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Figure 1: Three Kochsnakes drawn using recursive scene graphs with both global and local limits on recursion.

Abstract
Conventional scene graphs use directed acyclic graphs; conventional iterated function systems use infinitely re-
cursive definitions. We investigate scene graphs with recursive cycles for defining graphical scenes. This permits
both conventional scene graphs and iterated function systems within the same framework and opens the way for
other definitions not possible with either. We explore several mechanisms for limiting the implied recursion in
cyclic graphs, including both global and local limits. This approach permits a range of possibilities, including
scenes with carefully controlled and locally varying recursive depth. It has applications in art and design.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data
structures and data types

Acyclic scene graphs have long been a standard mecha-
nism for representing the geometry in a scene [SC92]. Prim-
itive objects, transformations, and material properties are all
nodes in the graph. The graph is traversed from its root
node, and the traversal is guaranteed to terminate, because
the graph is finite and acyclic.

Iterated function systems [Hut81], by contrast, consist
of recursive geometric definitions that require an external
constraint to force termination. This can be as simple as a
globally-imposed limit on the recursion depth.

We investigate the possibilities suggested by recursive

scene graphs (Section 2). The immediate concern is to en-
sure that there is a mechanism for guaranteeing termination.
Both global and local termination criteria are possible, giv-
ing a wider scope of expression than either acyclic graphs or
iterated function systems. We compare our method to previ-
ous work (Section 1) and demonstrate examples (Section 3).

Our contributions are (1) a demonstration that recursive
scene graphs, with guaranteed termination, produce a range
of interesting effects; (2) the definition and testing of a range
of mechanisms for limiting local and global recursion depth
in recursive scene graphs; and (3) mechanisms for the correct
handling of mutual recursion in such graphs.
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Figure 2: The basic node types in a DCG: the model node
contains an integer limit and a pointer to a list of transform
nodes. The transform node contains a geometric transforma-
tion, other information that sets object properties, a pointer
to the next transform node, and a pointer to either a model
node or a primitive node.

1. Comparison to Previous Work

The basic concepts of directed cyclic scene graphs, on which
we build, were outlined in the 1970s by Geoff and Brian
Wyvill [Wyv75a, Wyv75b, ?]. Object instancing in com-
puter graphics goes back further, to Sutherland’s Sketch-
pad [Sut63]. Iterated function systems have their origins
over a century ago [vK06], were investigated by Mandelbrot
and others in the 1970s [Man82], and set on a firm math-
ematical footing by Hutchinson in the early ’80s [Hut81].
L-systems were devised, by Lindenmayer in the 1960s, as a
mathematical theory to describe plant development [Lin68];
in computer graphics, they were developed further as a com-
bination of rewriting rules and turtle graphics [PL90].

Ebert [EMP∗03] uses the term cyclic scene graph to mean
both the limit of an L-system and, equivalently, an iterated
function system. In his cyclic graphs there are no primitives
and the scene is defined purely by the geometric transforms.
This requires non-standard rendering algorithms, such as the
ray tracers described by Kajiya and Hart [Kaj83, HD91]. In
our definition, by contrast, we explicitly ensure that there is
termination and include primitives in the scene graph. These
allow us to render the scene using a variant of the normal
scene graph traversal algorithm.

Gervautz, Traxler, and Schmalstieg [GT96, SG97] used
a similar concept to us, with counters that decrement on
each cycle to ensure termination, and the possibility of us-
ing more complex parameterisations to change behaviour at
each level of recursion. Their main objective was to save on
memory usage and network bandwidth, having observed that
directed cyclic graphs are a compact representation. Mem-
ory and bandwidth are now cheap, so our work considers
instead whether such recursive scene graphs can be used
with artistic intent. Though our work was developed inde-
pendently of Gervautz et al., we can be considered to be
extending their work by providing new mechanisms: local
limits, choice nodes, and mutual recursion.

2. The Directed Cyclic Graph Mechanism

Our scene graphs are directed cyclic graphs that consist
of three types of node: model nodes, transform nodes, and
primitive nodes (Figure 2). Each model node heads a linked
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Figure 3: An example DCG: this draws a square. A line
primitive is drawn, a transform executed to move to the end
of the line and rotate through 90◦, then a recursive call to the
model node. The counter in the model node decrements every
time it is visited. When it reaches zero, the cycling ceases.

list of transform nodes. Each transform node points to ei-
ther a model node or a primitive node. As with conventional
scene graphs, the transform nodes can be implemented ei-
ther as general transformations or as a range of more spe-
cialised versions, such as translation, rotation, texture, and
colour nodes.

In our implementation, a model node and its associated
list of transform nodes are all processed within a single func-
tion, with the list of transform nodes processed in a while
loop. Descent into a child model node is handled using a re-
cursive function call. Pseudo-code for the traversal algorithm
is given in Appendix A.

2.1. Global Limits

Adding cycles to a scene graph requires careful manage-
ment. Traversal of the graph must always terminate, regard-
less of complexity. Our solution is to enforce the rule that all
cyclic references go via a model node and that model node
traversal is managed to ensure termination.

The mechanism for this is a simple integer counter within
each model node (see example in Figure 3). If the counter is
zero (more strictly, if it is not positive), then its list of trans-
form nodes is not processed. If it is positive, then the counter
value is pushed onto a stack, the counter then decremented,
and the model’s transform nodes are processed.

Schmalstieg and Gervautz [SG97] used a similar mech-
anism of a counter that is decremented at each level. Their
method also included general calculation that allowed more
complex operations on the counter than simple decrement,
though they do not show any uses of this.

In our mechanism, descent into a model node requires a
recursive function call; on return from this call, the value of
the counter is popped off the stack. This allows multiple in-
stances of the node to occur within the recursive definition,
as demonstrated in Figure 4. The use of the stack also per-
mits local limits to be defined, with the guarantee that the
original limit will be restored on exit from the scope of the
local limit.
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Figure 4: Top: a multiply instanced DCG definition to draw a cylinder tree. Bottom: output from this with different limits.

(a) (b)

Figure 5: Parameterised limit changes. (a) A thorn tree de-
fined with a basic DCG, recursion limit five. (b) The same
thorn tree with parameterised limits reducing the recursion
depth on the second (middle) and third (highest) branches.
Note that the branch pointing vertically down at the left hand
side is at the same recursion depth (five) in both models,
having been generated as the first branch off each parent
branch.

2.2. Local Limits

It is common practice, in systems that use instancing, for
attributes such as colour to be passed down the hierarchy. In
a similar fashion the transform node can override the global
recursion limit of the model that is transformed, with a local
limit stored in the transform. We have devised three ways in
which a transform node is able to do this.

1. Set a local limit. This changes the limit for the child
model node, but does so on this cycle only. Deeper recur-
sive passes through the transform node are not allowed
to set the local limit again because this would cause infi-
nite recursion. This is implemented using a guard in the
transform node. See Figure 10 for an example.

2. Set an absolute limit. This is implemented identically to
the local limit but without setting the guard. Every time
this transform node is traversed, the same absolute limit
is set on the model node. This can easily cause infinite re-
cursion and therefore must be used, with caution, within
some outer cycle that has a model node with a normally-
managed limit. See Figure 13 for an example.

3. Set a parameterised limit. This changes the child node’s
limit based on the current value of the parent node’s limit.
This type of limit is most sensibly used when the child
and parent nodes are the same model. If the change can
be to a value greater than the current limit then infinite
recursion is a possibility, again requiring cautious man-
agement, as for absolute limits. If the change is guaran-
teed to be a value less than or equal to the current limit
then termination is also guaranteed. Schmalstieg and Ger-
vautz [SG97] mechanism is also able to handle this kind
of limit.

An example use of parameterised limits is the tree in Fig-
ure 5(b). There are three branches. The first (lowest) branch
recurses normally. Parameterised limits are attached to the
second and third branches. On the second branch, the re-
cursion limit is decremented by an extra one on each cy-
cle. On the third branch, it is decremented by an extra two.
This means that recursion terminates on these branches more
quickly than on the first branch. By combining the param-
eterised limit changes with the different scale factors on
the different branches, we get a result where the termi-
nating leaves are more uniformly sized than in the non-
parameterised case.

2.3. Choice Nodes

It is useful to have transform nodes that behave differently
depending on the current recursion limit. We therefore im-
plement a mechanism whereby a transform node descends
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(a) (b)

Figure 6: The tree definition from Figure 4 with a green cube
added at the end of the cylinder. (a) The green cube is at-
tached to a standard transform node. (b) The green cube is
attached to a choice node with value set to zero; this means
that the green cube is only drawn at the final recursive step.

Figure 7: A level 10 recursive definition of a row of robots.
A choice node has been used to insert a different model when
the recursive limit is equal to six.

into different children depending on the current value of the
recursion counter.

An example of the choice node is shown in Figure 6. A
green cube added to the end of the cylinder in the tree def-
inition of Figure 4. By attaching the green cube to a choice
node, set to trigger when the counter hits zero, it is only
drawn on the final round of recursion. This parallels Schmal-
stieg and Gervautz’s [SG97] termination mechanism. Fig-
ure 7, by contrast, shows an example where the choice is
made at a level other than the terminating one. A DCG is
used to represent a row of identical models. A choice node
is used to replace a single instance with a different model.
Figure 8 shows a range of choices being made at different
recursion levels. The idea of including a condition on each
transform node so that it is only entered at one specific global
recursion level was first implemented in the 1970s and used
for defining space filling curves [Wyv75a, WW83]. Here we
have extended that idea in three ways: to allow multiple dif-
ferent choices (e.g., Figure 8); to allow for there to be a
default model, with the effect that the default model is re-
placed by a different model at some levels (e.g., Figures 7
and 8); and to allow for there to be no default model within
the choice node, with the effect that an extra model is added
to the scene at a particular level (e.g., Figure 6(b)).

3. Example Uses

An example system has been implemented and to simplify
the construction of the data structure we defined a simple
scripting language to illustrate the uses of the system. For

Figure 8: Aircraft seating plan: an example of a choice node
with several alternatives. There are special cases at recur-
sion levels 0, 1, 2 (front of plane), 8, and 16 (emergency exit
rows).

Figure 9: The Koch Curve Level 5

presentation purposes we provide the script, which describes
each example rather than a diagram of the data structure that
is generated. The script includes a number of key words that
should be self explanatory to those familiar with computer
graphics. The ‘%’ symbol precedes comments where the
code needs some explanation. The command ‘a’ introduces
a new transform node. The model or primitive is named first
followed by any translations, colour changes, or local limits
that need to go in the transform node. The examples given
are all 2D for simplicity.

% Definition of a square
primitive line 0 0 1 0 end
define square
limit 4
a line
a square rotate 90 translate 1 0

end

The above definition builds the DCG in Figure 3. It has a
model node called square with a global recursion limit of
four. There are two transform nodes: one that calls a primi-
tive line and the other that refers recursively to square.

3.1. Selective Recursion

Global recursion limits stored in a model node can be re-
placed during graph traversal by a local limit stored in the
parent transform node (Section 2.2). To illustrate this con-
sider the space filling Koch curve defined below. The be-
tween operator (between x1 y1 x2 y2 x3 y3 x4 y4) is a simple
syntactic mechanism that specifies the affine transform ma-
trix (scale, rotation, translation) required to take an object
defined by two points, (x1,y1),(x2,y2), and place it at two
other points, (x3,y3),(x4,y4).
% Koch curve

primitive line 0 0 1 0 end

def koch

limit 5
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Figure 10: A snowflake of Koch curves, at levels 4, 5 and 6

Figure 11: Kochsnake: A level 4 Gosper Flowsnake [Gar76]
with lines replaced by a Koch curve of level 5.

a line if 0

a koch between 0 0 3 0 0 0 1 0

a koch between 0 0 3 0 1 0 1.5 0.866

a koch between 0 0 3 0 1.5 0.866 2 0

a koch between 0 0 3 0 2 0 3 0

end

Figure 9 shows the result.

We continue the example by defining a version of the
Koch snowflake, consisting of a triangle of Koch curves. We
use local limits to make the three sides of different recursion
limits, see Figure 10.

def snow

a koch locallimit 5 col 0.9 0 0

a koch rot 120 trans 3 0 locallimit 6 col 0 0 0.8

a koch scale 1 -1 rot 60 locallimit 4 col 0 0.7 0

end

Our formulation makes it easy to mix space filling curves
of a different type (Figure 11).

% Kochsnake: Gosper’s Flowsnake using the

% Koch curve (defined above) as a primitive

def ksnk

limit 4

a koch between 0 0 3 0 -1.5 0.866 3 0 if 0

a ksnk between -1.5 0.866 3 0 -1.5 0.866 0 0

a ksnk between 3 0 -1.5 0.866 3 1.732 3.0 0

a ksnk between 3 0 -1.5 0.866 3 1.732 1.5 2.598

a ksnk between 3 0 -1.5 0.866 1.5 2.598 0 3.464

(a) (b)

Figure 12: Simple mutual recursion. (a) Each model re-
curses on both itself and one other model. The lines have
a recursion limit of five; the diamonds a recursion limit of
three. (b) Each model recurses on one other model, which in
turn recurses back on the first.

a ksnk between 3 0 -1.5 0.866 0 3.464 0 1.732

a ksnk between 3 0 -1.5 0.866 1.5 0.866 0 1.732

a ksnk between 3 0 -1.5 0.866 0 0 1.5 0.866

end

Figure 1 demonstrates how the local limits used in Fig-
ure 10 can be applied recursively. We modify the definition
of the Kochsnake, above. The data structure has seven recur-
sive branches. The left and middle objects in Figure 1 are
both Kochsnakes of level four; the difference between them
being that the sixth and fourth branches, respectively, have a
local limit set to three. The rightmost object, like the middle
object, has its fourth branch modified. In this rightmost case,
the fourth branch has its local limit set to four, rather than
three. Remember that local limits are exchanged for global
limits after traversal has started, so all of the fourth branches,
at all levels of recursion, gain an extra level over those in the
middle object.

3.2. Mutual Recursion

A basic example of mutual recursion is shown in Fig-
ure 12(a).

% the primitives line and diamond draw those shapes

% each is 2 units long, from -1 0 to 1 0

def linemodel

limit 5

a line

a linemodel scale 0.7 rot 90 trans 1 0

a diammodel scale 0.7 rot -90 trans -1 0

end

def diammodel

limit 3

a diamond

a linemodel scale 0.7 rot 90 trans 1 0

a diammodel scale 0.7 rot -90 trans -1 0

end

There are two types of model, the line and the slim diamond.
Each model calls one instance of itself and one instance of
the other. The line model has a recursion limit of five; the
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Figure 13: Mutual recursion. A square is made up of four
edges. An edge is made up of three squares. The termination
primitive is a filled triangle, which is drawn rather than re-
cursing to another square. (a) the DCG; (b) is generated by
the DCG. (d) by increasing the limit on parent to four.(c) is
generated by the DCG without the absolute limits.

diamond model a recursion limit of three. If you start at the
centre of the model and trace any path to a leaf node, you
will find that there are at most five lines and at most three di-
amonds on the path. Figure 12(b), by contrast, shows mutual
recursion where each model calls a number of instances of
another model but does not call instances of itself.

To illustrate the power of mutual recursion, consider the
border in Figure 13. The script below produces the DCG
shown in Figure 13(a), which generates the border in Fig-
ure 13(b). A square consists of four edges. Each edge con-
sists of three squares. This mutual recursion can continue ar-
bitrarily deep, with termination drawing a primitive in place
of a square.

def edge

limit 3

a parent

a edge trans 1.33333 0

end

def square

limit 4

a edge scale 0.2 absolutelimit 3

a square rot 90 trans 1 0

end

def parent

limit 3

choice

% choose square if not 0, triangle if 0

a square absolutelimit 4

% the primitive triangle draws the terminating shape

a triangle if 0

end choice

end

Figure 13(c) illustrates the same scene without absolute
limits. The code is identical to that above with the two
‘absolutelimit n’ commands removed. Without the ab-
solute limits we do not produce the desired effect, because
the limits get used up as recursion progresses. In particu-
lar, notice how the number of edges on each sub-square de-
creases by one on each subsequent edge of the main square,
and how the number of primitive triangles drawn on an
edge decreases by one on each subsequent square within any
given edge.

The code above, this time unmodified, defines the scene
graph that produces Figure 13(b). It uses an absolute limit
to push fresh limits into the sub-squares and the sub-edges.
This allows all of the squares and edges to be complete but
requires there to be some parent model with a limit that is
not overridden by an absolute limit. Incrementing the par-
ent model’s limit by one (to limit 4) gives the even more
detailed version in Figure 13(d).

3.3. Further Examples

Figures 14–18 demonstrate a range of other scenes gener-
ated by our system. These have been principally driven by a
desire to produce an artistically interesting effect.

4. Conclusion

For a long time the representation of hierarchical models
in computer graphics systems has been based on the di-
rected acyclic graph (DAG). Although the use of recursive
cycles (DCG) was suggested in the early 1970s, little use
has been made of this structure since that time. There are
several reasons for this, including the fact that the use of re-
cursion has been viewed as inefficient as well as the lack
of good techniques for handling recursively defined models.
The progress in hardware has taken care of the earlier view
of efficiency and in this work we have proposed some mech-
anisms for handling, global and local recursion limits, and a
method for dealing with mutual recursion.
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We have demonstrated that recursion may be controlled
and used in computer graphics systems and shown some
example uses in the area of art and design. In particular,
we have demonstrated examples where complex objects are
generated by simple definitions.

It has not escaped our attention that any of our scripts
could easily be compiled into a DAG rather than a DCG.
One could justifiably ask what advantage obtains from using
DCGs. Our observation, throughout our investigation, is that
the DCG provides an interesting alternative way of think-
ing about and experimenting with geometric designs, with
serendipitous artistic effects arising that the designer had not
anticipated (e.g., Figures 14 and 15). They allow exploration
of a space of design, using a scripting specification that is
short and is straightforward for anyone familiar with com-
puter programming. †
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Appendix A: Simplified Traversal Algorithm

The algorithm described in pseudo-code covers the basic
three nodes described in Section 2.
traverse(model* md, Matrix m)

{

if( md IS primitive ) output( md, m ) ;

// multiply coordinates by matrix m

else

{

Transform t;

t = md->firstTransform;

if( md->limit > 0 ) {

push( md->limit ) ;

md->limit-- ;

while ( t != NULL ) {

traverse( t->childModel, m * t->mat ) ;

t = t->next ;

} // while

pop( md->limit ) ;

} // if

} // if

} // traverse
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Figure 15: Dragon curves. Top: a dragon curve of level six
with each of the four branches terminating with a different
coloured block. Bottom: the same dragon curve with local
limits on one branch: note how this generates white squares
that are larger and smaller than the coloured squares, be-
cause the local limit kicks in at different levels on different
branches.

Figure 16: Kochdragsnake: the Kochsnake with a choice
node that allows some nodes to be substituted by a dragon
curve and some by straight lines.

Figure 17: Modified recursive H: an attempt to generate a
pleasing effect using varying levels of recursion to balance
the expected and the surprising.

Figure 18: Two examples. The central recursive H uses ran-
domly parameterised rotation. The edges in the border are
defined using a choice node. The script for the border model
is shown below.

def lineofblocks
limit 20
choice
a block % default choice
a corner if 0
a bright if 1
a bleft if 9
a cpiece if 10
a bright if 11
a bleft if 19

end choice
a lineofblocks trans 90 0

end
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