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IBM S/360

• 370 is 360, re-implemented , plus a few new
features

• 390 is 370, re-implemented , plus a few new
features

• still a mainstay of IBM’s business
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S/360

• Instroduced in 1964 to replace three (!)
incompatible families
– 7090 fixed-point word oriented

– 1401 decimal character-oriented

– 1620 decimal numeric oriented

• with one architecture
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S/360

• Instruction set a UNION of instruction sets
– fixed-point binary (7090)

– floating binary (7090)

– decimal character-oriented (1401)

– string processing

• 4 hardware data types
– byte, halfword, word, doubleword
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S/360

• One OS (well, 5)
– OS/360  big batch OS, no virtual memory

–  DOS/360 little batch OS, no virtual memory

– DAMPS  real time (360/44)

–  VM  virtual memory for 360/67, 370s

– TSS failure, virtual memory for 360/67
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S/360

• 8 models with almost identical ISP
– (the 360 ISP)

• performance range of 300:1  (!)

• microprogrammed CPUs in Models 20 - 67

• microstore times of 200 nsec - 1 µsec

• data bus widths of 1 - 8 bytes

• memory cycle times of 7.2 µsec - 0.75 µsec
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Models

• 20 25 30 40 44 50 65 67 75 85 91

• Anomalies:
– 44 for real time process control

– 67 to compete with GE 645 in timesharing
market (paging, segmentation, swap drums,
unique OS)

– 25 had user-alterable control store
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Prices:

• Model 40 with 250 Kbytes Mp, 3 µsec
cycle time:  $40 000/month (not sold)

• model 75: $100 000 / month

• model 91 (pipelined): $10M
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360 ISP design

• Previous large machines:
– addressed 32K cells of Mp maximum

– cell = word of length 36 bits or so

– registers: AC, MQ, few Index Registers

– fixed length instructions & operands

Op IR address
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360 ISP goals

• Bigger address space (224 )
• cf. Motorola 68000 of 25 years later

• General Purpose registers and more of them
• 16

• use program store more efficiently
• variable length instructions



CS 350

360 ISP decisions

• Registers: 16 GPRS, useable as
– accumulators

– MQs

– index registers

– base registers
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Instruction length

• 2 - 6 bytes
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Address Formation

• How to avoid storing 24 bits of real address
per instruction?

• Use locality of reference principle
– next memory reference likely to be “close” to

the last reference
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Address Formation

• Use a GPR (32 bits) to point to the general
vicinity of the desired cell

• use a small address (12 bits) in the
instruction to hit the precise location



CS 350

Address Formation

• How to avoid storing 24 bits of real address
per instruction?
– Instruction holds a 12-bit field (spans 4096

bytes)  called displacement

– 24- bit memory address formed from
displacement, c(base register [GPR]) &
c(index register [GPR])    as follows:



CS 350

Address formation

c(base register j) + disp + c(Xi) -> EA

+X B disp EA
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Good & Bad

• What’s good?
– Uses codespace efficiently IF locality of

reference is valid

• What’s bad?
– Need to make a gpr point within 4096 of

address A before we can access it (“establishing
addressability)
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Good & Bad

• Base registers are NOT invisible to the
programmer , do the OS can NOT use them
for program relocation (blunder)

• tends to tie up many GPRs
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Program relocation

• Newer models had programmer-invisible
relocation registers (DAT box, MMU) in
addition to the above
– 360/67, all 370s, MIPS chip, . . .

• Older 360s could not relocate programs or
data (!)

• BTW, MIPS uses a 64-bit address space
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360 Critique
(1998)

• Not enough address space!
– 224 bytes insufficient

• no virtual address spaces
– program & data relocation impractical

– batch throughput oscillated

• not enough GPRs (16)

• inadequate interrupt structure
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However

• 360 redefined computer architecture
– Gerritt Blauuw: “the end of architecture”
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Instruction Formats

• Goals:

• flexibility

• efficient use of code space    (Mp
was expensive in 1962)
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Register-Register (RR)

OP R1 R2

8 4 4

2 bytes

*  e.g. AR  R3, R4

*short
* can’t reference memory
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Register - Storage, indexed
RX

Storage address
* e.g   L  R5,  GEO(R3)
*twice as long as RR format

op R1 X2 B2 D2

8 4         4 4 12
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Register - Storage, unindexed
RS

op R1 R3 B2 D2

8 4         4 4 12

Storage address

E.g  LM R1, R6, SUE

no more indexing, 2nd register can be specified

RS format
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Storage- Storage
SS

8     8        4           12      4            12

op L B1 D1 B2 D2

ADDRESS ADDRESS

E.G.   MVC  12,  TOM,  SUE
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360 INSTRUCTION FORMATS

• Note lack of orthogonality of opcode space
to format space --

• not all opcodes work with all formats

• Note lack of symmetry:
– OP(A,B)  ~=> OP(B,A)
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360 INSTRUCTION DESIGN

• 256 opcodes, many are spares

• FOUR instruction sets
– fixed-point binary arithmetic & logic

– floating-point binary

– decimal

– miscellany (protection, I/O)

– “machine is a union of machines”
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360 INSTRUCTION DESIGN

• E.G.
– S  R3, GEORGE(X2);  BINARY RX

– AP  TOM, GEORGE; DECIMAL SS

– CLI SUE, C’X’ ;  COMPARE IMMEDIATE

– SSK  R1, R2 ;    PROTECTION

• 5-bit key in PSW must match key of
memory block - grossly inadequate
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360 Bus Structure

KIO KIO

CPU

Mp

control

data
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360 Storage structure
cell

0
1
2
3

Word at

address 0

Byte  0 1 2    3

Halfword at  2

Byte 4        5 6   7

Bits  0        7  8         15  16 23 24         31

Little-endian order  -- is this natural?
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360 Storage structure

• Halfword addresses = 0 mod 2

• word addresses = 0 mod 4

• doubleword addresses = 0 mod 8

• Why?
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360 Implementations

• How to get a performance range of  300:1
using ONE logic family?
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Model 40

• ALU: 1 byte wide

• microinstruction time:  625 nsec

• Mp cycle:  2.5 µsec

• max Mp:  0.25 Mbyte

• rent:  $20 000 / month
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Model 50                        Motorola 68000

• ALU: 32 bits wide

• microinstruction time: 500 nsec

• Mp cycle:  1.5 µsec
• max Mp:    0.5 Mbyte

• interrupt response:  < 600 µsec

• $30 000 / month

• 1963

• microinstr time: 250  nsec

• Mp cycle:      0.5 µsec

• max Mp:   16 Mbyte

• $200

• 1983
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pdp-11 ISP

• 8 General Purpose Registers (GPRs)

• instructions taking 0,1 or 2 operands

• symmetric instruction set

• nearly-orthogonal instruction set
– easier for compilers (and humans )
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pdp-11 cpu cycles

• Fetch intruction cycle

• source operand cycle

• destination operand cycle

• Execute

• honour interrupts
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Address generation

MODE REGISTER RnIN
D

IR
E

C
T

IO
N

X   B      DISP

4       4              12

CF:

360
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pdp-11 best feature:
addressing modes

00 Rn contains operand  (register mode)

01 Rn contains ptr to operand; (autoincrement)
[increment Rn AFTER operand fetch]

10  Rn contains ptr to operand;  ( autodecrement)
[decrement Rn BEFORE operand fetch]

11 Add c(Rn) to c(nextword) to get operand address
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Modes: single operand
instruction

INC R3     00 0 R3 <- C(R3) + 1
INC (R3)     00 1 C(R3) <- C(C(R3)) + 1
INC (R3)+     01 0 As above, then bump R3
INC @(R3)+ 01 1 register points to address,

then increment
INC GEO(R3)  11 0 GEO + c(R3) is address
INC @GEO(R3) 11 1 GEO + c(R3) points 

to address
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Double operand:

MOV R1,R2 00 0  00 0 R2 <- C(R1)

(R1), R2 00 1  00 0 R2 <- C(C(R1))  “LDA”

R2, (R1) 00 0  00 1 C(R1) <- C(R2)   “STA”

(R1), (R2) 00 1  00 1 C(R2) <- C(C(R1))  “MOV”
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Double operand
MOV R1, ARRAY(R2) 00 0  11 0

ARRAY + C(R2) <- C(R1)
INDEXED STORE

ARRAY(R2), R1 11 0  00 0
INDEXED LOAD

ARRAY(R2), VEC(R1)  11 0  11 0
DOUBLY INDEXED

TOM, GEORGE 11 0  11 0
INDEXED RELATIVE TO PC

@TOM, @GEORGE 11 1  11 1
AS ABOVE, AND INDEXED
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TERRIFYING TIMING

MOV @TOM, @GEORGE 

REQUIRES
14 MICROSECONDS  11/20
5.6 MICROSECONDS  11/40
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Stacks!
Hi address-
stack top

Lo address-
stack bottomRn

MOV ITEM, -(Rn) PUSH ITEM ON STACK
MOV (Rn)+, ITEM POP STACK TO ITEM
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CONDITIONAL BRANCHES

ON A 4-BIT CONDITION CODE

RANGE: (-128, + 127 )
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DATA TYPES

WORD OR BYTE

NEARLY EVERY INSTRUCTION HAS TWO VERSIONS

MOV   MOVB
INC INCB

NEARLY  EVERY ADDRESSING MODE WORKS WITH EVERY 
INSTRUCTION
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R7 IS THE PROGRAM
COUNTER

WORKS FOR ALL VALUES OF MODE & INDIRECT BITS

BEST ONES ARE:

01 0 R7 CONTAINS POINTER TO OPERAND

OP #N   ASSEMBLES TO    OP

N
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R7 IS THE PROGRAM
COUNTER

01 1 R7 CONTAINS PTR TO PTR TO OPERAND:

OP   @#A OP

ABSOLUTE ADR(A)
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PHBREAK:

RISC ISP architecture
the MIPS ISP

 you read:

text Chapter 3
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Summary of main points:

Two objectives;

1] Describe the MIPS ISP architecture

2] expose the Reduced Instruction Set  Computer (RISC)  
approach to architecture
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RISC approach: what it is not:

 CISC a la S/360, VAX  (1970s)
Mp is slow

( no caches, 
  cycle times of 1-6 microseconds

[vs. 100 nsec = 0.1 microsec today] )

so instruction fetches are expensive, 
so let's make every instruction do a lot
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 let's mimic higher-level contructs, eg

¶ loop control (S/360 BXLE)

¶ stack push/pop (Burroughs B-5000,  VAX)

¶ procedure call instruction (VAX)
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"wired macroinstructions"

in general, lots of side-effects per instruction\

{ we can implement these easily (for free?), 
by writing long microroutines in vertical microstore}
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 What happened?

seemed OK thru the 1970s, but in the 80s 

¶ Mp  got a lot faster, esp. with caches
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• Microstore became as slow as Mp

• People needed to use compilers
– compilers couldn’talsways generate efficient

CISC code
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• Programmers spent pages setting upa killer
effect so

• code was hard to understand or modify

• solution: a form of KISS:

• Reduced Instruction Set Computer
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RISC approach: what it is:
Rationale

 Reduced (small) set of simple instructions 

¶ able to be used effectively by compilers

 get rid of the slow microprogram store

i.e. instructions implemented by wired-logic controls 
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wired-logic decoders will be feasible and fast, 
as the instructions are simple and few in number

 programs will have more instructions, but
  Mp  is now big (>1 Mbyte) and fast (<100 nsec)
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RISC Empirical result:

 In executing (e.g.) compiled C code

the product

(# of instrs executed) * (mean execution time per instruction)

is usually smaller for RISC than for CISC
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 the simpler control design was amenable to VLSI 
(single-chip cpus) so

 the microprocessor world (MIPS, SPARC, PowerPC)
   is now all RISC

except Intel and Motorola 68X00
  
 but it could all change tomorrow.
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MIPS architecture

(note simplicity w r to S/360, VAX)

 ALL instrs have exactly 3 operands (KISS)

 there are just 32 fast registers, $0 - $31.

c($0) = 0, always.
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 230  memory cells,
 

4 bytes wide and byte addressed. 

¶ Aligned  word data begin at byte adresses of form 4n. 

¶ Index registers must be incremented by 4 when addressing word data.

 ALL instructions  32 bits (1 word) long


