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Abstract
Texture mapping is an essential component for creating 3D models and is widely used in both the game and the
movie industries. Creating texture maps has always been a complex task and existing methods carefully balance
flexibility with ease of use. One difficulty in using texturing is the repeated placement of individual textures over
larger areas. In this paper we propose a method which uses decals to place images onto the model. Our method
allows the decals to compete for space and to deform as they are being pushed by other decals. A spherical
field function is used to determine the position and the size of each decal and the deformation applied to fit the
decals. The decals may span multiple objects with heterogeneous representations. Our method does not require
an explicit parameterization of the model. As such, varieties of patterns including repeated patterns like rocks,
tiles, and scales can be mapped. We have implemented the method using the GPU where placement, size, and
orientation of thousands of decals are manipulated in real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computer Graphics—
Three-Dimensional Graphics and Realism. Color, shading, shadowing, and texture

1. Introduction

For many computer graphics applications, such as interac-
tive computer games and animation, the 3D objects appear-
ance is defined by 2D textures [?, ?, ?]. Most texturing tools
require the determination of an appropriate parameterization

and atlas for polygonal or implicit surfaces where no natural
parameterization exists [?, ?, ?, ?]. Creating such a param-
eterization by hand is very time consuming and automatic
creation suffers restrictions or compromises the quality of
the result, especially in the presence of large distortions. As
a consequence, the editing and the placement of textures on
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arbitrary surfaces remains a tedious task requiring artists to
spend much time to achieve a desired result.

While it is difficult to limit distortions in the parametrization
for large textures, it becomes easier when they are composed
of repetitive patterns such as dragon scales or giraffe freckles
(see Teaser). Large textures are then decomposed in a set
of small tiles, often called decals [?], that are individually
positioned and mapped with a local parametrization on the
surface. These small surface elements can be parametrized
with very low distortions using exponential maps [?].

However, to be practical for the user, a very large number of
decals must be positioned and displaced interactively, which
is not feasible with current techniques. A second useful func-
tionality would be the ability to define textures across mul-
tiple objects which may in addition use different represen-
tations (such as meshes, point-set-surfaces and implicit sur-
faces).

To this end, we propose the use of a decaling interface whose
models are free of global parametrization, as suggested by
Schmidt et al. [?]. However, our method for defining a local
parameterization is not bound to the underlying geometry,
typically meshes or parametric representations.

We use a particle system to automatically place cellular pat-
tern elements (decals) over the surface of one or more ob-
jects. Subsequently, real-time interaction is possible to fine
tune each element’s deformation and placement. Fast local
parametrization is obtained under the assumption that for
small decals, fine distortion control is not required. The use
of the Euclidean distance between a surface point and the
associated decal center (i.e. the particle) is then sufficient,
thus avoiding the far more expensive computation of the
geodesic distance along the surface. This statement is val-
idated by several examples illustrated in the Teaser and in
Figures ?? and ??. Very fast parametrization computation is
then performed via the use of spherical field functions, cen-
tered on particles. This has also the advantage of enabling
the application of field deformations and implicit composi-
tion operators in order to control the shape of decals and the
way they cover the surface area. These field deformations
allow the automatic adjustment of the textures when decals
overlap such as the eyes of the dragon and the giraffe in the
teaser, or when they compete for space as is the case for the
dragon scales and the giraffe freckles. This is especially im-
portant in real-time interactive graphics applications, where
decals representing pattern elements are mostly required to
be similar but not identical, as shown in our examples.

The main contributions of our method are:

• The very fast computation of local parameterizations
based on the Euclidean distance over a model. This local
parametrization can be computed at arbitrary resolution
and is independent of the underlying geometric represen-
tation.
• The technique is simple enough to implement in a pixel

shader, without modifying the graphics pipeline nor lim-
iting the use of other shaders, and it allows thousands of
decals to be placed and edited interactively.

• Our decals can compete for space and deform when they
interact with nearby decals.

• Surface connectivity is not required thus a decal can be
placed across multiple objects or across gaps in an object
without changing the object representation.

This paper is organized as follow. After presenting the re-
lated works on texturing with decals (section ??), we ex-
plain how decals can be distributed over surfaces and their
position edited (section ??). We then present our local
parametrization system with its deformations when it popu-
lates a surface (section ??), before detailing implementation
(section ??) and discussing our results (sections ?? and ??).

2. Previous work

A standard way of defining object appearance, or material
information, is the creation of a single texture or a set of large
textures. Textures are in general 2D or 3D. When 3D textures
are used, the material is defined for all points in the 3D space
in which the object is embedded. Each point of a surface is
directly parametrized by its coordinates and while textures
can be defined by repeated features, as done by Du et al. [?],
the direct control of the texture appearance on the surface
remains very difficult. We rather focus on 2D textures that
are directly defined over the surface.

There are several approaches to texture design but interactive
painting tools [?,?] have steered texture design interfaces. In
these approaches the parameter space is either already ex-
plicit in the object representation, or is piece-wise approx-
imated as necessary to maintain detail in the image as it is
painted incrementally.

Solid procedural textures [?, ?, ?] are generated using noise
functions or other texture basis functions. They can create
many patterns, but it can be time consuming to find the right
parameters and it is not possible to manipulate local features.

Another type of texture mapping interface is constrained pa-
rameterization [?], [?]. Here a set of constraints are manu-
ally specified between the desired texture image and the sur-
face. Global optimization algorithms are then applied to map
the image onto the surface such as to satisfy the constraints
and minimize a given distortion metric [?]. Recent advances
support point sets [?], and atlas generation from multiple im-
ages [?]. These systems do not address the general problem
of texture design, as the desired 2D images are assumed to
already exist.

A visually related area of work, though very different in
implementation, is the field of texture synthesis. Wei and
Levoy’s work exemplifies this approach [?]. Starting from
examplar textures, they synthesize a new texture over a given
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object by searching for the best-pixel fit in local neighbor-
hoods. Similar techniques are presented by Turk [?], Efros
and Freeman [?] and Lefebvre and Hoppe [?]. These tech-
niques must all maintain a local or global parameterization
for the object as well as the full-size generated texture, mak-
ing the techniques applicable to pre-processing more than
interactive editing. In fairness, these methods are expected to
be used when a regular tiling of decals is inadequate to cap-
ture the desired variation in the semi-tiled textures. Turk [?]
proposes a technique synthesizing a texture with repeated
patterns from points regularly sampled over the surface and a
reaction-diffusion mechanism. Even though no parametriza-
tion is required, this approach does not support interactive
editing and it is limited in the variety of patterns it can pro-
duce.

The direct manipulation over the surface we are looking
for is efficiently done using a texturing interface introduced
by Pedersen [?], called a ‘decaling interface’, which com-
bines aspects of both painting and constraint tools. In this
approach the metaphor is that of 2D images affixed to the
surface. Pedersen dubs these ‘patchinos’, but they are now
more usually called decals. Decals are treated as independent
scene elements which are constrained to lie on a surface, but
may otherwise be interactively manipulated. Because a sim-
ple mapping exists between the image and the surface, 2D
image processing tools can be trivially implemented. Decals
are composited in real-time, mimicking 2D image composit-
ing [?] and vector graphics interfaces. This approach allows
artists to interact with surface texture directly, using familiar
2D methods and tools. One of the biggest benefits of de-
caling is that it allows for easy re-use of 2D images in tex-
ture design. When combined with a digital camera or image
database, realistic textures can be created very quickly. Con-
strained parameterization can also be used to apply decals,
however the human interface of [?] is difficult to implement
because of the problem of simultaneously moving all of the
constraints across the surface.

An interactive decaling system based on hardware-
accelerated octree textures is described in [?]. Basic inter-
active positioning and blending composition is supported.
Like 3D painting, decals are applied using planar projection.
In this method image sprites can be combined to produce
blended sprites (decals). In our work we use the implicit
field to apply more complex operations such as deforming
decals so that, for example, a snake’s scales are not uniform
but compete for space. Similarly, Autodesk Alias products
also supports application of decals using planar projection,
as well as conformal decals that rely on the surface geome-
try [?].

Schmidt et al. [?] build on the decaling idea and address
many of the problems of Pedersen’s interface. In this work a
local exponential map parameterization is generated from a
single point and geodesic radius, that serves to simplify the
user interface and support automatic creation of decals. The

system can be applied to any point set, and provides a nice
tool for texturing animated implicit surfaces. It can preserve
texturing even in the presence of topological changes. Our
‘implicit decal’ approach described here is similar in spirit
but instead of deriving the local parameterization from an
exponential map that is based on the geometry of the surface,
we introduce an implicit support surface. This gives us most
of the properties of Schmidt’s system plus the advantages
listed above.

Tiletrees [?] solve the problem of texturing onto arbitrary
surfaces but the octree must be regenerated if there is a small
change in the model. In our system if a small change is made
to the model, decals can be projected back onto the surface
and may change position but the general appearance of the
decal will not change.

3. Decal placement

Decal placement consists of positioning particles over the
surface whose center point will serve as center for the field
functions fi : R3→ [0,1] from which a local parametrization
is derived for the decal. Two strategies can be used: man-
ual or automatic placement. Manual placement of particles
is done by selecting positions on the surface of the model
(see left image of Figure ??). Even though this an easy task,
it takes a long time to texture complex surfaces or surfaces
that require a large number of decals. A tool to automatically
texture the whole surface greatly reduces the modeling time.
With our texturing method such tools are easily created. All
our method needs for input is a list of particles (position,
size and orientation). In our system this input is generated
by scattering particles [?] onto the surface of the model and
have them repel each other. The radius si of each particle is
calculated by taking the maximum distance to neighboring
particles in the local Delaunay triangulation. These local tri-
angulations can be simply computed from the local Voronoi
regions surrounding the particle centers [?, ?]. The orienta-
tion, i.e. local 2D frame (ui,vi) ∈ [0,1]2 tangent to the sur-
face and of origin the particle center pi, is either random or
aligned to some surface field such as minimum or maximum
curvature direction fields [?, ?] or as done by Turk [?].

Fleischer et al.’s Cellular Texture Generation work [?] offers
a method to generate seed locations for our particles, evolv-
ing a system of partial differential equations to generate seed
points and surface-based field values on object surfaces. We
implemented a simplified version of this work, and instead
of placing a geometric primitive at each particle, we place
one of our decals.

The right image of Figure ?? shows 1000 decals distributed
over the surface of a model using a particle system. It should
be noted that the user can interactively edit the decals after
the initial placement.

We use a particle system because it has the double advantage
of being both easy to implement and flexible for integrating
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Figure 1: Left:50 decals positioned manually in under a
minute. Right:1000 decals positioned using a particle sys-
tem.

decal editing operations. For example, after automatically
positioning decals on a model, the user can interactively edit
a group of decals while the particle system repositions sur-
rounding decals. For instance, particle position, orientation
and radius can be directly modified and the system automat-
ically and interactively adjusts the position of surrounding
particles. That way, textures can be translated over the sur-
face, rotated and scaled. Instead of a particle system, remesh-
ing algorithms [?] could be used to generate a coarse mesh.
The positions of the vertices of this mesh would be the posi-
tions of the particles.

Once particles cover the surface, they are likely to overlap
and in that case, a strategy has to be chosen in order to de-
fine how the textures coming from each overlapping decal
are combined. Different solutions can be adopted. One de-
cal can be dominant and only its texture is applied, result-
ing in an overlapping feature (as the eye of the dragon in
the teaser). Textures can be blended (blurred) as presented
by Schmidt et al. [?]. A new behavior, presented in the fol-
lowing sections, is deformation in contact, which replaces
overlapping texture by texture deformations so that they are
in contact but do not overlap. This generates useful results
as those illustrated in the teaser and in Figure ??.

4. Local parametrization

Once particles are distributed over the surface, we have as
input their center pi, radius si and local frame (ui,vi) il-
lustrated in Figure ?? and computed as explained in Sec-
tion ??. Particles center pi and radius si are used to compute
an isotropic spherical field functions fi : R3 → [0,1] which
together with the local frame (ui,vi) allows us to derive the
local parametrization (section ??). Deformations produced
by contact between neighboring decals are presented in sec-
tion ?? and the way field functions can be modified to pro-
duce parametrization adapted to decals of different shapes is
explained in section ??.

4.1. Isotropic parametrization

We define isotropic spherical field functions fi, of minimal
value 0 at radius distance si, and maximal value 1 at their
center pi, as illustrated in Figure ??. Field functions fi eval-
uated at a point q ∈ R3 are mapped to [0,1] by scaling the
Euclidean distance between q and pi and then composing

p
i

vi

ui

si

Figure 2: Spherical field function fi placed on the surface
of a model. pi is its center, si its radius, and ui and vi are the
tangent vectors defining its orientation.

this scaled distance by a so called Filter Fall off Function
(FFF) [?] g : R→ R whose graph is given in Figure ??:

fi(q) = g
(
‖q− pi‖

si

)
, (1)

with

g(d) =

{
(1−d2)3 if d ≤ 1
0 if d > 1

. (2)

d

g(d)

0

½

1

1

Figure 3: The filter fall off function g

As our particle system tends to organize particle centers over
the surface in a close to triangularly regular manner (i.e. each
particle tends to have six regularly distributed neighbors),
only the part of the field with values equal or higher than 1

2
(orange area in Figure ??) generates texture coordinates, as
the outer area (blue area in Figure ??) overlaps with other
spherical field functions in this initial setting. The dashed
line in Figure ?? indicates the boundary of the field around
the particle center and this part will only be used to calculate
the amount of deformation of nearby decals (see section ??).
Note that different FFF g function (possibly with a differ-
ent parametrization boundaries) could be used to achieve
slightly different deformation effects, but we use the FFF
from equation ?? for its high smoothness and its suitability
for contact deformations (see section ??).

From field function fi and the local frame (ui,vi) we derive
the local texture coordinates as a polar 2D coordinate system
(r(q),θ(q)) as follows. To calculate the radius r(q) at a sur-
face point q, we first evaluate the field value fi(q) to which
we apply the inverse of g. We then scale it by g−1(1/2) to
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get the radius r(q) ∈ [0,1]:

r(q) =
g−1 (F(q))

g−1
(

1
2

) , (3)

where F = fi if only a single field function covers the point
q. We use equation ?? instead of the simpler scaled distance
r(q) = ‖q−pi‖

si
in order to support the different definition of

F presented in Section ?? where decals are deformed when
they are in contact as illustrated in Figure ??.

Figure 4: Illustration of the local parametrization (left) on
a plane and (right) on a sphere.

The computation of the second texture coordinate θ(q) is
performed using the two perpendicular vectors ui and vi of
our local frame. If q∗ is the projection of q onto the plane
formed by ui and vi, the value of θ(q) is the angle between
ui and the vector (q∗− pi):

θ(q) = arctan
(

vi · (q− pi)

ui · (q− pi)

)
. (4)

Figure ?? shows an example of a our local parametrization
on a plane and on a sphere. The vectors ui and vi are calcu-
lated from the surface normal at pi (using cross product) and
a user defined orientation angle.

4.2. Contact deformations

When decals are in collision, overlapping is avoided and
contact decal deformations are performed as illustrated in
Figure ??. As our local parametrization is directly derived
from field functions fi : R3→ [0,1], they support the set op-
erators produced for combining implicit surfaces defined by
compactly supported field functions [?].

Figure 5: A decal (left) placed on a sphere once, twice and
three times

We need a deformation modeling contact between n field

functions, avoiding gaps and discontinuities while maintain-
ing r in [0,1] with r(q) = 1 for all surface point q in the
deformed field function boundary (see Figure ??). Follow-
ing the procedure suggested by Cani [?], we compute a field
function F as a deformation of the function fk having the
highest field value at a point q:

F(q) =
1
2
+

(
fk(q)−

1
2

)
∏
j 6=k

h
(

f j(q), fk(q)
)
, (5)

where

h(s, t) =

 1−
(

s+t−1
2s−1

) 1
1−t

if s+ t ≥ 1
1 if s+ t < 1

.

In this formulation, when a point q only lies in the field of
one field function, the product part of equation ?? yields 1
and the whole equation equals fi. When other field func-
tions overlap in q, equation ?? adapts fi(q) to make the de-
cal touch but not overlap the nearby decals. This behavior is
obtained when function F reproduces the graph presented in
Figure ??, illustrating the combination of two field functions
(including contact). This graph has been constructed follow-
ing the properties and the procedures presented by Barthe
et al. [?], Bernhardt et al. [?] and Gourmel et al. [?]. Even
though several equations matching this graph could be pro-
posed, our formulation has the advantage of being both n-
ary, i.e. it is able to combine any number of decals at once,
and efficient to compute.

A B C D

I

I

III

IVII II

I

Figure 6: 4 possible situations when using only 2 decals

Equation ?? can be understood by looking at the interactions
between two field functions, f0 and f1, illustrated in Fig-
ure ??. Four situations are to be considered. In situation A,
the fields are not overlapping each other and no deformation
is needed. In situation B and C, the fields are overlapping
but the parametrized areas are not, so again, no deformation
is needed. Only in situation D where the parametrized areas
overlap, is deformation required.

The different areas numbered from I to IV in which the final
function F is computed with a specific expected result are
illustrated in Figure ??. In this figure, the values of function
f1 are taken as abscissa and those of function f0 as ordinate.
On the upper-left part of the diagonal line f0 = f1, the field
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0

½

1

1½

f (q)0

f (q)1

I

III IV
II

Figure 7: Graph of our function F when two field functions
are involved. Field functions f1 and f0 give the values for
respectively the abscissa and the ordinate.

function with the highest value is f0 and F is the result of
the deformation of f0 while in the lower-right part of this
line, the highest value is the one of f1 and F is the result
of its deformation. As we expect the same deformation be-
havior on both decals, the one parametrized from f0 and the
one parametrized from f1, these two parts are symmetric and
we propose to only focus on the upper-left part. The black
lines in Figure ?? are the iso-lines of the resulting decal for
F = 1

10 , F = 2
10 , etc. Where these iso-lines are horizontal, it

means that they reproduce the values of f0, F = f0 and no
deformation is performed. Otherwise, they represent the way
the iso-values of f0 are deformed by F , i.e. the way the decal
is deformed. The contact is where f0 = f1 and we see in red
area of Figure ?? how the function F deforms the iso-curves
at its vicinity. We refer to the implicit extrusion fields [?] for
a detailed explanation of how to link the graph of the compo-
sition operator (here function F) with the deformed objects
(here the decals).

In other words, no deformation is to be performed in situ-
ations A, B and C (Figure ??), which is guaranteed as in
areas I and II, F = f0. In fact, deformation must hold in ar-
eas that only exist in situation D, which correspond to areas
III and IV. These areas are where contact and field deforma-
tions are thus to be performed. Formally, they correspond to
field values where f0(q)+ f1(q)> 1. In area IV, contact de-
formations at parametrization boundaries are performed by
ensuring that if f0 = f1, then F = 1

2 . The rest of area IV and
area III are used to build a function F performing smooth
field deformations between the contact at boundaries and ar-
eas I and II where no deformation are required.

The resulting deformation in contact performed on our
parametrization when this definition of F is used in equa-
tion ?? is illustrated with two and three field functions in
Figure ??.

4.3. Anisotropic parametrization

Non-circular decals are easily supported by slightly adapt-
ing the technique presented in [?]. In the computation of
the field function in equation ??, rather than scaling the Eu-
clidean distance between a point q and the particle center
pi with a constant radius si, this distance is scaled by the
distance between pi and the point bi(q) of intersection of a
ray launched from pi and the decal boundary (see Figure ??-
left). This scaling is done so that for all point q lying on the
decal boundary, fi(q) = 1

2 .

fi(q) = g
(
‖q− pi‖

bi(q)

)
g−1

(
1
2

)
. (6)

Figure 8: Storing the field function fi in a 2D texture for the
puzzle piece decal. Left: computing bi. Right: the field values
in the texture (the yellow line marks the 1

2 contour).

In this case, function fi can be directly precomputed and
stored in a 2D texture (Figure ??-right) or computed from
an analytical function bi : R2 → R+ giving the radial dis-
tance between the decal center and its boundary for all point
q.

The puzzle piece used in Figure ?? is mapped on the bunny
in Figure ?? along with some other non-circular decals.

5. Implementation

Implicit decals require texture mapping on a per-pixel basis
which can be done in pixel shaders. The definition of decals
by 3D field functions allows a computation of the pixel color
using only its 3D coordinates as input (as for 3D textures).
The requirement for an efficient evaluation is the fast access
to decals enclosing the pixel. Once this is done, contact de-
formation, overlapping or any invertible transformation can
be applied to derive the texture coordinates and compute the
final material information. In our system the pixel shader of
the GPU is used, because it can achieve interactive frame
rates. To render a number of implicit decals on the surface
of a model, the decal information (position, size and tan-
gent vectors) is loaded into the graphics card memory. The
pixel shader program queries the decal information to calcu-
late texture coordinates. To increase performance and allow
a large number of decals to be rendered, we implemented an
octree structure similar to the one described in [?]. An octree
data structure as described in [?] could also be used.
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Figure 9: 3 models textured using Implicit Decals: the knot, implicit spheres, and the bunny

Before the decals are loaded into the GPU memory, an octree
is constructed containing the decals. Each non empty voxel
contains either 8 references to other voxels or a maximum of
8 references to decals that intersect with the voxel. A voxel
is subdivided when it overlaps with more than 8 decals. The
list of voxels is loaded into GPU memory together with the
list of decals. Our implementation of the pixel shader con-
tains an octree lookup function which typically uses between
4 and 10 repetitions to traverse the octree and retrieve the
needed voxel from the octree. With this implementation the
pixel shader performs a maximum of 10 octree lookup rep-
etitions and includes a maximum of 8 decals in the calcula-
tion of the final texture coordinates. Without an octree, all
decals would have to be included in the calculation of the fi-
nal texture coordinates This would greatly increase compu-
tation times and at present would limit the maximum number
of decals to approximately 20 (in a single pass) due to GPU
limitations.

Decals can be removed from the octree by removing them
from the decal list in the GPU memory. Adding and moving
decals however, would normally require a new construction
of the octree. To prevent rebuilding the octree while the user
is editing a small set of decals, the pixel shader implemen-
tation allows for a small number of decals to be added in
addition to the ones in the octree. These decals will always
be included in the calculation of the final texture coordinates.
Rebuilding the octree will only be necessary when the user
starts editing (adding, removing, moving) a different set of
decals. After the rebuild (which usually is nearly instant, but
can take up to a second when thousands of decals are used),
editing operations can be performed interactively.

6. Filtering

Figure 10: Filtering at different resolutions. Top row:
standard Mipmaps and anisotropic filtering. Bottom row:
adapted Mipmaps and anisotropic filtering.

In general, existing techniques like trilinear or anisotropic
filtering with Mipmapping can be used. However, problems
can occur on the borders of the decals. Some of these prob-
lems can be avoided by using a uniform color for the borders
of the decal texture images. This creates a smooth transition
between touching decals. When the decals do not cover the
whole surface, the border color can be chosen to be trans-
parent to create a smooth transition with the surface color.
Still some problems remain as can be seen in the top row of
Figure ??:

1. When the decals cover no more than a few pixels (first
two columns of Figure ??) standard Mipmap generation
produces incorrect colors. This is caused by the use of
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low resolution Mipmaps which contain color information
from all pixels in the texture and not just the pixels used
for the decal.

2. When the decal sizes approach pixel level (first column
of Figure ??), the decal colors do not necessary converge
towards the same solid color when different texture im-
ages are used. This can result in seemingly random pixel
colors and flickering of the pixels in animation.

3. There are artifacts in between the decals (last two
columns of Figure ??). In the situation where two filtering
samples cover different decals, the sample texture coor-
dinates are close to the edge of the circular texture image
(see Figure ??). The texture coordinates should result in
the same color (because the edge of each decal has a uni-
form color) even though the texture coordinates are very
different. With standard graphics hardware the difference
between the texture coordinates will result in the use of a
very low resolution Mipmap giving in the wrong color.

The first problem can simply be solved by using a filter to
create the Mipmaps which determines which pixels should
be used. To solve the second problem, the low resolution
Mipmaps need to be adjusted so that they converge towards
the same color. To do this, for each resolution a new im-
age is constructed (the target image) which is the average
of all Mipmaps of that resolution. If some textures are used
more than others, a weighted average can be used. Next, new
Mipmaps are created which are weighted blends between the
respective old Mipmap and the target image. The lower the
resolution of the Mipmap, the more the weights will shift to-
wards the target image. At the lowest resolution (1× 1 pix-
els) all Mipmaps will contain the same color which is the
(weighted) average of all textures.

{
{

{ {A B

A

B

B’

A’

{{

Figure 11: Correcting sampling across decals. Left: model
space. Right: texture space.

The third problem can be solved in two steps. First, the pixel
shader detects whether two filtering samples lie in differ-
ent decals. This is be done by comparing the positions of
the decals used in each sample. Figure ?? depicts the situa-
tion when these positions are different. In texture space the
texture coordinates A of one sample and the texture coordi-
nates B of the other lie farther apart than what one would
expect looking at the positions in model space. This causes
the filtering technique to select a Mipmap with the wrong
resolution. Instead of using the distance between A and B

in texture space to determine the pixel resolution and select
the appropriate Mipmap, the distance between A and B′ is
used. As can be seen in the right image of Figure ?? B′ lies
on the other side of the decal edge from A at the same dis-
tance from the edge as B (this distance is indicated by the
blue curly bracket). The distance between A and B′ in tex-
ture space is a far better representation of the actual distance
between A and B in model space.

The combined solutions for the 3 problems above result in
the images shown in the bottom row of Figure ??.

7. Results

Figure ?? shows how our decals handle sharp edges, holes
in the geometry and bumps on the surface. Figure ?? shows
how a single implicit decal can texture more than one surface
at the same time. This can be useful in games, where stains
or gunshot holes need to be applied in real time.

Figure 12: Our decals are stable when placed on sharp
edges, holes in the geometry or bumps (and other areas of
high curvature)

Figure 13: Each blood stain is a decal which can cover dif-
ferent models

The dragon model shown on the Teaser-left has been tex-
tured using our method. The green scales were automatically
placed using a particle system. The user manually added the
(non-deforming) eye decals, and gave the decals on the ball,
the tongue, and the teeth a solid color. Some decals were
slightly moved to fit the boundaries of the colored parts of
the model (ball, teeth and tongue). The whole texturing pro-
cess took about 15 minutes.

The left image of Figure ?? shows a closeup of the knot
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model. This image shows that our method supports high res-
olution textures: the texture resolution of the decals in the
front is the same as the resolution of the decals in the back.

The middle image of Figure ?? shows the interaction of de-
cals with different sizes and even shows the special case
of Figure ??D where a decal is placed completely inside
a larger decal. The right image demonstrates several non-
circular decals.

Model Decals Voxels Octree ms/ Mem
frm

Dragon 100 697 0.02s 25 12KB
Dragon 1K 5753 0.06s 30 116KB
Dragon 10K 58905 0.78s 32 1.14MB
Knot 100 897 0.02s 25 14KB
Knot 1K 8657 0.09s 25 127KB
Knot 10K 56217 0.80s 26 1.13MB
Horse 100 48121 0.02s 25 197KB
Horse 1K 130833 1.23s 25 605KB
Horse 10K 261561 2.58s 26 1.91MB
Spheres 100 921 0.02s 25 13KB
Spheres 1K 7393 0.16s 26 123KB
Spheres 10K 69889 1.28s 26 1.18MB

Table 1: Rendering times and memory consumption of our
method. The “Voxels” column shows the number of voxels
that was needed to construct a suitable octree. The “Oc-
tree” column shows the amount of time needed to construct
the octree on the CPU. The “ms/frame” column shows the
rendering time of one frame in milliseconds and the “Mem”
column indicates the amount of video memory allocated for
storing the decals and the octree (this does not include the
texture images).

All results were obtained using a machine with an Intelr

CoreT M2 Quad CPU at 2.66GHz and a GeForce 8800 Ul-
tra graphics card. The resolution of the output window was
1600x1200 pixels. The CPU part of our implementation
(constructing the octree) only uses one thread.

The results in table ?? show that our method supports in-
teractive visualization and editing as the frame rates are be-
tween 30 and 40 frames per second even for more complex
models with thousands of decals at a high window reso-
lution. Note that these frame rates apply to our test cases
where the model covers a large part of the screen. In prac-
tice Implicit Decals would only be used on some parts of the
whole scene which would result in higher frame rates. Edit-
ing large groups of decals is still possible, but then the oc-
tree construction time becomes the bottleneck. To reduce the
octree construction time in future implementations, a multi
threaded algorithm could be implemented.

8. Discussion

Since the decal is mapped using a 3D field function, any
part of the surface intersecting this field function where it is

Figure 14: Left: a decal placed on the front. Middle: unde-
sired texturing produced by a decal placed on the back side
which bleeds through to the front. Right: A decal folding over
itself due to large extrusions.

greater than 1
2 is textured. This is the desired effect when the

whole surface is textured as our field function contact de-
formations guarantee the local influence of each decal. This
naturally avoids the case shown in Figure ??-middle where a
decal “bleed” through a thin part of the model. This situation
can only happen if some parts of the surface are not textured
and it is thus easily avoided by using an “empty” decal de-
fined by transparent texture images. This user interaction can
also be avoided by using thinner ellipsoid field functions fi.

In general our parametrization behaves well when placed on
bumps, ripples or other high curvature features. But in ar-
eas with large distortions, some parts of the texture image
could be mapped onto the surface more than once which re-
sults in the texture folding over itself (see Figure ??-right).
This problem is actually inherent to our parametrization as
no specific treatment is done to minimize distortions. The
natural solution is to use more smaller decals in these areas
but if this is not desired, the field function fi will have to be
computed from a more sophisticated procedure taking into
account the local surface distortions.

Our technique is mainly prescribed for a lot of small decals,
that are interactively placed and manipulated over the sur-
face. When decals become large, depending on the pattern to
be repeated and on the nature of the object itself, it is more
likely that undesired distortions appear. In this case, implicit
decals may fail to provide a satisfactory result and it would
be better to use a more elaborate technique such as the decals
proposed by Schmidt et al. [?].

It is also difficult to maintain a consistent surface covering if
it is animated. Decals may change of shape and gaps may ap-
pear. The texturing of dynamic objects with implicit decals
remains an open problem.

Current graphics hardware still limits the number of de-
cals that can be edited simultaneously to approximately 20.
When small groups of decals are being edited, they will be
removed from the octree and added to the list of editable de-
cals. The octree needs to be recomputed whenever the num-
ber of decals in this list exceeds the hardware limit. When
ten thousands of decals are used, this can result in an oc-
casional delay of approximately one second (see table ??).
Editing operations that involve large groups of decals, al-
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ways require the octree to be rebuild and will be significantly
slower.

9. Conclusion and Future Work

The main contribution of this research is an efficient method
for placing and editing surface decals that can interact with
one another. The surface does not require an existing param-
eterization. Since the method lends itself to implementation
on the GPU, thousands of decals can be placed and edited.
Traditional techniques would require excessively large tex-
tures to achieve a reasonable resolution, making these tech-
niques infeasible for real-time applications.

An earlier decaling method [?] uses an arc length approxi-
mation (exponential map) to find a local parameterization on
the surface, whereas our method uses an implicit field that is
independent of the geometry. Our mplicit technique has sev-
eral advantages demonstrated in section ??:

• Implicit decals are independent of the underlying geome-
try making them applicable to multi-resolution meshes.
• The bulk of the computations can be done in the pixel

shader making interactive editing of thousands of decals
possible.
• Contact deformation can be used to make the decals ap-

pear to compete for space.
• An implicit decal can be made to span several objects

without duplicating the decal or merging the objects.

Our method is similar to Cellular Texture Generation [?],
in which a geometric primitive is placed at each particle,
whereas we place a texture primitive instead. In this way
many similar effects can be achieved, but at low-cost in a
pixel shader. As future work, we could couple our implicit
decals with a GPU-shader based displacement map method,
to allow for a large set of Fleischer et al.’s images to be gen-
erated in hardware.

Section ?? shows how contact deformation can be used to
shape the decals. Future work includes investigating how
other implicit operations like blending can be used to achieve
different effects. Also, different distance metrics like man-
hattan or anisotropic distance could be used to produce a
wider variety of results.

A larger number of patterns could also be generated by creat-
ing two or more layers of decals. The final pattern is created
by combining the layers, for example by using transparency
to uncover deeper layers or some other function which com-
bines the colors of each layer. Future work can also include
designing functions to combine layers; how should layers be
positioned in relation to each other to create interesting pat-
terns.

To incorporate implicit decals more easily into existing mod-
eling systems, a conversion between an implicit decal texture
and more conventional textures can be written. When an at-
las is in place, the model space positions of each texel of

the atlas can simply be evaluated to get the corresponding
colors. Future research can be done to create converters for
other texture systems and incorporate better filtering.

Other future work includes better tools for decal positioning
and editing. If a Poisson-disk sampling method [?] could
be adapted to curved closed surfaces of any topology, this
would significantly reduce the computation time of an ini-
tial decal distribution. Also, the system would greatly bene-
fit from editing tools like a decal spray paint tool and brush
tools that change the size or orientation of the decals. Au-
tomatic determination of the orientation of the decals could
be done by using the gradient field or other properties of
the model. Finally, decals with different behaviors could be
added. For example decals which deform other decals, but
do not deform themselves.
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