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A Theme

• Computer Organization (HARDWARE
AND SOFTWARE) as a series of

• LEVELS
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Tanenbaum’s Levels *

• LEVEL 1 -- microprogramming level

– primitives available are
• microinstructions

• e.g.  GPR1 ->  GPR2

•         START MEMORY_READ

– provided by
• hardware
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Tanenbaum’s Levels

• LEVEL 2       the conventional machine
level
– primitives available are

• instructions, e.g.

• LDA   R1, 1000
• ADA R1, 1001
• STA   R1, 1000

– provided by
• microprograms of Level 1, executed interpretively

– used to implement
• Operating System functions (and other things)
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Tanenbaum’s Levels

• LEVEL 3     the Operating System
Machine Level (OSML)

– primitives provided are
• virtual machines (enhanced hardware)  consisting

of . . .



LEVEL 3     the Operating System Machine
Level (OSML)

– Consisting of . . .

– most  L2   primitives (except HALT, etc)
– OSML primitives such as

» virtual I/O to files (but not real I/O to discs etc)

» process creation & destruction
» process synchronization

» inter-process communication

– plus facilities such as

» virtual memory
» virtual cpus

» shells
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Tanenbaum’s Levels

• LEVEL 3     the Operating System
Machine Level (OSML)
–  primitives are provided by

• programs composed of Level 2 primitives, executed
interpretively

– for OSML primitives

• L2 primitives themselves

– used to implement
• Assembly Language functions
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L1

L2

L3
OSML

L3

Layers of Structure (so far)

OS calls available.
Many L2 primitives
visible too.

Machine instructions
are provided. NO L1
primitives visible.

Microinstructions 
provided by the
hardware
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Tanenbaum’s Levels

• LEVEL  4     the Assembly Language
Level
–  primitives available are A/L statements

corresponding to
• single L3 (L2) instructions

– LOAD R1, GEORGE

• single OSML (L3) instructions
– OPEN    /USR/FILENAME

• sequences of L3 instructions (macros)
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Tanenbaum’s Levels

– primitives are provided by
• a translator called an assembler

– primitives are used  by
• the next level up -  as usual - the POL level
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Tanenbaum’s Levels

• LEVEL  5     the Procedure-Oriented
Language (POL) Level

–  primitives available are POL statements
corresponding to

• sequences of L4 instructions  , e.g.
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A <--  B + C;     generates

LOAD R1, C
ADD R1, B
STORE R1, A

– primitives are provided by
• various  translators called Compilers or

Interpreters
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Observations

• LEVEL J’s primitives
– are available to users of LEVEL J

– are implemented in terms of LEVEL J-1s
primitives
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Observations

• Normally, primitives of L
j-1  

are invisible to
users of L

j  
 (exception : L3)

– (machine language instructions available at OSML level)

• Primitives of L
j  

 are collectively called the
Virtual Machine of Level j ,  VM(j)
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Who Implements What?

• L1:  microprograms
– usually written by the cpu manufacturer

– sometimes users can write them too
• (Nanodata QM-1, DEC pdp-11 Model 40)

– sometimes L1 is implemented in hardware for
speed (modern microprocessors, where Mp is
as fast as microprogram memory)



15CS 350 Part I

Who Implements What?

• L2: assembler
– usually cpu manufacturer
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Who Implements What?

•  L3:  OSML routines

usually manufacturer
– (MacOS,  IBM MVS / 370 ) or

• software house
– (PC DOS )  or

• consortium
– (unix )
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Who Implements What?

• L4: Compilers & Interpreters
• hardware manufacturer

– (IBM PL/1 compilers)

• software house
– Borland C++ compilers

• everybody but Microsoft
– Java!
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Some History

• L2: the machine instruction level or
Instruction Set Processor (ISP) Level

– von Neumann (1950), Babbage (1860), RISC
researchers (1980s)
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Some History

• L3: OSML
– resident I/O routines  1950s

– user interface languages
• OS 360 Job Control Language 1965

• unix Shell (1968)

– virtual cpu (by time-multiplexing the real cpu)
• IBM Control Program (1965)
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– virtual memory
• ATLAS, CTSS (1963)

– processes
• Multics (1965), unix (1968)

– timesharing the cpu but not full Virtual
Machines:

• Compatible Time Sharing System (MIT, 1962)



Some History

• L4: assemblers
– various folks (1950s)
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Hardware & Software
Equivalence

software

hardware

All
hardware

They are equivalent

L5
L4
...

L1
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Hardware & Software
Equivalence

• How to decide on the tradeoffs??

– Do it in hardware for
• higher performance

• orderly, predictable design process

– Do it in software for
• lower replication cost

• possibility of modifying the design
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Things which moved to hardware
implementation ...

• Integer Multiply / Divide  [1960]
• Floating Multiply / Divide  [1960]

• Loop control
• [IBM 360 ISP - BXLE  - 1965]

• character-string processing
• [IBM 1401 -1960 ]

• relocation of code
• [ GE 635 - 1965 ]
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Things which moved to hardware
implementation ...

• Context switching
• [DEC VAX single instruction - 1975]

• I/O operations
• [IBM 360 channel - 1965]

• [HIS 6050 Front End Processor - 1972 ]

• [DEC pdp-11 Direct Memory Access - 1972 ]
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Things which moved to software
implementation ...

• Use of general-purpose microprocessors
plus software to implement the functionality
of
– thermostats

– digital filters

– automobile engine fuel injection

– video games

–  watches
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Things which moved to software
implementation ...

• Use of general-purpose microprocessors
plus software to implement the functionality
of
– one-armed bandits

– automatic transmission shift control

– graphical user interfaces

– embedded systems



Things which moved to software
implementation ...

• The cpu instruction set (Crusoe chip)
– reduces gate count hence power consumption

– optimized for Unix execution

– just provides microinstructions in hardware
• a “micro-cpu”
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Review :
Processes

• Definition: an instance of a program,
executing on a particular set of data.

– Abstractly: a 2-tuple

– process_id = (program, data )
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Review :
Processes

• An implementation (one of many !)

• Process queue entry

pid Code_ptr Data_ptr PC Status 

code data
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Review :
Processes

• Why bother?

– Imagine 500 CS students compiling C programs
on CSC

– without the process construct, there would be
50 identical copies of the C compiler resident in
core

– a necessary property of the compiler code?
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• Process state includes

– program

– virtual PC

– values of all variables

– I/O status of all devices

– ready / running /blocked  flag
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– everything needed to resume execution
correctly after the cpu has been taken away and
given back

– time multiplexing of the cpu

Time t
proc1 proc2 proc1



Summary  - this lecture

• key ideas:
– hierarchical layers of hardware & software
– abstraction

– process structure
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Paterson -Hennessey Break

• You’re responsible for :

– Chapter 1 (please read it)
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PH Break

• Chapter 2

• key ideas:
– performance metrics
– how to calculate them

– how to abuse them
– relationships among them
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Assignment 1

• See the webpage


