Dale Olesky Photo Banner
D. Dale Olesky
Department of Computer Science
University of Victoria
P.O. Box 3055
Victoria, B.C.
V8W 3P6
Canada
Office: ECS 630
Phone: (250) 472-5735
Fax:     (250) 472-5708
Email: dolesky at cs.uvic.ca

Education
Ph.D. Computer Science, University of Toronto 1971
M.Sc. Computing Science, University of Alberta 1968
B.Sc. Honours Mathematics, University of Alberta 1966
Research
Areas of Interest:

Linear algebra (especially matrix theory and combinatorial matrix analysis), numerical linear algebra, graph theory.
Recent Publications

Britz, T., D.D. Olesky, and P. van den Driessche, “Matrix inversion and digraphs: the one factor case,” Electronic Journal of Linear Algebra , 11, pp. 115-131, 2004.

Britz, T., D.D. Olesky, and P. van den Driessche, “The Moore-Penrose inverse of matrices with an acyclic bipartite graph,” Linear Algebra and its Applications, 390, pp. 47-60, 2004.

Britz, T., J.J. McDonald, D.D. Olesky, and P. van den Driessche, “Minimal spectrally arbitrary sign patterns,” SIAM Journal on Matrix Analysis and Applications , 26, pp. 257-271, 2004.

Johnson, C.R. and D.D. Olesky, “Sums of totally positive matrices,” Linear Algebra and its Applications , 392, pp. 1-9, 2004.

Dame, L.F., D.D. Olesky, and P. van den Driessche, “The exponent and cirumdiameter of primitive digraphs,” Linear Algebra and its Applications , 396, pp. 243-258, 2005.

Britz, T., D.D. Olesky, and P. van den Driessche, “Schur complements of matrices with acyclic bipartite graphs,” Electronic Journal of Linear Algebra , 14, pp. 2-11, 2005.

Johnson, C.R., and D.D. Olesky, “Rectangular submatrices of inverse M-matrices and the decomposition of a positive matrix as a sum,” Linear Algebra and its Applications, 409, pp. 87-99, 2005.

Olesky, D.D., B. Shader, and P. van den Driessche, “Permanents of Hessenberg (0,1)-matrices,” Electronic Journal of Combinatorics, 12, R70, 25 pp., 2005.

Bingham, B.D., D.D. Olesky, and P. van den Driessche, “Potentially nilpotent and spectrally arbitrary even cycle sign patterns,” Linear Algebra and its Applications, 421, pp. 24-44, 2007 .

Kim, I-J., D.D. Olesky, and P. van den Driessche, “Inertially arbitrary sign patterns with no nilpotent realization,” Linear Algebra and its Applications, 421, pp. 264-283, 2007.

Kim, I-J., J.J. McDonald, D.D. Olesky, and P. van den Driessche, “Inertias of zero-nonzero patterns,” Linear and Multilinear Algebra, 55, pp. 229-238, 2007.

Kim, I-J., D.D. Olesky, B.L. Shader, and P. van den Driessche, “Sign patterns that allow a positive or nonnegative left inverse,” SIAM Journal on Matrix Analysis and Applications, 29, pp. 554-565, 2007.

Grundy, D.A., C.R. Johnson, D.D. Olesky, and P.van den Driessche, “Products of M-matrices and nested sequences of principal minors,” Electronic Journal of Linear Algebra, 16, pp. 380-388, 2007.

MacGillivray, G., S. Nasserasr, D.D. Olesky, and P. van den Driessche, “Primitive digraphs with smallest large exponent,” Linear Algebra and its Applications, 428, pp. 1740-1752, 2008.

Catral, M., D.D. Olesky, and P. van den Driessche, “Group inverses of matrices with path graphs,” Electronic Journal of Linear Algebra, 17, pp. 219-233, 2008.

Elsner, Ludwig, D.D. Olesky, and P. van den Driessche, “Sufficient conditions for permutation equivalence to a WHS-Matrix,” Linear and Multilinear Algebra, 57, pp. 103-110, 2009.

Catral, M., D.D. Olesky, and P. van den Driessche, “Block representations of the Drazin inverse of a bipartite matrix,”Electronic Journal of Linear Algebra, 18, pp. 98-107, 2009.

Kim, I.-J., D.D. Olesky, and P. van den Driessche, “Critical sets of inertias for matrix patterns,” Linear and Multilinear Algebra, 57, pp. 293-306, 2009.

Catral, M., D.D. Olesky, and P. van den Driessche, “Allow problems concerning spectral properties of sign pattern matrices: a survey,” Linear Algebra and its Applications, 430, pp. 3080-3094, 2009.

Kim, I.-J., D.D. Olesky, B.L. Shader, P. van den Driessche, H. van der Holst, and K.N. Vander Meulen, “Generating potentially nilpotent full sign patterns,” Electronic Journal of Linear Algebra, 18, pp. 162-175, 2009.

Olesky, D.D., M.J. Tsatsomeros, and P. van den Driessche, “Mv-matrices: a generalization of M-matrices based on eventually nonnegative matrices,” Electronic Journal of Linear Algebra, 18, pp. 339-351, 2009.

Catral, M., D.D. Olesky, and P. van den Driessche, “Block representations of the Drazin inverse of a bipartite matrix,” Electronic Journal of Linear Algebra, 18, pp. 98-107, 2009.

Catral, M., D.D. Olesky, and P. van den Driessche, “Graphical description of group inverses of certain bipartite matrices,” Linear Algebra and its Applications, 432, pp. 36-52, 2010.

Berman, A., M. Catral, L. De Alba, A. Elhashash, F. Hall, L. Hogben, I.-J. Kim, D.D. Olesky, P. Tarazaga, M.J. Tsatsomeros, and P. van den Driessche, “Sign patterns that allow eventual positivity,” Electronic Journal of Linear Algebra, 19, pp. 108-120, 2010.

Catral, M., L. Hogben, D.D. Olesky, and P. van den Driessche, “Sign patterns that require or allow power-positivity,” Electronic Journal of Linear Algebra, 19, pp. 121-128, 2010.

Deaett, L., D.D. Olesky, and P. van den Driessche, “Refined inertially and spectrally arbitrary zero-nonzero patterns,” Electronic Journal of Linear Algebra, 20, pp. 449-467, 2010.

Catral, M., C. Erickson, L. Hogben, D.D. Olesky, and P. van den Driessche, "Sign patterns that allow strong eventual nonnegativity," Electronic Journal of Linear Algebra , 23, pp. 1-10, 2012.

Brualdi, R.A., L. Deaett, D.D. Olesky, and P. van den Driessche, "The principal rank characteristic sequence of a real symmetric matrix," Linear Algebra and its Applications , 436, pp. 2137-2155, 2012.

Olesky, D.D., M.J. Tsatsomeros, and P. van den Driessche, "Sign patterns with a nest of positive principal minors," Linear Algebra and its Applications , 436, pp. 4392-4399, 2012.

Grundy, D.A., D.D. Olesky, and P. van den Driessche, "Constructions for potentially stable sign patterns," Linear Algebra and its Applications , 436, pp. 4473-4488, 2012.

Bodine, E., L. Deaett, J.J. McDonald, D.D. Olesky, and P. van den Dreissche, "Sign patterns that require or allow particular refined inertias," Linear Algebra and its Applications , 437, pp. 2228-2242, 2012.