
CS 350 Part I 1

Review:
A simple architecture

• Single -bus

• slow simple cheap

Bus

cpu

Mp Ms Dio

CS 350 Part I 2

Review:
A simple architecture

• where

cpu

control

ALU

Register
file

=

CS 350 Part I 3

Slightly fancier architecture

cpu

Mp
cpu

Ms
Dio

IO bus

CS 350 Part I 4

Fancier PMS architecture

• Compare it to the simple one:

– faster ? (why??)

– more expensive?

CS 350 Part I 5

Even fancier . . .
Crossbar-switched multiprocessor

Mp

cpu

CS 350 Part I 6

Review:
what the cpu does (English)

• 1. Fetch next sequential instruction into Instruction
Register (IR)

• 2. Update Program Counter (PC) to point to next
instruction

• 3. If data operand required from Mp, calculate its address

• 4. Fetch operand(s) from Mp to cpu registers

• 5. Execute instruction

• 6. Store result(s)

• 7. Goto step 1.

CS 350 Part I 7

 Review:
what the cpu does (PL/1)

• INTERP: PROC (MEMORY, START_ADDR);

• /* Mp is word-addressed. Machine stores 1 instruction per word.
Mp cells are named 0,1, . . . , 4095. There is 1 register called
AC. INTERP halts when RUN = 0. Process state = {memory,
PC, RUN, AC }.

• DCL (MEMORY(0:4095), AC, START_ADDR) FIXED BIN;

• DCL (PC, IR, RUN, TYPE, DATA, DATA_LOCN) FIXED
BIN;

• PC = SSTART_ADDR;

• RUN = 1;

CS 350 Part I 8

Review:
what the cpu does (PL/1)

• DO WHILE (RUN = 1);

• /* GET NEXT INSTRUCTION - FETCH PHASE */

• IR = MEMORY(PC);

• /* BUMP PC TO POINT TO NEXT INSTR */

• PC = PC + 1;

• /* DECODE INSTR & PUT ITS TYPE INTO TYPE */

• TYPE = DECODE (IR);

• /* LOCATE DATA USED BY INSTR. RETURNS -1 IF
NONE */

CS 350 Part I 9

Ctd...

• DATA_LOCN = FIND_DATA(IR);

• IF (DATA_LOCN > 0) THEN

– DATA = MEMORY(DATA_LOCN);

• /* EXECUTE */

• CALL EXECUTE (TYPE,DATA, MEMORY, AC, PC,
RUN);

• END;

• RETURN;

• END INTERP;

CS 350 Part I 10

comments

• THIS REPRESENTATION IS

– FUNCTIONALLY ACCURATE
• IT FAITHFULLY REFLECTS THE

FUNCTIONING OF THE REAL CPU, BUT

– STRUCTURALLY INACCURATE
• ITS SOFTWARE MODULES ARE NOT

ISOMORPHIC TO THE HARDWARE MODULES
OF THE REAL CPU

• ASSIGNMENT: REWRITE IT IN C

CS 350 Part I 11

Compilers vs. Interpreters

• Def’n: A compiler analyzes all statements of a program,
then executes all of them

– AAAAAA EEEEEE

• Def’n: An interpreter analyzes each statement then
executes it

– AEAEAEAEAEAE

• Def’n: An incremental compiler . . .

CS 350 Part I 12

Compilers vs. Interpreters

• Remark: a cpu is an interpreter, where the unit of
execution is one instruction (Level 2)

• Remark: some cpus have a second, inner interpreter where
the unit of execution is one microinstruction (Level 1)

• Remark: a cpu can interpretively execute the instruction set
of another cpu (Level 4)

CS 350 Part I 13

Review : Interrupts

• The problem:
– get cpu to do something (ie execute some routine)

– right now (ie subject to a hard realtime constraint)

• Why care?
– Air traffic control

– nuclear reactor control

CS 350 Part I 14

Review : Interrupts

• Solution:

cpu Interrupt request line
 IRQ

When (IRQ = = 1)
do save PS, PC

SAVE REGISTERS
C(C(XFER_VECTOR) -> PC

od

CS 350 Part I 15

Review : Interrupts

• Embellishments:
– mask bit

– multiple lines, service routine for each

– source identifier per line
• eliminates polling the devices of the line

– vectored interrupts

– priorities among lines
• usually external interrupts first, then

• internal interrupts (traps) second

CS 350 Part I 16

Illustrating ...

IRQ1

IRQ2

TV1

TV2

Source_id

CS 350 Part I 17

Sample Interrupt Structure-
Motorola 68000 family

• Fully vectored by priority & device identifier
– service routine never has to figure out who invoked it

• 8 levels of external priority, plus cpu priority (traps)

• cpu state saved (on a stack, natch) by hardware

CS 350 Part I 18

M 68000 performance

Exception cycles req’d microsec

Address err 24 3
bus err 24 3
external interrupt 21 2.6
illegal instruction 16 2
privileged instruction 16 2
trace 16

CS 350 Part I 19

IBM System/360
Interrupt structure

• FIXED address vectors (Boo)

• NO interrupt stacking (nested interrupts) BOO!

• State saving:
– PSW stored at FIXED address

– no other cpu state info saved

• Interrupts maskable

CS 350 Part I 20

IBM S/360

• Processor state:
– formally organized as Processor Status Word (PSW)

– note what ISN’T there e.g. general purpose register contents

• bits contents

• 0-7 interrupt masks: external, channels

• 8-11 protection key

• 12 ASCII mode

• 13 machine check mode

CS 350 Part I 21

S/360 interrupts

• 14 wait state

• 15 problem state

• 16-31 interrupt id

• 32-33 instruction length code

• 34-35 condition code

• 36-39 trap mask
– (fixed point overflow, floating point overflow, decimal overflow,

exponent underflow, significance)

• 40-63 program counter

CS 350 Part I 22

S/360 Interrupt Service routine

• IOOPSW EQU 56 OLD PSW

• IONPSW EQU 120 NEW PSW

• …

• MVC IONPSW(8), INTPSW(8) TO-FROM

• {MAIN PROGRAM}

• INTPSW DC X’0004 0000’, A(INTER)

• *** Interrupt service ROUTINE ****

• INTER DS 0H

• {SAVE REGISTERS }

CS 350 Part I 23

S/360 interrupt svce

• CLC IOOPSW+2(2), =x’000C’

• READER?

• BE READER

• CLC IOOPSW+2(2), =x’000D’

• PUNCH?

• BE PUNCH

• B ERROR

CS 350 Part I 24

S/360 INTERRUPT SVCE

• READER {READER SERVICE}

• B END

• PUNCH {PUNCH SERVICE}

• B END

• END [RESTORE GPRS}

• LPSW IOOPSW RETURN TO
INTERRUPTED PROGRAM

CS 350 Part I 25

S/360 Permanent Storage Assignments

• Addr len purpose

• 0 8 Initial PSW load

• 8 8 Initial load CCW1

• 16 8 Initial load CCW2

• 24 8 Ext. old PSW

• 32 8 Spv. Call old PSW

• 40 8 Pgmr old PSW

• 48 8 Machine check old PSW

• 56 8 I/O old PSW

CS 350 Part I 26

S/360 Permanent Storage Assignments

• 88 8 external new PSW

• 96 8 Spvr call new PSW

• 104 8 Pgm new PSw

• 112 8 Machine check new PSW

• 120 8 I/O new PSW

• so , . . .

CS 350 Part I 27

I/O Interrupt occurs

• Finish current instruction execution

• store current PSW at I/O old PSW (56)

• load PSW from I/O new PSW (120)

• fetch next instruction as directed by

– c(PC) = part of c(PSW) -- the Interrupt Service Routine

CS 350 Part I 28

PH Break
Interrupts & Exceptions (traps)

• You are responsible for

– Section 5.6

• key concepts:

– the MIPS cpu version of interrupt and exception handling

CS 350 Part I 29

Summary

• A cpu is an interpreter
– of instructions

– implemented in hardware

• A cpu can simulate another cpu

• Instructions of conventional machine level (L2) may infact
be interpreted by another interpreter running at L1 - the
microprogram level

• hence some cpus (not all) are 2 nested interpreters

