
Chapter 11
ShapeShop: Free-Form 3D Design with Implicit
Solid Modeling

Ryan Schmidt and Brian Wyvill

11.1 Introduction

Implicit modeling has been used since the early 1980s as an alternative to main-
stream solid-modeling techniques. Beyond Boolean composition, implicit model-
ing integrates blending and deformation operators which allow complex free-form
solid models to be more easily described. Recent advances have alleviated some
of the major technical problems, such as visualization speed and surface control.
In this chapter we describe how to combine these new techniques with a sketch-
based 3D modeling interface, resulting in a powerful tool for quickly creating solid
models. Our system, called ShapeShop, has been used as a testbed to investigate a
range of problems, from real-time visualization [36], sweep surfaces [35], surface
parameterization [38], and implicit surface deformation [41], to higher-level design
and usability issues such as structured visualization [39] and 3D manipulation [40].
Sketch-based 3D modeling is the common thread which ties all these various prob-
lems together [33, 34, 37, 46].

Much like the seminal Teddy system [18], ShapeShop is a tool for incrementally
creating a 3D model using simple 2D sketches. From this starting point, many other
sketch and pen-based interaction techniques have been adapted and integrated into
the system. ShapeShop borrows liberally from work in sketching assistance [7, 17],
gestural systems [48], crossing interfaces [2], and suggestive modeling [16]. One
long-term aspect of the ShapeShop project is to evaluate how these non-traditional
techniques can be effectively combined within a complex interface.

R. Schmidt (�)
Dept. of Computer Science, University of Toronto, 10 King’s College Road, Rm. 3302, Toronto,
Ontario M5S 3G4, Canada
e-mail: rms@dgp.toronto.edu

B. Wyvill
Department of Computer Science, University of Victoria, Engineering/ Computer Science
Building (ECS), Room 504, STN CSC, PO Box 3055, Victoria, BC, Canada V8W 3P6
e-mail: blob@cs.uvic.ca

J. Jorge, F. Samavati (eds.), Sketch-based Interfaces and Modeling,
DOI 10.1007/978-1-84882-812-4_11, © Springer-Verlag London Limited 2011

287

mailto:rms@dgp.toronto.edu
mailto:blob@cs.uvic.ca
http://dx.doi.org/10.1007/978-1-84882-812-4_11

288 R. Schmidt and B. Wyvill

Fig. 11.1 Character models designed by an expert ShapeShop user (the first author), progressing
from the earliest versions of the software (left) to the most recent releases (right)

Fig. 11.2 ShapeShop provides an expressive set of sketch-based implicit modeling techniques
which support a variety of modeling styles, from high-level conceptual design and CAD-style
solid modeling to free-form biological modeling, and even “3D doodling”

The most fundamental difference between ShapeShop and its predecessors is in
the use of procedural shape modeling techniques, particularly the hierarchical im-
plicit volume representation known as the BlobTree [45]. As with many other prob-
lems in computer science, utilizing a structured, hierarchical framework allows de-
signers to interact with complex models more effectively. In addition, the BlobTree
combines traditional CAD-style solid modeling with organic free-form blending in
a single interface, greatly enhancing the range of models which can be constructed
via sketching (Figs. 11.1 and 11.2). ShapeShop also takes a non-purist approach to
sketch-based interface design—functionality is exposed using traditional 2D wid-
gets if suitable alternatives have not yet been developed. As a result, designers can
express levels of model complexity not yet reachable using “pure” sketch-based
tools. Examples of such models are sprinkled throughout the following chapter, in
which ShapeShop’s interface techniques, modeling tools, and implementation de-
tails are described.

Another notable aspect of the ShapeShop project is that due to extensive de-
velopment carried out since 2004, the software is quite capable. Many of the re-
sults mentioned above are exposed in the current development versions, which are
(ir)regularly released on the internet at http://shapeshop3d.com.

Although still very much “research software”, ShapeShop has been extended to
the point where working artists have found a use for it in their production pipelines.

http://shapeshop3d.com

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 289

Fig. 11.3 3D sculptures created by first modeling in ShapeShop, and then importing the surface
mesh into Modo [23] for texturing and rendering. Images ©Corien Klapwijk

Some digital sculptors have also taken an interest in ShapeShop, and a few such
works are shown in Fig. 11.3. The feedback we have received from this small but
growing community of active users is highly informative. The chapter closes with
insights gathered from this feedback, as well as issues encountered during the design
and development of ShapeShop.

11.2 The ShapeShop Interface

A screenshot of the ShapeShop user interface is shown in Fig. 11.4. The system is
implemented using a combination of Microsoft’s MFC C++ application framework
and custom OpenGL widgets. The main interface window is a single-pane model
view. Two additional windows are used to manipulate the scene—a tree view for
interacting with the current BlobTree hierarchy, and a list view for changing param-
eters of a selected tree node. Standard menus and toolbars are also used to control
functionality which has not yet been exposed in the sketch-based interface.

Various interface components are embedded in a Heads-Up Display (HUD) ren-
dered on top of the model view. The Expectation List dynamically responds to
sketches drawn by the user, offering possible model interactions. The Parameter
Toolbar offers interactive manipulation of the most commonly-used parameters of
the selected node. Similarly, the Options Toolbar provides access to frequently
changed scene parameters, and the View Toolbar provides camera control.

11.2.1 Pencil-based Interaction

ShapeShop has been designed primarily to support use on direct-input displays, such
as the touch-sensitive SmartBoard (Fig. 11.5). These devices lack any sort of modal

290 R. Schmidt and B. Wyvill

Fig. 11.4 The various major interface elements in ShapeShop include the (A) Parameter Editor,
(B) BlobTree Editor, (C) Expectation List, (D) Parameter Toolbar, (E) Options Toolbar, (F) View
Toolbar, and (G) Model View

switch (buttons). Hence, we think of the interaction style in ShapeShop as pencil-
based rather than pen-based, as most pen-based systems incorporate physical mode
switches such as buttons on the pen barrel. Restricting ourselves to pencil-based
interaction does complicate the interface, as tasks commonly initiated with physical
mode switches must be converted to alternate schemes. In addition, since traditional
2D interface widgets can be difficult to use with pen or touch input, we adopt the
stroke-based widget interaction techniques of CrossY [2]. For example, a button is
“pressed” by drawing a stroke across it.

An obvious drawback is that we have heavily overloaded the meaning of such
strokes. For example, the user may intend to interact with a 2D widget, make a ges-
tural command, or specify the 2D silhouette of many possible 3D shapes. To resolve
this ambiguity, we apply three stages of interpretation. First, visible 2D and 3D wid-
gets that take continuous input are given a chance to capture the current stroke as it is
being drawn. Next, uncaptured strokes are tested against visible widgets for crossing
actions, and then against the small set of gestures that the system understands.

If no widget or gesture interactions are detected, the system assumes that a
3D construction or editing operation is desired. These actions are presented to the
user via the Expectation List, a dynamic toolbar utilized in several other sketch-

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 291

Fig. 11.5 Our pencil-based modeling interface is designed to support non-modal input devices,
like these touch-sensitive horizontal tabletop and digital whiteboard displays

ing tools [3, 13, 16]. Context-dependent rules are used to populate the Expectation
List, by comparing the current sketch with the underlying 3D model. For example,
a closed contour generates several sweep-surface options, but hole-cutting options
are only produced if the contour intersects the current surface. Note that Expectation
Lists in previous systems have generally contained small images of what the updated
surface would look like for each expectation list icon. For complex models the user
may be required to carefully inspect each image to find the desired action. Instead,
we use color-coded iconic representations which may be more easily recognized.

11.2.2 Sketching Assistance

Two-dimensional sketches form the basis for 3D shape creation in ShapeShop. To
aid the user in the 2D drawing task, ShapeShop includes techniques that assist with
the creation of smooth 2D contours. Our approach is inspired by Baudel’s overs-
ketching techniques [7] and the interactive beautification tools found in the Pegasus
system [17]. See [27] for a recent survey of these and related techniques.

A fundamental limitation of most standard input devices is that they provide
only point samples to the operating system. These discrete data can be converted to
a polyline by connecting temporally-adjacent point samples. However, in the case
of curves the polyline is only an approximation to the smooth curve the user desires.
In our system we do not create an approximate polyline, but instead fit a smooth 2D
variational implicit curve [32, 43] to the discrete samples. Curve normals derived
from the discrete polyline are used to generate the necessary off-curve constraint
points [10]. Variational curves provide many benefits, such as automatic smoothing
and gap-closing with minimal curvature (Fig. 11.6).

While this approach is most effective for closed curves, it can also be applied to
open curves in some cases. If the fit variational curve extends beyond the sketching

292 R. Schmidt and B. Wyvill

Fig. 11.6 The gap-filling and smoothing properties of variational curves simplify 2D curve sketch-
ing. In (a), multiple disjoint strokes are automatically connected by fitting a variational curve to
the input samples. In (b), smoothing parameters are used to handle intersections between multiple
strokes. Rough self-intersecting sketches can be automatically smoothed, as shown in (c)

Fig. 11.7 Examples of the eraser gesture (a) and smooth gesture (b). These gestures manipulate
the parameters used to compute the final variational curve (dashed line)

area, we assume the curve is open and clip it to lie within the endpoints of the
sampled polyline. However, as ShapeShop is a volume modeling interface, closed
contours are required to perform most of the creation and editing actions.

ShapeShop supports sketch-based editing of the set of point samples, but not
the final variational curve. To simultaneously visualize these two different compo-
nents, we render the current variational curve in black and the sketched polyline in
transparent blue (Fig. 11.7). Three gestural commands are available to assist users
when drawing 2D sketches. The first, eraser, is initiated with a “scribble”, as shown
in Fig. 11.7(a). An oriented bounding box is fit to the scribble vertices and used
to remove point samples from the current 2D sketch. The variational curve is re-
computed using the remaining samples.

The second gestural command is smooth, initiated by circling the desired smooth-
ing region a minimum of two times. Each point sample has a smoothing parameter
associated with it which is incremented if the point is contained in the circled re-
gion. The variational curve is then re-computed with the new smoothing parameters
(Fig. 11.7(b)). This gesture can be applied multiple times to the same point samples
to further smooth the 2D sketch. Finally, we include an undo gesture, input as a
quick stroke straight to the left, which removes the most recent stroke.

We have found these techniques to be very effective for creating smooth 2D
sketches. This in turn improves the efficiency of 3D modeling, since fewer correc-
tions need to be made to the 3D shape. One current limitation is that sharp creases
in the input sketch are lost, since the underlying variational curve is always C2 con-
tinuous. A useful extension to our technique would be to automatically detect sharp
edges, and re-introduce them into the smoothed variational curves.

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 293

Fig. 11.8 Blobby inflation converts the 2D sketch shown in a into the 3D volume b such that
the 2D sketch lies on the 3D silhouette. The width of the inflated volume can be manipulated
interactively, shown in (c). Sketched 2D curves can also be used to create d linear sweeps and
e surfaces of revolution

11.2.3 Sketch-based Modeling Operations

ShapeShop supports construction of three basic types of shapes derived from
sketched 2D contours—“blobby” inflation in the style of Teddy [18], linear sweeps,
and surfaces of revolution. Based on these three shapes, sketch-based cutting and
blending operations are implemented using BlobTree composition operators.

A key benefit of utilizing the BlobTree shape representation is that the current
volume is procedurally defined by an underlying model tree which represents both
a scene graph and a full construction history. Single primitives, as well as entire
portions of the tree, can be modified or removed at any time. Exposing this flexibility
through a sketch-based interface can be quite difficult, and much research remains to
be done on intuitive techniques for editing volumetric scene graphs. In ShapeShop,
the designer can use gestural commands and 3D widgets to manipulate individual
BlobTree nodes, however more complex operations like tree re-structuring require
the use of a traditional tree-view widget (Fig. 11.4). In our experience, designers
find it difficult to understand the link between this text-based tree view and the
actual model structure. An abstraction which simplified this tree view while still
preserving the considerable power it provides would be highly desirable.

11.2.3.1 Blobby Inflation

As in many other sketch-based modeling tools [3, 18, 20, 25, 28, 42], the primary
shape-creation operation in ShapeShop is inflation, where a closed 2D contour is
then inflated into a “blobby” 3D shape. This operation can be easily accomplished
using implicit sweeps with the blobby endcap style, as described in Sect. 11.3.3.
The 2D sketch (Fig. 11.8a) is projected onto a 3D plane parallel to the current view
plane, and then inflated in both directions (Fig. 11.8b). After creation, the width
of the primitive can be manipulated interactively with a 2D widget (Fig. 11.8c).
The inflation width is functionally defined and could be manipulated to provide a
larger difference between thick and thin sections. One advantage of the implicit
representation is that holes and disjoint pieces can be handled transparently.

294 R. Schmidt and B. Wyvill

Fig. 11.9 Cutting can be performed b across the object silhouette or c through the object interior.
Holes can be interactively translated and rotated. Intersection with other holes is automatically
handled, as shown in (d). Hole depth can also be modified to create cut-out regions (e)

11.2.3.2 Sweep Surfaces

The sweep-surface representation underlying our blobby inflation scheme also sup-
ports linear sweeps (Fig. 11.8d) and surfaces of revolution (Fig. 11.8e). Linear
sweeps are created in the same way as blobby shapes, with the sweep axis per-
pendicular to the view-parallel plane. The initial length of the sweep is proportional
to the screen area covered by the bounding box of the 2D curve, but can be interac-
tively manipulated with a 2D widget. Surfaces of revolution are created by revolving
the sketch around an axis lying in the view-parallel plane. As in the case of linear
sweeps, the revolution template can contain holes, and revolutions with both spher-
ical and toroidal topology can be created.

Aside from Cherlin et al.’s advanced revolution technique [11], most sketch-
based systems have not included these additional types of shapes. While blobby
inflation is highly useful for many modeling tasks, linear sweeps and revolutions
are invaluable in situations such as mechanical modeling. In particular, surfaces of
revolution are a class of shape that cannot be approximated with blobby inflation.

11.2.3.3 Cutting

Since the underlying BlobTree is a true volumetric model, cutting operations can be
easily implemented using CSG operators. Designers can either cut a hole through
the object or remove volume by cutting across the object silhouette. Since the “hole”
is internally represented as a linear sweep, no additional implementation is neces-
sary to support cutting. In addition, the designer may interactively transform this
subtracted sweep at any time, effectively dragging the hole around through the sur-
face. Interactive controls are also available to modify the depth of cutting operations.
An example is shown in Fig. 11.9. This CSG-based cutting operation is both more
precise and less restrictive than in existing systems. Note that although only sharp
edges are demonstrated in Fig. 11.9, ShapeShop includes various “soft” CSG differ-
ence operators which generate filleted edges of varying smoothness.

11.2.3.4 Blending

ShapeShop relies on the easy-to-implement implicit blending techniques supported
by the BlobTree to allow the designer to increase the volume of the current object.

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 295

Fig. 11.10 The sketch-based blending operation a creates a new blobby inflation primitive and
b blends it to the current volume. The blending strength can be interactively manipulated, the
extreme settings are shown in (c) and (d). The blend region is re-computed automatically when the
blended primitives move, as shown in (e)

As demonstrated in Fig. 11.10, this action is initiated by sketching a contour across
the silhouette or interior of the current shape. Selecting the resulting suggestion
creates a new blobby primitive which is blended with the current model. The width
of the new primitive can be manipulated with a slider, as can the amount of blending.
Again, as the blend is a dynamic composition of two implicit volumes, either can be
transformed interactively (Fig. 11.10(e)).

Various other tools have explored implicit blending [3, 20] or discrete fairing [25]
in a sketch-based context. However, the style of dynamic implicit blending available
in ShapeShop is highly useful in practice, and one of the features that professional
3D artists find most desirable when first being introduced to the system.

One issue neglected thus far is how to fix the depth of the view-parallel 3D plane
onto which a sketched contour is projected. Unlike Teddy’s extrusions, we try to
infer the correct depth from context, rather than require the user to mark the surface.
Without any prior evidence, the plane is assumed to pass through the origin. How-
ever, if the sketched strokes overlap the 2D projection of the surface, we center the
projection plane at the average depth value along the strokes. If a part is selected,
only its surface is considered. This technique is reasonably effective in practice,
and one can learn to manipulate the viewpoint and stroke to generate a good initial
guess. However, minor errors are common and major errors sometime occur, requir-
ing 3D manipulation. We are currently exploring efficient techniques for allowing
the designer to more explicitly specify the depth of newly created primitives.

11.2.3.5 Surface Drawing

Perhaps the most straightforward type of sketch-based interaction is drawing curves
directly on an existing 3D surface. Such techniques have long been used in tra-
ditional modeling systems [4], and are a basis for operations in many sketch-
based systems [18, 24, 25]. ShapeShop supports such a “surface-drawing” tech-
nique, useful for adding detail and creating arbitrary 3D structures. The operation
is very simple—rays through the 2D strokes are intersected with the current im-
plicit volume, and a solid tube-like volume represented by a 3D implicit polyline

296 R. Schmidt and B. Wyvill

Fig. 11.11 Surface drawing is specified by a 2D sketch, as shown in (a). Blended skeletal implicit
point primitives are placed along the line at intersection points with the model, shown in (b). In (c)
the radius of the points is increased and then tapered along the length of the 2D curve. Temporary
construction surfaces (d) can be used to create more complex 3D curves (e)

primitive is generated. Interactive controls are provided to manipulate both the sur-
face radius and linear scaling (tapering) along the polyline. Results are shown in
Fig. 11.11(a–c).

With Surface Drawing, any pair of implicit primitive and composition operator
can be used as a type of “brush” to add detail to the current surface. Implement-
ing these alternative tools within the BlobTree framework is very straightforward.
In addition, since each surface-drawing stroke is represented independently in the
model hierarchy, individual surface details can be modified or removed using the
existing modeling interface. Of course, as the surface is dynamically polygonized,
interactive visual fidelity must be limited at levels which often do not resolve fine
details. This does unfortunately limit the use of surface drawing in practice.

Surface drawing also readily demonstrates another extremely useful property of
utilizing the BlobTree as an underlying shape representation for sketch-based mod-
eling. As shown in Fig. 11.11(d–e), surface drawing can be applied to a temporary
construction surface, which is then erased, resulting in free-floating geometry which
does not lie on a planar space curve. The same technique can be used to fix the depth
of sketched primitives without excessive manual positioning. These temporary con-
struction surfaces are a novel property of ShapeShop which was not designed into
the system, but simply emerged out of the non-linear hierarchical editing capabil-
ities of the BlobTree. One potentially fruitful area of future research would be to
explore more explicit support for construction surfaces in sketching systems.

11.2.4 Selection and Transformation

Procedurally defined BlobTree volumes inherently support non-linear editing of in-
ternal tree nodes. However, before a primitive can be manipulated it must be se-
lected. One option is to cast a ray into the set of primitives and select the first-hit
primitive. This technique is problematic when dealing with blending surfaces, since
the designer may click on the visible surface but no primitive is hit.

Picking in ShapeShop is implemented by intersecting a ray with the current vol-
ume, and then selecting the primitive which contributes most to the total field value
at the intersection point. This algorithm selects the largest contributor in blending
situations, and selects the subtracted primitive when the user clicks on the inside

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 297

Fig. 11.12 Internal volumes can be directly rendered using pen-and-ink stippling (a) or trans-
parency (b). Portions of the surface can also be highlighted to show the influence region of a selec-
tion (c). Visual Scaffolding techniques provide an integrated display of all the primitives making
up a model (d), but do not convey the structure of the BlobTree

of a hole surface. However, selecting the maximum contributor can result in non-
intuitive behavior in cases where a small primitive is blended with a larger one, as
the larger primitive may contribute more to the field at all points on the surface. In
this case, the user must use the BlobTree Editor tree view (Fig. 11.4) to select the
desired node. An un-implemented but sensible alternative would be to cycle through
the possible selections using multiple taps.

This selection system only allows for selection of primitives. To select composi-
tion nodes we implement a parent gesture, which selects the parent of the current
node. The parent gesture is entered as a straight line towards the top of the screen.
No similar child-selection gesture has been implemented because it is unclear how
to disambiguate which child is desired in cases where a node has multiple children.
A selected primitive or composition node can be removed using the eraser gesture
described in Sect. 11.2.2. Removing a composition node is equivalent to cutting
a branch from the model tree—all children are also removed. More complex tree
traversal and manipulation, such as re-arranging nodes, currently require the use of
the BlobTree Editor tree view.

We have experimented with several rendering modes to display the shape of se-
lected primitives, which are often completely contained within the current volume
(Fig. 11.12). These techniques effectively convey the shape of the selected volume,
but the semantics of the local BlobTree structure are completely opaque. Visualiza-
tion of structured hierarchical 3D models, in a manner suitable for intuitive direct
manipulation, is a challenging and relatively open problem. Obvious approaches
like transparency or cut-away views do not scale well to complex nested trees. One
possible approach we have recently explored involves visual scaffolding, a rendering
style which mimics the construction geometry sketched by artists to help produce
correct proportions and perspective in pencil-and-paper drawing [39]. However, this
technique only addresses visualization of the BlobTree primitives; no support for
display or interaction with composition nodes was provided (Fig. 11.12(d)). This

298 R. Schmidt and B. Wyvill

is a key direction for future work, which impacts not only solid modeling, but any
dataflow-based procedural modeling interface.

ShapeShop supports 3D manipulation using standard 3D translation and rotation
widgets. Compared to the fluid gestural commands used elsewhere in ShapeShop,
these 3D widgets are rather crude, and hence recent work has been directed towards
exploring alternate 3D manipulation schemes [40]. These techniques still involve
3D widgets, but utilize context-sensitive gestural and suggestive methods which are
more compatible with sketch-based interfaces.

11.3 Technical Details

The technical details underlying the various components of the ShapeShop system
span many areas of computer graphics and human-computer interaction. In the fol-
lowing text we focus the discussion on the critical shape modeling aspects relating
to hierarchical implicit volume modeling. Even that is quite a large subject, far too
extensive to describe here in any depth. Hence, we limit ourselves to a very brief
overview of the basics, and refer the interested reader to [33] for detailed informa-
tion and discussion of open problems in this area.

11.3.1 Hierarchical Implicit Volume Modeling

Consider a function f that, when applied to a point p ∈ R
3, produces a scalar value

f (p) ∈ R. A surface S ∈ R
3 can then be defined by the equality

f (p) = v (1)

where v ∈ R is a scalar value. This surface S is an iso-contour of the scalar field
produced by f (p), and v is the iso-value that produces S . In computer graphics, S is
commonly known as an implicit surface. One example is the distance field, defined
with respect to some geometric entity T, such as a point or a curve:

dT(p) = min
q∈T

|q − p|. (2)

Intuitively, dT(p) is the shortest distance from p to T. Hence, dT(p) = 0 describes
the set of points p lying on T, while non-zero iso-values define offset surfaces. By
mapping values to grayscale, we can visualize a 2D slice of the field (Fig. 11.13(a)).

Distance fields can be used directly for 3D modeling, however they have several
limitations—they do not necessarily define closed surfaces, may be discontinuous,
and have infinite extent. As we shall soon see, these are problematic if we wish to
functionally combine implicit surfaces. Instead, we can apply a second function g

to the distance field, which is known as a falloff or potential function. We use

g(d) = (
1 − d2/r2)3

. (3)

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 299

Fig. 11.13 The 2D distance field from a circle is shown in (a), with distance values mapped to
grayscale—brighter values indicate larger distances. Skeletal primitives are created by applying a
potential field (b) to a distance field, resulting in a bounded field such as in (c), which visualizes
the value of g ◦ d(p) when the skeleton is a single point

As shown in Fig. 11.13(b), this function smoothly decreases from 1 to 0. When
composed with a distance field, the resulting field f (p) = g ◦ dT(p) is bounded,
meaning that there is a finite region within which all non-zero values, as well as
the iso-surface, are guaranteed to be contained (Fig. 11.13(c)). This type of implicit
surface is known as a skeletal primitive, because T is the skeleton of the iso-surface.

Skeletal primitives provide other guarantees as well. Assuming T is convex, the
field is necessarily continuous, and is closed by definition. Hence, given an iso-value
v, skeletal primitives also define implicit volumes:

V = {
p : f (p) ≥ v

}
. (4)

The volumetric property is quite useful. For example, (4) provides a trivial point
containment test. Implicit volumes can also be trivially composed via Boolean op-
erations. The union of two implicit volumes f1 and f2 can be described by a new
scalar field, generated by functional composition [31]:

(f1 ∪ f2)(p) = max
(
f1(p), f2(p)

)
. (5)

The power of this operation, and similar ones for intersection and subtraction or
difference, is that they are closed under the space of all possible implicit volumes,
meaning the can be applied repeatedly, each time producing another implicit volume
(Fig. 11.14). Hence, implementing solid-modeling techniques such as Constructive
Solid Geometry (CSG) is nearly trivial with implicit volumes. The CSG Tree is rep-
resented as a hierarchy of functional compositions such as (5), with skeletal primi-
tives at the leaf nodes (see Fig. 11.19 for a simple example).

Solid modeling is not limited to CSG. Another useful class of operation is the
construction of smooth transitions between two surfaces, often known as a blend.
Functional blend operators can be defined for implicit volumes, such as Ricci’s
blend operator [31] (Fig. 11.14(c)):

(f1 � f2)(p) = (
f1(p)s + f2(p)s

) 1
s (6)

which allows the user to control blend smoothness via the parameter s (as s → ∞,
� → ∪). Like the CSG operators, this blend operator is independent of the com-
plexity of the implicit surface, and simply produces another implicit volume. We

300 R. Schmidt and B. Wyvill

Fig. 11.14 An implicit
sphere is subtracted from
another using a CSG
Difference operation (a), and
blended in (c). 2D slices
through the respective 3D
scalar fields are shown in (b)
and (d)

can now see why bounded fields such as those produced by skeletal primitives are
so important—each input field to (6) can only affect the blended surface within its
bounding region. This local influence preserves a “principle of least surprise” that
greatly improves the usability of constructive implicit modeling.

The BlobTree hierarchical modeling framework is an extension of the tradi-
tional CSG Tree which encapsulates techniques for constructive solid modeling
with skeletal primitives [45]. In addition to CSG and blending, the BlobTree sys-
tem includes support for functional warping and deformation, texturing, and anima-
tion. See [15] for a thorough description of the full BlobTree system. The BlobTree
implementation used in ShapeShop is relatively non-traditional, in that only func-
tionality relating specifically to shape modeling has been implemented, largely to
reduce computational costs. For example, even basic BlobTree color support would
quadruple the memory requirements involved in the Hierarchical Spatial Caching
described in Sect. 11.3.4.

11.3.2 BlobTree Visualization

As noted in the previous section, an implicit surface is defined as an iso-contour of a
scalar field, f (p) = v. Unlike a parametric definition, this equation does not directly
provide points on the surface. Instead, visualization algorithms must search through
space to determine where the surface lies.

Perhaps the simplest technique for visualizing implicit surfaces is polygoniza-
tion. We use a continuation polygonization algorithm, which initially finds points
on the surface by marchings outwards from internal seed points defined by the
primitives. Space is then subdivided into small cubes, and the cubes intersecting
the surface are incrementally enumerated using a stack and hash table [44]. This
minimizes the number of field evaluations, and hence is more efficient for polygo-
nizing functional surfaces than the popular Marching Cubes algorithm [22], which

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 301

Fig. 11.15 Implicit surfaces
can be visualized by
dynamically tessellating the
surface (a). However, to
ensure real-time feedback, the
mesh fidelity must be
dramatically lowered (b).
Based on this coarse mesh,
we can generate high-fidelity
pen-and-ink renderings at
little extra cost (c)

performs a brute-force enumeration of all cubes inside a fixed volume. Ideally these
algorithms produce the same mesh, although we cannot guarantee that a seed point
exists inside each disconnected component, and hence the continuation approach
can sometimes miss parts of the surface.

To interactively visualize BlobTree models in ShapeShop, the polygonization
algorithm is performed in real-time, using an optimized version of Bloomenthal’s
code [8]. Two modified versions of this polygonizer are also available. The first
simply adds the crease-finding techniques described in the Extended Marching
Cubes work [21]. The second provides support for local updates, where mesh re-
computation is limited to the regions in which the current model has changed. The
extra contextual information that must be stored to support partial re-meshing does
introduce significant overhead, however, smaller local updates are so much more
efficient that the benefits largely outweigh this cost.

Despite expending significant effort in our attempts to optimize our polygonizer,
we still must sacrifice visual fidelity to ensure interactive feedback rates, even for
moderately simple models. Hence, we have begun to explore other visualization
techniques. By combining a coarse mesh with local refinement techniques, we can
provide real-time pen-and-ink-style rendering at a higher level of visual fidelity,
but within the same computation budget as lower quality real-time polygonization
(Fig. 11.15). See [39] for technical implementation details.

302 R. Schmidt and B. Wyvill

11.3.3 Sketchable Implicit Sweep Primitives

Traditionally, modeling with the BlobTree involved composition of fixed geometric
primitives—spheres, cylinders, and so on [45]. However, in a sketch-based modeling
tool, we would like to be able to create an inflated shape with a silhouette that closely
matches an arbitrary 2D contour sketched by the designer. One approach is to use
numerical optimization to find a set of simple primitives which, when blended, will
produce an appropriate shape. This is computationally impractical [9], although a
recent specialization for the inflation problem has made it more tractable [1]. In-
stead, we developed a new BlobTree primitive which supports direct manipulation
of the silhouette contour, so that it can be matched directly to a given 2D sketch.

As described in Sect. 11.2.3, ShapeShop’s creation tools allow the user to sketch
closed 2D contours on a plane in space. This contour is then inflated into some 3D
volume [18]. Essentially, these inflated shapes are a type of sweep surface or extru-
sion, where the planar contour is the template and the plane normal is the trajectory.
While sweep surfaces are ubiquitous in surface modeling [30], implicit sweep rep-
resentations have generally been limited to star-shaped templates [12] which are
procedurally defined. To create an implicit primitive whose silhouette contour could
be matched to an arbitrary 2D sketch, it was necessary to develop sweep primitives
which allowed for arbitrary template curves.

In the implicit domain, we define the desired primitive by sweeping a bounded,
continuous 2D template scalar field fC , whose iso-contour v approximates the
sketched closed contour C , along the trajectory T . As with other BlobTree prim-
itives, the general approach is to apply a falloff function to the distance field of the
curve, hence fC = g ◦ dC , where dC is the 2D distance field defined by C and g is
as in (3). Note that as the surface of other BlobTree primitives is defined at v = 0.5,
the values of dC must be shifted so that the v contour aligns with the 0-contour of
the distance field. The shifted distance d ′

C is then:

d ′
C = min

(
g−1 (v) + dC ,0

)
. (7)

The bounded template field fC is then defined as

fC = g ◦ d ′
C . (8)

This formulation produces a template with the desired iso-contour, but the dis-
tance field of a non-convex C contains C1 discontinuities (Fig. 11.16(a)). These dis-
continuities will be swept in 3D and produce undesirable artifacts when the sweep
primitive is blended with other shapes [33]. Hence, it is necessary to generate a
“smoothed” distance field, which approximates dC but remains continuous.

To create such a smooth distance field, we utilize variational interpolation, also
known as thin-plate splines approximation. Essentially, a C2 interpolating thin-plate
spline is fit to a set of constraint points placed at samples of C [47]. To ensure
that the solution passes through the sample points, inner and outer normal con-
straints are added at short distances along the normals to C at the on-curve samples
(Fig. 11.17(a)).

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 303

Fig. 11.16 Scalar fields generated using a non-convex curve (a). The exact distance field (b) has
C1 discontinuities inside and outside the curve. Standard variational interpolation with normal
constraints provides a poor approximation in concave regions, and is difficult to bound (c). Our
approach (d) smoothly approximates the distance field away from the surface

Fig. 11.17 Normal
constraints (a) at a point ci

are added at short offset �s

from the curve C, along the
curve normal ni . Boundary
constraints (b) are placed at a
constant distance from C to
improve the distance field
approximation and ensure
that the field fC is bounded
within a known distance

Normal constraints only constrain the solution near C —the rest of the field is
unconstrained, resulting in a poor approximation to the distance field (Fig. 11.16).
This is problematic if the field is to be bounded by applying a falloff function, as a
time-consuming spatial search is required to determine the non-zero region of the
resulting field. With the true distance field, the bounding zero-contour lies along
the distance contour dC = g−1(0), the bounds of which can be reliably computed.
Hence, to predictably bound our approximate distance field, we add boundary con-
straints which force the variational field to approximate this outer contour. In ad-
dition, we add constraints along two interior contours in the distance field, one at
g−1 (0.5v), which is approximately half-way between C and the zero-contour, and
another at g−1 (1.5v), which lies inside C . The purpose of these extra constraints
is to further reduce error in the distance field approximation. To sample these con-
tours, we compute the distance transform of C on a 5122 pixel image, and trace the
discrete iso-contours in the image. As shown in Fig. 11.16, these constraints greatly
improve the distance field approximation, while maintaining global C2 continuity.

One drawback of this approach is that the evaluation of the variational field which
approximates the distance field is O(N) in the number of constraint points, so eval-
uating (8) is quite expensive. However, since we are only interested in the final
bounded field, we can pre-compute its values on a regular grid, or field image. From

304 R. Schmidt and B. Wyvill

Fig. 11.18 ShapeShop’s inflation algorithm is based on linear sweeps with a “blobby” endcap (a).
Flat endcaps with filleted edges (b) or sharp creases (c) are also supported, increasing the range of
shapes which can be modeled

this field image, the value of (8) can be approximated at any point in constant time
using a C1 bi-quadratic filter [35].

This 2D template scalar field can be easily swept along a line L(t) = o + td in
space, generating an 3D scalar field. The value of this field is defined at a 3D point p
by finding the nearest point L(tnear) on the line, transforming p into 2D coordinates
u in the plane perpendicular to the line at L(tnear), and sampling the 2D field image.
However, this field is infinite. To bound it, or “cap” the sweep, we multiply the
infinite sweep values by a falloff function whose value ranges from 1 at t = 0 to 0
at tmax. Since the values of the infinite sweep vary inside the template, they reach 0
at different distances along the line, producing an endcap which is wider in regions
further from the sketched contour, giving the impression of a shape which has been
inflated. The falloff function can be modulated to vary the width of the shape, and
also to produce different effects such as completely flat endcaps with smooth or
sharp transitions (Fig. 11.18).

In a traditional surface or solid-modeling environment, limiting the available
primitives to linear sweeps and surfaces of revolution would be highly restrictive.
However, by the simple addition of implicit blending, ShapeShop is capable of ex-
pressing a wide range of complex shapes. While the description here has been nec-
essarily brief, the interested reader is referred to [35] and [33] for a more thorough
discussion, including details on creating implicit sweeps with circular and arbitrary
trajectories. The latter seems particularly useful in a sketch-based tool, although it
has yet to be integrated into ShapeShop. We also note that a variety of other ap-
proaches to implicit inflation have been explored, based on blending point primi-
tives [1], 3D variational interpolation [3, 20], and convolution surfaces [1, 42]. The
main limitation with all of these methods, including the technique described here,
is that they produce continuous fields which cannot represent any sharp corners in
the sketch. We have proposed one solution for restricted cases [35], but the general
problem remains unaddressed.

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 305

Fig. 11.19 In (a), two
cylinder primitives are
blended, and then subtracted
from a sphere. In (b), a cache
node is inserted above the
blend node. Once filled, the
cache short-circuits
evaluation of the blend
subtree, replacing an O(m)

traversal with an O(1)

tri-linear interpolation

11.3.4 Hierarchical Spatial Caching

One of the major limitations of hierarchical implicit modeling techniques like the
BlobTree is that the complexity of the hierarchy grows with the complexity of the
model. Hence, the recursive evaluations of the tree which are required to sample
the scalar field defining the implicit volume become increasingly expensive. Un-
fortunately, implicit surface visualization methods rely on sampling the value and
gradient of this field many times for each output mesh vertex. In profiling implicit
surface polygonizers, we observed that for even moderately complex models, over
95% of the computation time is spent recursively evaluating the BlobTree. The cost
of these evaluations must be reduced to ensure that the designer is not hampered by
non-interactive visual feedback.

Inspired by promising results in [6], the Hierarchical Spatial Caching method
was introduced [36] to address the interactivity problem. The fundamental idea be-
hind this technique is to dynamically insert spatial caches into the BlobTree as cache
nodes. These nodes approximate the scalar field of their subtree using a set of regular
discrete samples which are computed as needed. This reduces the cost of evaluating
the subtree from O(m) to amortized O(1) (Fig. 11.19).

Unlike previous approaches [6, 14], the sample values at grid vertices are not pre-
computed, but rather evaluated as needed (Fig. 11.20). This lazy evaluation provides
a significant benefit, as full evaluation of high-resolution grids is computationally
intensive. In addition, if surface-tracking visualization algorithms are used, only
cache samples near the surface are required. In this case most of the samples in a
fully evaluated grid will never be used—particularly if they will be invalidated in
the next frame as the user drags a primitive across the screen.

The resolution of spatial caches is key to visual fidelity—too low a resolution,
and the subtree’s scalar field will not be adequately reconstructed, while oversam-
pling results in wasted computation. In practice, we err on the side of caution and
use a fixed grid resolution of 1283. An obvious improvement would be to utilize
adaptively-sampled grids, as in [14]. Unfortunately, adaptive methods have high
initial overhead, which is impractical when the cache is being discarded each frame,
and to date also lack even basic C0 continuity (see [33] for details).

A related issue is the positioning of cache nodes, which should be sparsely dis-
tributed throughout the tree, ideally above subtrees which define semantic “parts”.

306 R. Schmidt and B. Wyvill

Fig. 11.20 In (a), the field values necessary to reconstruct the value at the incoming query point (in
blue) are unavailable. The child field must be evaluated four times, once for each cache value (b).
In (c), two cache values are missing and must be evaluated in the child field (d). Finally, in (e) all
cache values are available. The incoming value query can be directly approximated in O(1) time,
no O(m) evaluations of the child field are necessary

Fig. 11.21 Comparison of representation of a sharp edge without caching (a), with a cache reso-
lution of 1283 (b), and 2563 (c). The Extended Marching Cubes polygonizer is used, producing a
clear sharp edge in (a), but having no effect in (b) and (c) due to gradient smoothing at the crease

Since it is preferable that the designer not have to manually place cache nodes,
ShapeShop uses simple heuristics to position cache nodes near the top of the tree.
As with the sampling resolution, these ad-hoc solutions are effective in practice, but
more principled approaches would be beneficial, and remain open problems.

In test cases simulating interactive modeling actions, hierarchical Spatial
Caching results in an order-of-magnitude reduction in the computation necessary
to triangulate a BlobTree model. This is a critical enhancement, making BlobTree
modeling practical for use in interactive systems like ShapeShop. However, there are
some drawbacks [33]. In particular, spatial approximation tends to smooth out sharp
creases in the surface. This is a standard problem with surfacing implicit models, but
recent polygonizers can use the field gradient to reconstruct sharp edges [21]. Unfor-
tunately the interpolating filters to reconstruct smooth scalar fields from a sampled
grid also smooth out the gradients, preventing sharp features from being recovered
(Fig. 11.21). A solution to this problem will require the development of schemes
which are sensitive to the properties of the scalar fields they are approximating.

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 307

Fig. 11.22 Additions to the ShapeShop modeling system have included decal texturing (left) and
mesh-based procedural surface editing layers (right)

11.4 The ShapeShop System

As with much of the research described in this book, one of our basic assumptions
is that sketch-based interfaces will ultimately lead to more efficient and expressive
3D modeling tools. However, in our experience, working artists and designers have
a hard time imagining how sketch-based tools could fit into their design pipelines.
We have found that many artists do experiment with SBM research software that is
publicly released, but these systems are regarded more as curiosities rather than real
tools, as such systems (sensibly) tend to focus on demonstrating novelty rather than
striving for production quality. Unfortunately, without user demand, the industrial
3D tool-makers with whom we have interacted remain skeptical of sketch-based
modeling techniques. Hence, one of our goals with ShapeShop was to develop the
system to the point where it could potentially be useful to real users.

ShapeShop was first made public at the SBIM Workshop in 2005, and included
most of the techniques described here, as well as a few more which have since
been removed. This was one of our early lessons—unlike systems with traditional
interfaces, where one can always “just add another menu item”, the designers of
interfaces based on gestures and context-sensitivity must be much more self-critical,
and willing to sacrifice infrequently-used tools if the system is to remain usable.

This initial version also lacked save/load capabilities, which severely limited the
utility of the software. When demonstrating the system to artists, however, their
biggest concern was texturing. Like many SBM systems, the output of ShapeShop
is an unstructured triangle mesh, and hence manually assigning meaningful UV co-
ordinates can be a time-consuming process. This lead to the development of decal
texturing [38], shown in Fig. 11.22, which was released in ShapeShop V2 at SIG-
GRAPH 2006. This version also included saving and loading, making the system
far more practical for real users.

Between the steady trickle of e-mail feedback, and posts discussing ShapeShop
on web-based community forums, we have learned that working 3D designers are
experimenting with ShapeShop in their professional workflows. Some of this explo-
ration is purely artistic, such as the 3D sculptures displayed in Fig. 11.23, which
were created by an artist who frequents the ShapeShop web forums. We have been
contacted by bespoke jewelers, children’s toy makers, elementary school teachers,

308 R. Schmidt and B. Wyvill

Fig. 11.23 3D sculptures created by first modeling in ShapeShop, and then importing the surface
mesh into Modo [23] for texturing and rendering. Images ©Corien Klapwijk

and traditional-media artists who are using ShapeShop to experiment with 3D mod-
eling. Much of this experimentation is short-lived, as the initial excitement tends
to fade once the many limitations of the system become clear. Still, the comments
we receive from users who have tried the software are almost uniformly positive,
indicating a high level of interest in sketch-based modeling techniques.

There is one particular method in which 3D designers are integrating ShapeShop
into their pipeline that warrants further explanation. As brush-based displacement
painting systems like Z-Brush [29] and Modo [23] have become more capable, it is
now common practice to build a basic model in traditional software, and then import
it into these tools, where realistic levels of detail can be much more easily created.
ShapeShop and other SBM software are quite effective in the initial blocking or
massing stages, where they are more efficient than traditional control-point inter-
faces. We have attempted to encourage this workflow by adding mesh refinement
tools to ShapeShop, as initial mesh quality is a necessity for these sculpting tools.
However, it may be interesting to explore a more specific focus on this particular
workflow, as it has significant implications for sketch-based modeling systems.

11.5 Discussion

In the previous sections, we have described the fundamental components of the
ShapeShop sketch-based modeling system. From 2D drawing assistance to pen-
based interaction to hierarchical, procedural shape representation, ShapeShop in-
corporates many aspects of our own research and that of others. By continually
developing the software and releasing it “into the wild”, we have received extensive
feedback from working 3D designers. This experience has given us much insight
into the advantages and shortcomings of our work.

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 309

The use of a structured, procedural hierarchy to represent the sequence of
sketched operations is perhaps the largest advantage of ShapeShop over its con-
temporaries. Not only does this permit greater complexity, it also allows designers
to tweak and refine indefinitely. The response of 3D artists to this capability has been
extremely positive. By utilizing implicit volumetric techniques, ShapeShop avoids
the artificial distinction between “CAD-style” and “free-form” modeling that most
tools make. The implicit approach also greatly enhances the ability to quickly ex-
plore a wide range of design variations (Fig. 11.24). Although iterative design is
extremely common, few systems provide any specific support, and hence it is often
very costly in 3D. Ultimately, we would like to reduce the burden on the designer
when they wish to pick-and-choose from multiple variations.

Construction surfaces are another powerful feature of the procedural approach
used in ShapeShop. Again, we have not designed in any specific support for con-
struction surfaces, but are in the process of exploring how to do so. The use of a
procedural hierarchy also introduces many new challenges. We have yet to find a
straightforward way to even visualize the model tree in an intuitive and understand-
able way, let alone interact with it. In our informal observation of users, this is one
of the most problematic areas of the system. Even computer graphics graduate stu-
dents schooled in CSG techniques have trouble manipulating the model tree via an
abstract tree-view widget.

Although ShapeShop simplifies many modeling tasks, the design space is ulti-
mately constrained to shapes that can be practically constructed by blending sweeps
and revolutions. Research is in progress to lift this limitation, such as the implicit
push-and-pull deformations recently introduced [41]. The Surface Tree mesh-based
procedural layered editing technique [34], has also been implemented in ShapeShop,
providing powerful but non-implicit surface manipulation tools (Fig. 11.22).

Finally, a frequent comment from academia is that sketch-based modeling sys-
tems like ShapeShop must be proven through controlled evaluation, as has become
standard practice for proposing novel interaction techniques in the field of human-
computer interaction. However, those techniques can be reasonably tested in iso-
lation, as the evaluation is largely based on human performance metrics. Such ap-
proaches are not applicable to evaluating the fitness of a complex SBM system,
which in many cases integrates a wide range of novel interactions. Furthermore, we
are not particularly interested in pure modeling speed, but rather a trade-off between
efficiency and expressiveness, which is more difficult to measure. Direct compar-
isons to professional 3D modeling systems are also not particularly useful. Novice
users must be trained for many hours to do anything productive in a complex mod-
eling tool, while professional users have personal workflows so highly-optimized
that any comparison to a new interface is hopelessly biased. And as there is so little
in common between traditional and sketch-based interfaces, the most that can be
learned from test subjects is personal preferences.

In some sense, we consider the public release of ShapeShop to be the ultimate
test of usefulness. However, like the few attempts at evaluating SBM systems that
have been performed [5, 19, 26], we have found that user response is essentially uni-
formly positive. Without variation, these data do not really tell us anything, except

310 R. Schmidt and B. Wyvill

Fig. 11.24 Design iterations generated by adding detail to an initial base model (left). Volumetric
implicit techniques free the designer from having to manage issues like model structure or discrete
topology when exploring model variations. For example, the pig nose on the far right was simply
drawn on top of the original dog nose

that the subjects have no basis for comparison and are probably only responding to
the novelty of the system. We have also found that an initial positive response should
not be taken to imply usefulness of the system in practice; once the novelty wears
off, designers are apt to return to the tools they are more familiar with. Hence, we
believe that the question of how to sensibly evaluate sketch-based modeling systems
has yet to be answered, and is perhaps the most important open problem in the area.

References

1. Alexe, A., Gaildrat, V., Barthe, L.: Interactive modelling from sketches using spherical implicit
functions. In: Proceedings of AFRIGRAPH 2004, pp. 25–34 (2004)

2. Apitz, G., Guimbretiére, F.: Crossy: a crossing-based drawing application. In: Proceedings of
ACM UIST 2004, pp. 3–12 (2004)

3. Araújo, B., Jorge, J.: Blobmaker: Free-form modelling with variational implicit surfaces. In:
Proceedings of 12th Encontro Português de Computação Gráfica (2003)

4. Autodesk Inc.: Autodesk Maya 2008 (2008). http://www.autodesk.com/maya
5. Bae, S.H., Balakrishnan, R., Singh, K.: ILoveSketch: as-natural-as-possible sketching system

for creating 3d curve models. In: Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST), pp. 151–160 (2008)

6. Barthe, L., Mora, B., Dodgson, N., Sabin, M.: Interactive implicit modelling based on c1

reconstruction of regular grids. International Journal of Shape Modeling 8(2), 99–117 (2002)
7. Baudel, T.: A mark-based interaction paradigm for free-hand drawing. In: Proceedings of

UIST ’94, pp. 185–192 (1994)
8. Bloomenthal, J.: An implicit surface polygonizer. In: Graphics Gems IV, pp. 324–349. Aca-

demic Press, San Diego (1994)
9. Bloomenthal, J. (ed.): Introduction to Implicit Surfaces. Morgan Kaufmann, San Diego (1997).

ISBN 1-55860-233-X
10. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans,

T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Proceed-
ings of ACM SIGGRAPH 2001, pp. 67–76 (2001)

11. Cherlin, J.J., Samavati, F.F., Costa Sousa, M., Jorge, J.A.: Sketch-based modeling with few
strokes. In: Proceedings of the Spring Conference on Computer Graphics (2005)

12. Crespin, B., Blanc, C., Schlick, C.: Implicit sweep objects. Computer Graphics Forum 15(3),
165–174 (1996)

13. Fonseca, M.J., Ferreira, A., Jorge, J.A.: Towards 3d modeling using sketches and retrieval. In:
Proceedings of the First Eurographics Workshop on Sketch-Based Interfaces and Modeling
(2004)

http://www.autodesk.com/maya

11 ShapeShop: Free-Form 3D Design with Implicit Solid Modeling 311

14. Frisken, S., Perry, R., Rockwood, A., Jones, T.: Adaptively sampled distance fields: A general
representation of shape for computer graphics. In: Proceedings of SIGGRAPH 2000, pp. 249–
254 (2000)

15. Galbraith, C.: Modeling natural phenomena with implicit surfaces. PhD thesis, Department of
Computer Science, University of Calgary (2005)

16. Igarashi, T., Hughes, J.F.: A suggestive interface for 3d drawing. In: Proceedings of ACM
UIST 2001, pp. 173–181 (2001)

17. Igarashi, T., Matsuoka, S., Kawachiya, S., Tanaka, H.: Interactive beautification: a technique
for rapid geometric design. In: Proceedings of ACM UIST ’97, pp. 105–114 (1997)

18. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A sketching interface for 3d freeform design.
In: Proceedings of ACM SIGGRAPH 99, pp. 409–416 (1999)

19. Kara, L.B., Shimada, K., Marmalefsky, S.D.: An evaluation of user experience with a sketch-
based 3d modeling system. Computers & Graphics 31(4), 580–597 (2007)

20. Karpenko, O., Hughes, J., Raskar, R.: Free-form sketching with variational implicit surfaces.
Computer Graphics Forum 21(3), 585–594 (2002)

21. Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.P.: Feature-sensitive surface extraction
from volume data. In: Proceedings of ACM SIGGRAPH 2001, pp. 57–66 (2001)

22. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algo-
rithm. Computer Graphics (Proceedings of SIGGRAPH 87) 21, 163–169 (1987)

23. Luxology LLC.: Modo 302, July 2008. http://www.luxology.com
24. Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for detail-

preserving mesh editing. ACM Transactions on Graphics 24(3), 1142–1147 (2005)
25. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Fibermesh: Designing freeform surfaces with

3d curves. ACM Transactions on Graphics 26(3), 41–1419 (2007)
26. Oh, J.Y., Stuerzlinger, W., Danahy, J.: Sesame: Towards better 3d conceptual design systems.

In: Proceedings of the 6th conference on Designing Interactive systems, pp. 80–89 (2006)
27. Olsen, L., Costa Sousa, M., Samavati, F.F., Jorge, J.: A taxonomy of modeling techniques

using sketch-based interfaces. In: Eurographics 2008 STAR Reports (2008)
28. Owada, S., Nielsen, F., Nakazawa, K., Igarashi, T.: A sketching interface for modeling the

internal structures of 3d shapes. In: Proceedings of the 4th International Symposium on Smart
Graphics, pp. 49–57 (2003)

29. Pixologic Inc.: Zbrush 3.1 (2008). http://www.pixologic.com
30. Requicha, A.A.G.: Representations for rigid solids: theory, methods and systems. Computing

Surveys 12(4), 437–464 (1980)
31. Ricci, A.: A constructive geometry for computer graphics. Computer Graphics Journal 16(2),

157–160 (1973)
32. Savchenko, V., Pasko, A., Okunev, O., Kunii, T.: Function representation of solids recon-

structed from scattered surface points and contours. Computer Graphics Forum 14(4) (1995)
33. Schmidt, R.: Interactive modeling with implicit surfaces. Master’s thesis, Department of Com-

puter Science, University of Calgary (2006)
34. Schmidt, R., Singh, K.: Sketch-based procedural surface modeling and compositing using

surface trees. Computer Graphics Forum 27(2), 321–330 (2008)
35. Schmidt, R., Wyvill, B.: Generalized sweep templates for implicit modeling. In: 3rd Inter-

national Conference on Computer Graphics and Interactive Techniques in Australasia and
Southeast Asia (GRAPHITE 2005), pp. 187–196 (2005)

36. Schmidt, R., Wyvill, B., Galin, E.: Interactive implicit modeling with hierarchical spatial
caching. In: Proceedings of International Conference on Shape Modeling and Applications
(SMI 2005), pp. 104–113 (2005)

37. Schmidt, R., Wyvill, B., Costa Sousa, M., Jorge, J.A.: ShapeShop: Sketch-based solid mod-
eling with blobtrees. In: Proceedings of the 2nd Eurographics Workshop on Sketch-Based
Interfaces and Modeling, pp. 53–62 (2005)

38. Schmidt, R., Grimm, C., Wyvill, B.: Interactive decal compositing with discrete exponential
maps. ACM Transactions on Graphics 25(3), 605–613 (2006)

39. Schmidt, R., Isenberg, T., Jepp, P., Singh, K., Wyvill, B.: Sketching, scaffolding, and inking:
a visual history for interactive 3d modeling. In: Proceedings of NPAR ’07, pp. 23–32 (2007)

http://www.luxology.com
http://www.pixologic.com

312 R. Schmidt and B. Wyvill

40. Schmidt, R., Singh, K., Balakrishnan, R.: Sketching and composing widgets for 3d manipula-
tion. Computer Graphics Forum 27(2), 301–310 (2008)

41. Sugihara, M., de Groot, E., Wyvill, B., Schmidt, R.: A sketch-based method to control defor-
mation in a skeletal implicit surface modeler. In: Proceedings of SBIM 2008 (2008)

42. Tai, C.L., Zhang, H., Fong, J.C.K.: Prototype modeling from sketched silhouettes based on
convolution surfaces. Computer Graphics Forum 23(1), 71–83 (2004)

43. Turk, G., O’brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Transactions
on Graphics 21(4), 855–873 (2002)

44. Wyvill, G., McPheeters, C., Wyvill, B.: Data structures for soft objects. Visual Computer 2(4),
227–234 (1986)

45. Wyvill, B., Guy, A., Galin, E.: Extending the CSG Tree. Warping, blending and boolean op-
erations in an implicit surface modeling system. Computer Graphics Forum 18(2), 149–158
(1999)

46. Wyvill, B., Foster, K., Jepp, P., Schmidt, R., Costa Sousa, M., Jorge, J.A.: Sketch based con-
struction and rendering of implicit models. In: Proceedings of the First Eurographics Work-
shop on Computational Aesthetics in Graphics, Visualization and Imaging 2005, pp. 67–74
(2005)

47. Yngve, G., Turk, G.: Robust creation of implicit surfaces from polygonal meshes. IEEE Trans-
actions on Visualization and Computer Graphics 8(4), 346–359 (2002)

48. Zeleznik, R.C., Herndon, K.P., Hughes, J.F.: SKETCH: an interface for sketching 3d scenes.
In: Proceedings of ACM SIGGRAPH 96, pp. 163–170 (1996)

	ShapeShop: Free-Form 3D Design with Implicit Solid Modeling
	Introduction
	The ShapeShop Interface
	Pencil-based Interaction
	Sketching Assistance
	Sketch-based Modeling Operations
	Blobby Inflation
	Sweep Surfaces
	Cutting
	Blending
	Surface Drawing

	Selection and Transformation

	Technical Details
	Hierarchical Implicit Volume Modeling
	BlobTree Visualization
	Sketchable Implicit Sweep Primitives
	Hierarchical Spatial Caching

	The ShapeShop System
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

