
CS 350

Visual Aids for Lectures
Part I

 Eric G. Manning

2

A Theme

• Computer Organization (HARDWARE
AND SOFTWARE) as a series of

• LEVELS

3CS 350 Part I

Tanenbaum’s Levels *

• LEVEL 1 -- microprogramming level

– primitives available are
• microinstructions

• e.g. GPR1 -> GPR2

• START MEMORY_READ

– provided by
• hardware

4CS 350 Part I

Tanenbaum’s Levels

• LEVEL 2 the conventional machine
level
– primitives available are

• instructions, e.g.

• LDA R1, 1000
• ADA R1, 1001
• STA R1, 1000

– provided by
• microprograms of Level 1, executed interpretively

– used to implement
• Operating System functions (and other things)

CS 350 Part I

Tanenbaum’s Levels

• LEVEL 3 the Operating System
Machine Level (OSML)

– primitives provided are
• virtual machines (enhanced hardware) consisting

of . . .

LEVEL 3 the Operating System Machine
Level (OSML)

– Consisting of . . .

– most L2 primitives (except HALT, etc)
– OSML primitives such as

» virtual I/O to files (but not real I/O to discs etc)

» process creation & destruction
» process synchronization

» inter-process communication

– plus facilities such as

» virtual memory
» virtual cpus

» shells

6CS 350 Part I

Tanenbaum’s Levels

• LEVEL 3 the Operating System
Machine Level (OSML)
– primitives are provided by

• programs composed of Level 2 primitives, executed
interpretively

– for OSML primitives

• L2 primitives themselves

– used to implement
• Assembly Language functions

7CS 350 Part I

L1

L2

L3
OSML

L3

Layers of Structure (so far)

OS calls available.
Many L2 primitives
visible too.

Machine instructions
are provided. NO L1
primitives visible.

Microinstructions
provided by the
hardware

8CS 350 Part I

Tanenbaum’s Levels

• LEVEL 4 the Assembly Language
Level
– primitives available are A/L statements

corresponding to
• single L3 (L2) instructions

– LOAD R1, GEORGE

• single OSML (L3) instructions
– OPEN /USR/FILENAME

• sequences of L3 instructions (macros)

9CS 350 Part I

Tanenbaum’s Levels

– primitives are provided by
• a translator called an assembler

– primitives are used by
• the next level up - as usual - the POL level

10CS 350 Part I

Tanenbaum’s Levels

• LEVEL 5 the Procedure-Oriented
Language (POL) Level

– primitives available are POL statements
corresponding to

• sequences of L4 instructions , e.g.

11CS 350 Part I

A <-- B + C; generates

LOAD R1, C
ADD R1, B
STORE R1, A

– primitives are provided by
• various translators called Compilers or

Interpreters

12CS 350 Part I

Observations

• LEVEL J’s primitives
– are available to users of LEVEL J

– are implemented in terms of LEVEL J-1s
primitives

13CS 350 Part I

Observations

• Normally, primitives of L
j-1

are invisible to
users of L

j
 (exception : L3)

– (machine language instructions available at OSML level)

• Primitives of L
j

 are collectively called the
Virtual Machine of Level j , VM(j)

14CS 350 Part I

Who Implements What?

• L1: microprograms
– usually written by the cpu manufacturer

– sometimes users can write them too
• (Nanodata QM-1, DEC pdp-11 Model 40)

– sometimes L1 is implemented in hardware for
speed (modern microprocessors, where Mp is
as fast as microprogram memory)

15CS 350 Part I

Who Implements What?

• L2: assembler
– usually cpu manufacturer

16CS 350 Part I

Who Implements What?

• L3: OSML routines

usually manufacturer
– (MacOS, IBM MVS / 370) or

• software house
– (PC DOS) or

• consortium
– (unix)

17CS 350 Part I

Who Implements What?

• L4: Compilers & Interpreters
• hardware manufacturer

– (IBM PL/1 compilers)

• software house
– Borland C++ compilers

• everybody but Microsoft
– Java!

18CS 350 Part I

Some History

• L2: the machine instruction level or
Instruction Set Processor (ISP) Level

– von Neumann (1950), Babbage (1860), RISC
researchers (1980s)

19CS 350 Part I

Some History

• L3: OSML
– resident I/O routines 1950s

– user interface languages
• OS 360 Job Control Language 1965

• unix Shell (1968)

– virtual cpu (by time-multiplexing the real cpu)
• IBM Control Program (1965)

20CS 350 Part I

– virtual memory
• ATLAS, CTSS (1963)

– processes
• Multics (1965), unix (1968)

– timesharing the cpu but not full Virtual
Machines:

• Compatible Time Sharing System (MIT, 1962)

Some History

• L4: assemblers
– various folks (1950s)

21CS 350 Part I

Hardware & Software
Equivalence

software

hardware

All
hardware

They are equivalent

L5
L4
...

L1

22CS 350 Part I

Hardware & Software
Equivalence

• How to decide on the tradeoffs??

– Do it in hardware for
• higher performance

• orderly, predictable design process

– Do it in software for
• lower replication cost

• possibility of modifying the design

23CS 350 Part I

Things which moved to hardware
implementation ...

• Integer Multiply / Divide [1960]
• Floating Multiply / Divide [1960]

• Loop control
• [IBM 360 ISP - BXLE - 1965]

• character-string processing
• [IBM 1401 -1960]

• relocation of code
• [GE 635 - 1965]

24CS 350 Part I

Things which moved to hardware
implementation ...

• Context switching
• [DEC VAX single instruction - 1975]

• I/O operations
• [IBM 360 channel - 1965]

• [HIS 6050 Front End Processor - 1972]

• [DEC pdp-11 Direct Memory Access - 1972]

25CS 350 Part I

Things which moved to software
implementation ...

• Use of general-purpose microprocessors
plus software to implement the functionality
of
– thermostats

– digital filters

– automobile engine fuel injection

– video games

– watches

26CS 350 Part I

Things which moved to software
implementation ...

• Use of general-purpose microprocessors
plus software to implement the functionality
of
– one-armed bandits

– automatic transmission shift control

– graphical user interfaces

– embedded systems

Things which moved to software
implementation ...

• The cpu instruction set (Crusoe chip)
– reduces gate count hence power consumption

– optimized for Unix execution

– just provides microinstructions in hardware
• a “micro-cpu”

27CS 350 Part I

Review :
Processes

• Definition: an instance of a program,
executing on a particular set of data.

– Abstractly: a 2-tuple

– process_id = (program, data)

28CS 350 Part I

Review :
Processes

• An implementation (one of many !)

• Process queue entry

pid Code_ptr Data_ptr PC Status

code data

29CS 350 Part I

Review :
Processes

• Why bother?

– Imagine 500 CS students compiling C programs
on CSC

– without the process construct, there would be
50 identical copies of the C compiler resident in
core

– a necessary property of the compiler code?

30CS 350 Part I

• Process state includes

– program

– virtual PC

– values of all variables

– I/O status of all devices

– ready / running /blocked flag

31CS 350 Part I

– everything needed to resume execution
correctly after the cpu has been taken away and
given back

– time multiplexing of the cpu

Time t
proc1 proc2 proc1

Summary - this lecture

• key ideas:
– hierarchical layers of hardware & software
– abstraction

– process structure

32CS 350 Part I

Paterson -Hennessey Break

• You’re responsible for :

– Chapter 1 (please read it)

33CS 350 Part I

PH Break

• Chapter 2

• key ideas:
– performance metrics
– how to calculate them

– how to abuse them
– relationships among them

34CS 350 Part I

Assignment 1

• See the webpage

