CS 350

Visual Aidsfor Lectures
Part |
Eric G. Manning

A Theme

e Computer Organization (HARDWARE
AND SOFTWARE) as a series of

e LEVELS

Tanenbaum’s Levels*

« LEVEL 1 -- microprogramming level

— primitives available are
e microinstructions
« eg. GPR1-> GPR2
. START MEMORY READ

— provided by

e hardware
CS 350 Part |

Tanenbaum'’s Levels

e LEVEL 2 the conventional machine
level

— primitives available are
* instructions, e.g.
 LDA R1, 1000
« ADA R1, 1001
« STA R1, 1000
— provided by
e microprograms of Level 1, executed interpretively

— used to implement
e Operating System furiétitiSTahd other things)

Tanenbaum'’s Levels

e LEVEL 3 theOperating System
Machine Level (OSML)

— primitives provided are
e virtual machines (enhanced hardware) consisting
of ...

CS 350 Part |

LEVEL 3 the Operating System Machine
Level (OSML)

— Consisting of . . .

— most L2 primitives (except HALT, etc)
— OSML primitives such as
» virtual 1/O to files (but not real 1/O to discs etc)
» Process creation & destruction
» Process synchronization
» inter-process communication

— plusfacilities such as
» virtual memory
» virtual cpus
» shells

Tanenbaum'’s Levels

e LEVEL 3 theOperating System

Machine Level (OSML)
— primitives are provided by
 programs composed of Level 2 primitives, executed
Interpretively
— for OSML primitives
e L2 primitives themselves

— used to implement
« Assembly Language functions

CS 350 Part |

L3
OSML

L3

L2

L1

Layers of Structure (so far)

CS 350 Part |

OS cdlsavallable.
Many L2 primitives
visible too.

Machine instructions
are provided. NO L1
primitives visible.

Microinstructions
provided by the
hardware

Tanenbaum'’s Levels

 LEVEL 4 theAssembly Language
L evel

— primitives available are A/L statements
corresponding to
e single L3 (L2) instructions
— LOAD R1, GEORGE

e single OSML (L3) instructions
— OPEN /USR/FILENAME

 seguences of L3 instructions (macros)

CS 350 Part |

Tanenbaum'’s Levels

— primitives are provided by
e atrandator called an assembler

— primitives are used by
 the next level up - asusual - the POL level

CS 350 Part |

Tanenbaum'’s Levels

e LEVEL 5 theProcedure-Oriented
L anguage (POL) Leve

— primitives available are POL statements
corresponding to

 sequences of L4 instructions , e.g.

CS 350 Part |

10

A<-- B+C; gengates
LOAD R1,C
ADD R1, B
STORE R1, A

— primitives are provided by

e various translators called Compilersor
Interpreters

CS 350 Part |

11

Observations

 LEVEL Jsprimitives
— are avallableto users of LEVEL J

— are implemented in terms of LEVEL J-1s
primitives

CS 350 Part |

12

Observations

 Normally, primitives of L , areinvisibleto

users of L (exception : L3)
(machl ne language instructions available at OSML level)

* Primitives of L are collectively called the
Virtual Machine of Level | , VM())

CS 350 Part |

13

Who | mplements What?

e L1. microprograms
— usually written by the cpu manufacturer

— sometimes users can write them too
* (Nanodata QM-1, DEC pdp-11 Model 40)

— sometimes L1 isimplemented in hardware for
speed (modern microprocessors, where Mp is
as fast as microprogram memory)

CS 350 Part | 14

Who | mplements What?

o L2: assembler
— usually cpu manufacturer

CS 350 Part |

15

Who | mplements What?

e L3: OSML routines

usually manufacturer
— (MacOS IBM MVS/370) or

e software house
— (PCDQOS) or

e CONSsortium
— (unix)

CS 350 Part |

16

Who | mplements What?

L4: Compilers & Interpreters

hardware manufacturer
— (IBM PL/1 compilers)

software house
— Borland C++ compilers

everybody but Microsoft
— Javal

CS 350 Part |

17

Some History

e L2: the machine instruction level or
Instruction Set Processor (ISP) Level

— von Neumann (1950), Babbage (1860), RISC
researchers (1980s)

CS 350 Part |

18

Some History

e L3: OSML

— resident I/O routines 1950s

— user interface languages
e OS 360 Job Control Language 1965
o unix Shell (1968)

— virtua cpu (by time-multiplexing the real cpu)
e IBM Control Program (1965)

CS 350 Part |

19

— virtual memory
« ATLAS, CTSS (1963)

— Processes
e Multics (1965), unix (1968)

— timesharing the cpu but not full Virtual
Machines:

o Compatible Time Sharing System (MIT, 1962)

CS 350 Part |

20

Some History

o L 4: assemblers
— various folks (1950s)

Hardware & Software
Equivalence

LS . software
L4
J
A
hardware
L1

J

They are equivalent

CS 350 Part |

All
hardware

21

Hardware & Software
Equivalence

 How to decide on the tradeoffs??

— Do it in hardware for
 higher performance
o orderly, predictable design process

— Do it in software for
 |ower replication cost
e possibility of modifying the design

CS 350 Part |

22

Things which moved to hardware
Implementation ...

Integer Multiply / Divide [1960]
Floating Multiply / Divide [1960]

Loop control
« [IBM 360 ISP- BXLE - 1965]

character-string processing
* [IBM 1401 -1960]

relocation of code
« [GE 635 - 1965]

CS 350 Part |

23

Things which moved to hardware
Implementation ...

e Context switching
 [DEC VAX singleinstruction - 1975]

 |/O operations

 [IBM 360 channel - 1965]

* [HIS 6050 Front End Processor - 1972]

* [DEC pdp-11 Direct Memory Access - 1972]

CS 350 Part | 24

Things which moved to software
Implementation ...

o Use of general-purpose microprocessors
plus software to implement the functionality
of

— thermostats

— digital filters

— automobile engine fuel injection
— video games

— watches

CS 350 Part | 25

Things which moved to software
Implementation ...

o Use of general-purpose microprocessors
plus software to implement the functionality
of

— one-armed bandits

— automatic transmission shift control
— graphical user interfaces

— embedded systems

CS 350 Part | 26

Things which moved to software
Implementation ...

* The cpu instruction set (Crusoe chip)
— reduces gate count hence power consumption
— optimized for Unix execution

— Just provides microinstructions in hardware
* a“micro-cpu’

Reviaw :
Processes

 Definition: an instance of a program,
executing on a particular set of data.

— Abstractly: a 2-tuple
— process id = (program, data)

CS 350 Part |

27

Reviaw :
Processes

e Animplementation (one of many !)

e Process queue entry

pid

|Code_p'tr

Data_ptr PC Status

code

|

v

data

CS 350 Part |

28

Reviaw :
Processes

* Why bother?

— Imagine 500 CS students compiling C programs
on CSC

— without the process construct, there would be
50 identical copies of the C compiler resident in
core

— ahecessary property of the compiler code?

CS 350 Part | 29

 Process state includes

— program
— virtual PC

— values of all variables

— |/O status of all devices

— ready / running /blocked flag

CS 350 Part |

— everything needed to resume execution
correctly after the cpu has been taken away and
given back

— time multiplexing of the cpu

procl pI’OCZ prOC]'

> Timet

CS 350 Part | 31

Summary - thislecture

» key ideas:
— hierarchical layers of hardware & software
— abstraction
— process structure

Paterson -Hennessey Break
e You'reresponsiblefor :

— Chapter 1 (please read it)

CS 350 Part |

32

PH Break

» Chapter 2

 key ideas:
— performance metrics
— how to calculate them

— how to abuse them
— relationships among them

CS 350 Part |

Assignment 1

o Seethewebpage

CS 350 Part |

