|IBM

System 360/370/390

Section 3.2 CISC

CS 350

IBM $/360

e 37015360, re-implemented , plus afew new
features

e 39015370, re-implemented , plus afew new
features

 still amainstay of IBM’s business

CS 350

/360

 Instroduced in 1964 to replace three (1)
Incompatible families
— 7090 fixed-point word oriented
— 1401 decimal character-oriented
— 1620 decimal numeric oriented

e With one architecture

CS 350

/360

 Instruction set a UNION of Instruction sets
— fixed-point binary (7090)
— floating binary (7090)
— decimal character-oriented (1401)
— string processing
* 4 hardware datatypes
— byte, halfword, word, doubleword

CS 350

/360

 One OS (wdll, 5)
— 0S/360 big batch OS, no virtual memory
— DOS/360 little batch OS, no virtual memory
— DAMPS real time (360/44)
— VM virtual memory for 360/67, 370s
— TSSfailure, virtual memory for 360/67

CS 350

/360

8 models with amost identical 1SP
— (the 360 I SP)

performance range of 300:1 (!)
microprogrammed CPUs In Models 20 - 67

microstore times of 200 nsec - 1 nsec
data bus widths of 1 - 8 bytes

memory cycle times of 7.2 msec - 0.75 nsec

CS 350

Moddls

e 2025304044 506567 758591

 Anomalies:
— 44 for real time process control

— 67 to compete with GE 645 in timesharing
market (paging, segmentation, swap drums,
unigque OS)

— 25 had user-alterable control store

CS 350

Prices;

 Model 40 with 250 Kbytes Mp, 3 nsec
cycletime: $40 000/month (not sold)

« modd 75: $100 000 / month

« model 91 (pipelined): $10M

CS 350

360 ISP design

* Previous large machines.
— addressed 32K cells of Mp maximum
— cell = word of length 36 bits or so
—registers. AC, MQ, few Index Registers
— fixed length instructions & operands

Op IR address

CS 350

360 ISP goals

e Bigger address space (2%4)
o cf. Motorola 68000 of 25 years later

o General Purpose registers and more of them
e 16

* Use program store more efficiently
e variable length instructions

CS 350

360 ISP decisions

* Registers. 16 GPRS, useable as

— accumulators
— MQs

— Index registers
— base registers

CS 350

Instruction length

e 2-06 bytes

CS 350

Address Formation

 How to avoid storing 24 bits of real address
per instruction?

« Uselocality of reference principle

— next memory reference likely to be “close” to
the last reference

CS 350

Address Formation

 Usea GPR (32 hits) to point to the generdl
vicinity of the desired cell

e useasmall address (12 bits) inthe
Instruction to hit the precise location

CS 350

Address Formation

 How to avoid storing 24 bits of real address
per instruction?

— Instruction holds a 12-bit field (spans 4096
bytes) called displacement

— 24- bit memory address formed from
displacement, c(base register [GPR]) &
c(index register [GPR]) asfollows:

CS 350

Address formation

c(base register |) + disp + c(X1) -> EA

Good & Bad

e \What’s good?

— Uses codespace efficiently IF locality of
referenceisvalid

e What' s bad?

— Need to make a gpr point within 4096 of

address A before we can access it (“establishing
addressahility)

CS 350

Good & Bad

o Baseregistersare NOT invisibleto the
programmer , do the OS can NOT use them

for program relocation (blunder)

e tendsto tie up many GPRs

CS 350

Program relocation

* Newer models had programmer-invisible
relocation registers (DAT box, MMU) in
addition to the above

— 360/67, al 370s, MIPS chip, . . .

e Older 360s could not relocate programs or
data(!)

« BTW, MIPS uses a 64-bit address space

CS 350

360 Critigue
(1998)

Not enough address space!
— 224 bytesinsufficient
no virtual address spaces

— program & data relocation impractical
— batch throughput oscillated

not enough GPRs (16)
Inadequate interrupt structure

CS 350

However

360 redefined computer architecture
— Gerritt Blauuw: “the end of architecture”’

CS 350

| nstruction Formats

e Gods:

o flexibility

o efficient use of code space (Mp
was expensive in 1962)

CS 350

Register-Register (RR)

OP

R1

R2

* eg. AR R3, R4

*short

* can’t reference memary

2 bytes

Register - Storage, indexed

RX
8 4 4 4 12
op R1 X2 B2 D2
_
—~,
Storage address

*eg L R5 GEO(RS3)
*twice aslong as RR format

CS 350

Register - Storage, unindexed

8 4 4 4 12
op R1 R3 B2 D2
o _
RS format N
Storage address

E.g LM R1, R6, SUE

no more indexing, 2nd register can be specified

CS 350

Storage- Storage

8 8 4 12 4 12
op L B1 D1 B2 D2
\ J
v Y
ADDRESS ADDRESS

E.G. MVC 12, TOM, SUE

CS 350

360 INSTRUCTION FORMATS

Note lack of orthogonality of opcode space
to format space --

* not all opcodes work with all formats

Note lack of symmetry:
— OP(A,B) ~=>OP(B,A)

CS 350

360 INSTRUCTION DESIGN

e 256 opcodes, many are spares

 FOUR Instruction sets
— fixed-point binary arithmetic & logic
— floating-point binary
— decimal
— miscellany (protection, 1/O)

— “machine s aunion of machines’
CS 350

360 INSTRUCTION DESIGN

e EG.
— S R3, GEORGE(X2): BINARY RX
— AP TOM, GEORGE; DECIMAL SS
— CLI SUE, C'X’' : COMPARE IMMEDIATE
—SSK R1,R2: PROTECTION

e 5-bit key in PSW must match key of
memory block - grossly inadeguate

CS 350

CPU

360 Bus Structure

control

A

\A/

a

A

\A/

CS 350

T

-

w NPk O

cell

360 Storage structure

Byte O 1 2 3
T
Word at
— _ J
address 0 Y
— Hafwordat 2
Byte 4 5 6 7

Bits 0 78 15 16 2324 31
Little-endian order -- isthis natural?

CS 350

360 Storage structure

e Halfword addresses=0 mod 2
e word addresses= 0 mod 4

e doubleword addresses = 0 mod 8
e Why?

CS 350

360 Implementations

 How to get a performance range of 300:1
using ONE logic family?

CS 350

Modéel 40

ALU: 1 bytewide
microinstruction time: 625 nsec
Mp cycle: 2.5 nsec

max Mp: 0.25 Mbyte

rent: $20 000 / month

CS 350

Model 50 M otorola 68000

ALU: 32 bitswide
microinstruction time: 500 nsec

e microinstr time: 250 nsec
Mp cycle: 1.5 nsec

max Mp: 0.5 Mbyte * Mpcycle: 0.5 meec
interrupt response: <600msec || * Max Mp: 16 Mbyte
$30 000 / month e $200

e 1963 . 1933

CS 350

odp-11 ISP

8 General Purpose Registers (GPRs)
Instructions taking 0,1 or 2 operands
symmetric instruction set

nearly-orthogonal instruction set
— easier for compilers (and humans)

CS 350

ndp-11 cpu cycles

Fetch intruction cycle
source operand cycle
destination operand cycle
Execute

honour Interrupts

CS 350

Address generation

MODE = REGISTER Rn
)
r;H CF:
3
@)
Z X| B | DISP
4 4 12

CS 350 360

pdp-11 best feature:
addressing modes

00

01

10

11

Rn contains operand (register mode)

Rn contains ptr to operand; (autoincrement)
[Increment Rn AFTER operand fetch]

Rn contains ptr to operand; (autodecrement)
[decrement Rn BEFORE operand fetch]

Add c(Rn) to c(nextword) to get operand address
CS 350

NC
NC
NC
NC

INC
INC

Modes: single operand

INstruction
R3 000 R3<-C(R3) +1
(R3) 001 C(R3) <- C(C(R3)) +1
(R3)+ 010 As above, then bump R3
@(R3)+ 011 register points to address,
then increment
GEO(R3) 110 GEO + ¢(R3) isaddress

@GEO(R3) 11 1

CS 350

GEO + ¢(R3) points
to address

Double operand:

MOV R1,R2 000 000 R2<- C(R1)
(R1),R2 001 000 R2<-C(C(R1) “LDA”
R2,(R1]) 000 001 C(Rl1)<-C(R2) “STA’

(R1),(R2) 001 001 C(R2)<- C(C(R1)) “MOV”

CS 350

Double operand

MOV R1, ARRAY(R2) 000 110
ARRAY + C(R2) <- C(R1)
INDEXED STORE
ARRAY(R2),R1 110 000
INDEXED LOAD
ARRAY (R2), VEC(R1) 110 110
DOUBLY INDEXED
TOM, GEORGE 110 110
INDEXED RELATIVE TO PC
@TOM, @GEORGE 111 111
AS ABOVE, AND INDEXED

CS 350

TERRIFYING TIMING

MOV @TOM, @GEORGE

REQUIRES
14 MICROSECONDS 11/20
5.6 MICROSECONDS 11/40

CS 350

Rn

Stacks!

H’AV

Hi address-
stack top

Lo address-
stack bottom

MOV ITEM, -(Rn)

PUSH ITEM ON STACK
MOV (Rn)+, ITEM POP STACK TO ITEM

CS 350

CONDITIONAL BRANCHES

ON A 4-BIT CONDITION CODE

RANGE: (-128, + 127)

CS 350

DATA TYPES

WORD ORBYTE

NEARLY EVERY INSTRUCTION HAS TWO VERSIONS

MOV MOVB
INC INCB

NEARLY EVERY ADDRESSING MODE WORKSWITH EVERY
INSTRUCTION

CS 350

R7 1S THE PROGRAM
COUNTER

WORKS FOR ALL VALUES OF MODE & INDIRECT BITS
BEST ONES ARE:

010 R7CONTAINSPOINTER TO OPERAND

OP#N ASSEMBLESTO OP

CS 350

R7 1S THE PROGRAM
COUNTER

011 R7CONTAINSPTRTOPTR TO OPERAND:

OP @#A

CS 350

OP

ABSOLUTE ADR(A]

PHBREAK:

RISC | SP architecture
the MIPS ISP

you read:

text Chapter 3

CS 350

Summary of main points:
Two objectives,

1] Describe the MIPS ISP architecture

2] expose the Reduced Instruction Set Computer (RISC)
approach to architecture

CS 350

RISC approach: what it is not:

CISC ala §360, VAX (1970s)
Mpisslow

(no caches,
cycle times of 1-6 microseconds
[vs. 100 nsec = 0.1 microsec today])

so instruction fetches are expensive,

so let's make every instruction do alot
CS 350

let's mimic higher-level contructs, eg
11 1oop control (S/360 BXLE)
1| stack push/pop (Burroughs B-5000, VAX)

1 procedure call instruction (VAX)

CS 350

"wired macroinstructions"
In general, lots of side-effects per instruction\

{ we can implement these easily (for free?),
by writing long microroutines in vertical microstore}

CS 350

What happened?
seemed OK thru the 1970s, but in the 80s

TM, got alot faster, esp. with caches

CS 350

e Microstore became as low as Mp

* People needed to use compilers

— compilers couldn’ talsways generate efficient
CISC code

CS 350

Programmers spent pages setting upakiller
effect so

code was hard to understand or modify

solution: aform of KISS:
Reduced Instruction Set Computer

CS 350

RISC approach: what it is:
Rationale
Reduced (small) set of ssmple instructions
{ able to be used effectively by compilers
get rid of the slow microprogram store

.. instructions implemented by wired-logic controls
CS 350

wired-logic decoders will be feasible and fast,
as the instructions are simple and few in number

programs will have more instructions, but
M, isnow big (>1 Mbyte) and fast (<100 nsec)

CS 350

RISC Empirical result:
In executing (e.g.) compiled C code
the product
(# of instrs executed) * (mean execution time per instruction)

Isusually smaller for RISC than for CISC

CS 350

the smpler control design was amenableto VLS
(single-chip cpus) so

the microprocessor world (MIPS, SPARC, PowerPC)
Isnow all RISC

except Intel and Motorola 68X 00

but it could all change tomorrow.

CS 350

M| PS architecture

(note ssmplicity w r to /360, VAX)

ALL instrs have exactly 3 operands (KI1SS)
there are just 32 fast registers, $0 - $31.

c($0) = 0, always.

CS 350

230 memory cells,
4 bytes wide and byte addressed.
1 Aligned word data begin at byte adresses of form 4n.
1 Index registers must be incremented by 4 when addressing word data.

ALL instructions 32 bits (1 word) long

CS 350

