

This yields for the integral (apart from a multiplicative factor)

Z 1

0

j �p(t) j2 dt =

1=3 j p3 � 3p2 + 3p1 � p0 j2 + j p2 � 2p1 + p0 j2 +(p3 � 3p2 + 3p1 � p0; p2 � 2p1 + p0):

We proceed by demanding @�=@p1 and @�=@p2 to vanish; this gives

p1 =
2p0 + p3 � 2�0n0 � �3n3

3
(14)

p2 =
2p3 + p0 � 2�3n3 � �0n0

3
(15)

To establish the values of the multipliers, (??) is substituted back, yielding the following
set of linear equations to be solved:

2�0(n0; n0) + �3(n0; n3) = (n0; p3 � p0)

�0(n3; n0) + 2�3(n3; n3) = �(n3; p3 � p0)

Observe that, in the case of normalised normal vectors, the coeÆcient matrix of this set
takes the form

2 cos�

cos� 2

!
;

where � is the angle between the two normal vectors. This matrix is always non-singular.

Finally, the desired midpoint M is found by taking p(t = 1=2), so

M =
p0 + 3p1 + 3p2 + p3

8
:

8 Appendix B: topological changes

The shrinkwrap algorithm as described in this paper assumes that the surface for V0;k = 1
is homeomorphic to a sphere. It is not a priori possible to deduce from a given skeleton
if this will be the case; moreover, the applicability of shrinkwrap would be signi�cantly
improved if it could deal with arbitrary topological con�gurations. Since the submission of
the �rst version of this paper, an extension to shrinkwrap has been developed which allows
such generalisation. It will be submitted for publication elsewhere; however we give a coarse
outline of the proposed method here to make this paper self contained. The modi�cations
to shrinkwrap are as follows:

18

� a topological change occurs in a point (a saddle point) where rV (r) = 0. So in
principle, for every vertex r a search could be done to a nearby point rsaddle with
rV (rsaddle) = 0 using also a Newton Raphson iteration. Of course, it is useless to
actually perform such an iteration for every vertex, and a condition is derived which
can be used for a fast check to test if a saddle point is near a given vertex;

� once a saddle point is found, its function value is computed: Vsaddle = V (rsaddle);

� this value Vsaddle is inserted in the list of iso-values that is used for the shrink wrap
iterations. Most often, Vsaddle will be the next higher iso-value adjacent to the current
one;

� when the vertices are displaced to arrive on the surface with iso-value Vsaddle, make
sure that a vertex lands in the saddle point;

� in this saddle point, distinguish between a rupture and a hole. This distinction can be
made on the basis of a local approximation of the function near rsaddle as a quadratic
polynomial in x, y, and z. The coeÆcients of this polynomial can be inspected in
order to make the required distinction;

� disconnect the edges to the vertex rsaddle and re-connect them in order to form the
right topological con�guration;

� proceed with the iteration either to the next V0;k or the next Vsaddle for an optional
next saddle point.

19

figure 1.
Left:
constructing new vertices by
repeated subdivision of an
unacceptable edge and moving
the new vertex according to
the field’s gradient may cause
slow convergence and
many spurious small chords.

Right:
constructing a new vertex,
defined as the midpoint of the
smoothest curve passing
through A and B, perpendicular
to the field’s gradients in
A and B. Similar for A and C.

A

A

A

B

B

B

B

B
B

M

M

M

1
1

1

1

2

2

2
3

3

A B

A B

A B

B
B

M

1

2
34

B4

M

M’

M’

M’

1

2

3

M’

C

n n
A B

a.1st subdivision

b.2nd subdivision

c.3rd subdivision

d.4th subdivision

e.subdivision using curve AMB

f. subdivision using curve AMC

M

M’

nC

20

A
A

A A A

A A

B B

B B B

B B

C

C

C C

C

C

C

M
AC

M
AC

M
AC

M
AC

M
AC

M
AC

M
AC

MBC
MBC

MBC

MBC
MBC

OR

MAB

MAB

figure 2. The triangle subdivision scheme.

21

can occur, even if the separate components have large curvature
radii.

Fig. 4: in the vicinity of saddle points, small curvature radii

/ sinδAk
βε

βk

βk

a"

A

x

Aδsin/(1−ε)

a

/ sinδAk
βε

kβ

m

b

c

n

abc

n
A

B

C

a b"

a"

C
c"

B

A
δA

Fig 6: A similar construction as in fig. 5 applies

to derive accuracy conditions. Right: the

configuration a-a"-A-m
 if the indicated circular sectors fully cover

Robustness problem: due to too coarse sampling,

the surface ’escapes’ between the mesh triangles.

5.: The iso-surface cannot ’escape’ through triangle

n

A C

B

b

c

n
n

n
A

B

C

a

22

2 4 6 8 10 1412

number of iterations

4 iterations
5 iterations

6 iterations

15 iterations

total number
of function
evaluations X 1000

ig. 7: the number of generated triangles as a function of the
umber of iterations.

ight: the total number of function evaluations
creases less than linear with the total number
 iterations used.

total number of iterations

5

10

5 10 15

mber
triangles

23

