Review:
A simple architecture

e Single-bus

e slow SImp

e cheap

cpu

i 5. -

CS 350 Part |

Review:
A simple architecture

e Where

Register

control file

CS 350 Part | 2

Slightly fancier architecture

cpu
1O bus

’i i
M
Dio

CS 350 Part |

cpu

Ms

Fancier PM S architecture
e Compare it to the ssimple one:

— faster ? (why??)
— more expensive?

CS 350 Part |

cpu

Even fanclier . . .

Crosspar-switched multiprocessor

CS 350 Part |

I m Mp

Review:
what the cpu does (English)

1. Fetch next sequential instruction into Instruction
Register (IR)

2. Update Program Counter (PC) to point to next
Instruction

3. If data operand required from Mp, calculate its address
4. Fetch operand(s) from Mp to cpu registers

5. Execute instruction

6. Store result(s)

/. Goto step 1.

CS 350 Part |

Review:
what the cpu does (PL/1)

INTERP: PROC (MEMORY, START_ADDR);

[* Mp isword-addressed. Machine stores 1 instruction per word.
Mp cellsarenamed 0,1, . . ., 4095. Thereis 1 register called
AC. INTERP halts when RUN = 0. Process state = { memory,
PC, RUN, AC}.

DCL (MEMORY (0:4095), AC, START ADDR) FIXED BIN;

DCL (PC, IR, RUN, TYPE, DATA, DATA_LOCN) FIXED
BIN;

PC = SSTART_ADDR,;
RUN =1,

CS 350 Part | 7

Review:
what the cpu does (PL/1)

DO WHILE (RUN =1);

[* GET NEXT INSTRUCTION - FETCH PHASE */
IR = MEMORY (PC);

[* BUMP PC TO POINT TO NEXT INSTR */
PC=PC+ 1],

[* DECODE INSTR & PUT ITSTYPE INTO TYPE */
TYPE = DECODE (IR);

[* LOCATE DATA USED BY INSTR. RETURNS -1 IF
NONE */

CS 350 Part |

Ctd...

DATA _LOCN =FIND_DATA(IR);

IF (DATA_LOCN >0) THEN

— DATA = MEMORY (DATA_LOCN):;
/* EXECUTE */

CALL EXECUTE (TYPE,DATA, MEMORY, AC, PC,
RUN);

END;
RETURN;
END INTERP;

CS 350 Part |

comments

« THIS REPRESENTATION IS

— FUNCTIONALLY ACCURATE

 IT FAITHFULLY REFLECTS THE
FUNCTIONING OF THE REAL CPU, BUT

— STRUCTURALLY INACCURATE

e ITSSOFTWARE MODULESARE NOT
|ISOMORPHIC TO THE HARDWARE MODULES
OF THE REAL CPU

CS 350 Part | 10

- ANCCIANINANIT: DOAWAIDITE ITT IN N

Compilersvs. Interpreters

Def'n: A compiler analyzes all statements of a program,
then executes all of them

— AAAAAA EEEEEE

Def’ n: An interpreter analyzes each statement then
executes it

— AEAEAEAEAEAE

Def’n: An incremental compiler . . .

CS 350 Part |

11

Compilersvs. Interpreters

 Remark: acpuisan interpreter, where the unit of
execution is one instruction (Level 2)

e Remark: some cpus have a second, inner interpreter where
the unit of execution is one microinstruction (Level 1)

* Remark: acpu can interpretively execute the instruction set
of another cpu (Level 4)

CS 350 Part | 12

Review : Interrupts

e The problem:
— get cpu to do something (ie execute some routine)
— right now (ie subject to a hard realtime constraint)

e Why care?
— Air traffic control
— nuclear reactor control

CS 350 Part |

13

Review : Interrupts

e Solution:

Cpu Interrupt request line

IRQ

When (IRQ==1)
do save PS, PC
SAVE REGISTERS

C(C(XFER_VECTQR).-z PC
od

14

Review : Interrupts

 Embellishments:
— mask bit
— multiple lines, service routine for each

— source identifier per line
 eliminates polling the devices of the line
— vectored interrupts
— priorities among lines
 usually externa interruptsfirst, then

e internal interrupts (traps) second
CS 350 Part |

15

lllustrating ...

IRQ1

IRQ2

TV1

TVZ2

T

Source id

CS 350 Part |

16

Sample Interrupt Structure-
Motorola 68000 family

* Fully vectored by priority & device identifier
— service routine never has to figure out who invoked it

o 8levelsof external priority, plus cpu priority (traps)

e Cpu state saved (on a stack, natch) by hardware

CS 350 Part |

17

M 68000 performance

Exception

Address err

bus err

external interrupt
Illegal instruction
privileged instruction
trace

cyclesregd microsec

24
24
21
16
16
16

CS 350 Part |

18

IBM System/360
Interrupt structure

FIXED address vectors (Boo)
NO interrupt stacking (nested interrupts) BOO!

State saving:
— PSW stored at FIXED address
— no other cpu state info saved

| nterrupts maskable

CS 350 Part |

19

IBM $/360

Processor state:
— formally organized as Processor Status Word (PSW)
— notewhat ISN’T there e.g. general purpose register contents

bits contents

0-7 Interrupt masks. external, channels
8-11 protection key

12 ASCII mode

13 machine check mode

CS 350 Part |

20

14
15
16-31
32-33
34-35
36-39

40-63

S/360 interrupts

walt state

problem state

Interrupt id

Instruction length code
condition code

trap mask

— (fixed point overflow, floating point overflow, decimal overflow,
exponent underflow, significance)

program counter

CS 350 Part |

21

S/360 Interrupt Service routine

|IOOPSW EQU 56 OLD PSW
IONPSW EQU 120 NEW PSW

MVC IONPSW(8), INTPSW(8) TO-FROM
{MAIN PROGRAM}
INTPSW DC X’0004 0000, A(INTER)
*** Interrupt service ROUTINE ****
INTER DS OH
{SAVE REGISTERS}

CS 350 Part |

22

S/360 interrupt svce

CLC 100PSW+2(2), =x’ 000C

READER?

BE READER

CLC IOOPSW+2(2), =x’ 000D’
PUNCH?

BE PUNCH

B ERROR

CS 350 Part |

23

S/360 INTERRUPT SVCE

READER {READER SERVICE}

B END

PUNCH {PUNCH SERVICE}
B END

END |[RESTORE GPRS}

LPSW [OOPSW RETURN TO
INTERRUPTED PROGRAM

CS 350 Part |

24

S/360 Permanent Storage Assignments

Addr
0

8

16
24
32
40
48
56

]

0O OO 0O 0O OO 0O 00 OO

purpose

Initial PSW load

Initial load CCW1
Initial load CCW?2

Ext. old PSW

Spv. Call old PSW
Pgmr old PSW

Machine check old PSW
/O old PSW

CS 350 Part |

25

S/360 Permanent Storage Assignments

38
96
104
112
120

O OO 0O 0O OO

external new PSW

Spvr call new PSW

Pgm new PSw

M achine check new PSW
/O new PSW

CS 350 Part |

26

1/O Interrupt occurs

Finish current instruction execution
store current PSW at |/O old PSW (56)
load PSW from I/O new PSW (120)
fetch next instruction as directed by

— ¢(PC) = part of c(PSW) -- the Interrupt Service Routine

CS 350 Part |

27

PH Break
Interrupts & Exceptions (traps)

e You areresponsible for

— Section 5.6
» key concepts:

— the MIPS cpu version of interrupt and exception handling

CS 350 Part |

28

Summary

A cpu isan interpreter
— of instructions
— Implemented in hardware

A cpu can simulate another cpu

Instructions of conventional machine level (L2) may infact
be interpreted by another interpreter running at L1 - the
microprogram level

hence some cpus (not all) are 2 nested interpreters

CS 350 Part | 29

