CS 350

2.6

Transfer of Information

Transfer of Information

- Inside the machine : busses and bus structures
- outside the machine: data communications

What's a bus?

- Many parallel wires
 - data
 - control
 - address
- Interface circuits
- protocols for gaining control of the bus
- switching functionality
- •

PH Break busses

• Section 8.4, text

Some bus architectures

- * time-shared bus (time-division multiplexed)
- * example: PDP-11 Unibus
- * advantages & disadvantages ??

Some bus architectures

Some bus architectures

CS 350 Part I

Banyan Tree

Basic switching element - Binary switch

2- input permuter

easily fabricated in VLSI

Case Study pdp-11 Unibus

- Cheap, low-performance, asynchronous bus
- used in 1970s to connect Mp as well as Dio to Kp
- typical of today's peripheral device busses -Dio to Mp, but not used to connect Kp to Mp

Unibus Operation

- Active devices:
 - cpu
 - some I/O devices
- Any active device can:
 - bid for control of the bus
 - communicate with any other active or passive device
 - release the bus

Unibus Operation

- E.g.
 - Kp to Mp
 - disc controller to Mp
 - DMA device to Mp
 - •
- Who arbitrates access to the bus?
 - The Bus Master (usually the cpu)

Unibus structure

DATA	D<15:00>	
ADDRESS	A<17:00>	
CONTROL	C<1:0>	
MASTER SYNC	MSYN	1
SLAVE SYNC	SSYN	k control
PARITY HI	PB	
PARITY	PA	
BUS REQUEST	BR<7:4>, NPR]
BUS GRANT	BG<7:4>, NPG	p riority
SACK		J
BBSY		
INTR		

Data out protocol

Other Unibus protocols

- Get control
- Data in C<1:0> = 00
- Non Processor request
- Interrupt

Busses: Questions to ask

- Performance (measured by probability of blocking, latency, throughput)
- •
- cost as a function of size (O(n), $O(n^2)$)
- ullet
- Performance / cost [bang per buck]

CS 350 Part I

The answer:

Which raises two more questions:

- When was T = 0?
- How fast does the clock tick?

Ways to answer these questions:

- •
- synchronous by character transmission
- •
- synchronous by block transmission
- \bullet

synchronous - by - character transmission

(misnamed "asynchronous transmission")

- Channel has two states
 - -+V <=> logic "1"

- 0V <=> logic "0"

- Xmtr emits continuous "1" when nothing to send
- "0" denotes start of character
- return to continuous "1" denotes end-ofchar

Sending a 4-bit character

Pros & Cons

- Pro:
 - cheap clocks (need to maintain sync for 1 character time
 - •
 - small buffers (1 char)
 - •
- Con:
 - inefficient use of (expensive?) telecom channel

Used

- To connect cheap terminals
 - cash registers
 - Point of Sale terminals
 - data collection terminals
 - interactive computer terminals
 - banking and airline res'n terminals
- to hosts via slow lines

Synchronous by block

- Tx & Rx clocks resynchronized once per *block* (e.g. 1000 chars) instead of once per char
- Expensive clocks
- big buffers (eg 1 000 chars)
- better utilization of the line
- standard technique for computer-computer connection

Block sync

- A unique symbol ("SYN") sent continuously on the idle line
- •
- SYN SYN SYN ABCDEFG .. Z SYN SYN

Async Product DEC DC-11

DC - 11

- Price: \$300 US
- speeds: 100 300 bps
- package: 4 logic cards
- registers:

Rcvr status

- Bit means
- 15 enable cpu interrupt
- 12 error
- 10,9 char length 1 of 5,6,7,8
- 7 done. Char available in buffer
- 3,4 select speed

DC - 11

- Transmitter : like receiver
- •
- date: 1970
- ullet
- DLV-11 1978 version 1 card.
- Today: little used too slow, poor line utilization

DEC DP - 11 Synchronous line driver

- Cost : \$1200 US
- package: 8 (eight) logic cards
- programmable SYN char, size of data chars
- t = o (block sync) from end of SYN SYN
- clock rate (bit sync) from bit stream

DEC DP - 11 Synchronous line driver

- 8-bit parallel transmission
- interrupt raised on each character sent or received (!)
- data rate up to 50 000 b/s

- •
- DU 11 (1976)
 - same, on one card
- DQ-11 (1976)
 - DU-11 plus DR-11B DMA

- (1995)
 - DU-11 plus DR-11B plus HDLC on one chip
- (1996)
 - all of the above plus ethernet access on one chip

DP-11 operation

- Receive
- load SYN character
- load char size
- go
- DP-11 scans incoming stream for SYN SYN

Receive

- DP-11 sets SYNC flag
- each char received generates an interrupt
- cpu has 1 character time to copy char

Send

- Load char into transmit buffer
- set go bit
- interrupt on char sent
- load next char . . .

Synchronous uses today

- Driving remote peripheral devices (line printers)
- lacksquare
- as HDLC LAP-B, basis for ethernet and token ring Local Area Networks

Other telecom chores

- Speed & code conversion
- terminal mothering
- polling
- multiplex / demultiplex
- data network interface (X.25, Frame Relay)

K_{tel}

- I/O Processor for Remote I/O
 - large number of slow, long lines
 - used to interface mainframes to remote terminals
 - being supplanted by internet-connected PCs
 - typical processor:
 - 32K words Mp
 - operating system
 - \$100 000

Telecommunications transmission media

- Wire or terrestrial microwave:
 - BER = 10⁻³
 - Latency = 100 bits
 - data rate: 50 kb/s to 10 Mb/s

Telecommunications transmission media

- Optical fibre
 - BER = 10⁻¹²
 - Latency = megabits
 - rates: 155 Mb/s, 620 Mb/s, 1.2 Gb/s, 2.4 Gb/s

Telecommunications

- Switching:
 - circuits
 - packets or cells

Convergence

- Telephone networks
- cable TV networks
- Internet
- computing industry