
CS 350

IBM

System 360/370/390

Section 3.2 CISC

CS 350

IBM S/360

• 370 is 360, re-implemented , plus a few new
features

• 390 is 370, re-implemented , plus a few new
features

• still a mainstay of IBM’s business

CS 350

S/360

• Instroduced in 1964 to replace three (!)
incompatible families
– 7090 fixed-point word oriented

– 1401 decimal character-oriented

– 1620 decimal numeric oriented

• with one architecture

CS 350

S/360

• Instruction set a UNION of instruction sets
– fixed-point binary (7090)

– floating binary (7090)

– decimal character-oriented (1401)

– string processing

• 4 hardware data types
– byte, halfword, word, doubleword

CS 350

S/360

• One OS (well, 5)
– OS/360 big batch OS, no virtual memory

– DOS/360 little batch OS, no virtual memory

– DAMPS real time (360/44)

– VM virtual memory for 360/67, 370s

– TSS failure, virtual memory for 360/67

CS 350

S/360

• 8 models with almost identical ISP
– (the 360 ISP)

• performance range of 300:1 (!)

• microprogrammed CPUs in Models 20 - 67

• microstore times of 200 nsec - 1 µsec

• data bus widths of 1 - 8 bytes

• memory cycle times of 7.2 µsec - 0.75 µsec

CS 350

Models

• 20 25 30 40 44 50 65 67 75 85 91

• Anomalies:
– 44 for real time process control

– 67 to compete with GE 645 in timesharing
market (paging, segmentation, swap drums,
unique OS)

– 25 had user-alterable control store

CS 350

Prices:

• Model 40 with 250 Kbytes Mp, 3 µsec
cycle time: $40 000/month (not sold)

• model 75: $100 000 / month

• model 91 (pipelined): $10M

CS 350

360 ISP design

• Previous large machines:
– addressed 32K cells of Mp maximum

– cell = word of length 36 bits or so

– registers: AC, MQ, few Index Registers

– fixed length instructions & operands

Op IR address

CS 350

360 ISP goals

• Bigger address space (224)
• cf. Motorola 68000 of 25 years later

• General Purpose registers and more of them
• 16

• use program store more efficiently
• variable length instructions

CS 350

360 ISP decisions

• Registers: 16 GPRS, useable as
– accumulators

– MQs

– index registers

– base registers

CS 350

Instruction length

• 2 - 6 bytes

CS 350

Address Formation

• How to avoid storing 24 bits of real address
per instruction?

• Use locality of reference principle
– next memory reference likely to be “close” to

the last reference

CS 350

Address Formation

• Use a GPR (32 bits) to point to the general
vicinity of the desired cell

• use a small address (12 bits) in the
instruction to hit the precise location

CS 350

Address Formation

• How to avoid storing 24 bits of real address
per instruction?
– Instruction holds a 12-bit field (spans 4096

bytes) called displacement

– 24- bit memory address formed from
displacement, c(base register [GPR]) &
c(index register [GPR]) as follows:

CS 350

Address formation

c(base register j) + disp + c(Xi) -> EA

+X B disp EA

CS 350

Good & Bad

• What’s good?
– Uses codespace efficiently IF locality of

reference is valid

• What’s bad?
– Need to make a gpr point within 4096 of

address A before we can access it (“establishing
addressability)

CS 350

Good & Bad

• Base registers are NOT invisible to the
programmer , do the OS can NOT use them
for program relocation (blunder)

• tends to tie up many GPRs

CS 350

Program relocation

• Newer models had programmer-invisible
relocation registers (DAT box, MMU) in
addition to the above
– 360/67, all 370s, MIPS chip, . . .

• Older 360s could not relocate programs or
data (!)

• BTW, MIPS uses a 64-bit address space

CS 350

360 Critique
(1998)

• Not enough address space!
– 224 bytes insufficient

• no virtual address spaces
– program & data relocation impractical

– batch throughput oscillated

• not enough GPRs (16)

• inadequate interrupt structure

CS 350

However

• 360 redefined computer architecture
– Gerritt Blauuw: “the end of architecture”

CS 350

Instruction Formats

• Goals:

• flexibility

• efficient use of code space (Mp
was expensive in 1962)

CS 350

Register-Register (RR)

OP R1 R2

8 4 4

2 bytes

* e.g. AR R3, R4

*short
* can’t reference memory

CS 350

Register - Storage, indexed
RX

Storage address
* e.g L R5, GEO(R3)
*twice as long as RR format

op R1 X2 B2 D2

8 4 4 4 12

CS 350

Register - Storage, unindexed
RS

op R1 R3 B2 D2

8 4 4 4 12

Storage address

E.g LM R1, R6, SUE

no more indexing, 2nd register can be specified

RS format

CS 350

Storage- Storage
SS

8 8 4 12 4 12

op L B1 D1 B2 D2

ADDRESS ADDRESS

E.G. MVC 12, TOM, SUE

CS 350

360 INSTRUCTION FORMATS

• Note lack of orthogonality of opcode space
to format space --

• not all opcodes work with all formats

• Note lack of symmetry:
– OP(A,B) ~=> OP(B,A)

CS 350

360 INSTRUCTION DESIGN

• 256 opcodes, many are spares

• FOUR instruction sets
– fixed-point binary arithmetic & logic

– floating-point binary

– decimal

– miscellany (protection, I/O)

– “machine is a union of machines”

CS 350

360 INSTRUCTION DESIGN

• E.G.
– S R3, GEORGE(X2); BINARY RX

– AP TOM, GEORGE; DECIMAL SS

– CLI SUE, C’X’ ; COMPARE IMMEDIATE

– SSK R1, R2 ; PROTECTION

• 5-bit key in PSW must match key of
memory block - grossly inadequate

CS 350

360 Bus Structure

KIO KIO

CPU

Mp

control

data

CS 350

360 Storage structure
cell

0
1
2
3

Word at

address 0

Byte 0 1 2 3

Halfword at 2

Byte 4 5 6 7

Bits 0 7 8 15 16 23 24 31

Little-endian order -- is this natural?

CS 350

360 Storage structure

• Halfword addresses = 0 mod 2

• word addresses = 0 mod 4

• doubleword addresses = 0 mod 8

• Why?

CS 350

360 Implementations

• How to get a performance range of 300:1
using ONE logic family?

CS 350

Model 40

• ALU: 1 byte wide

• microinstruction time: 625 nsec

• Mp cycle: 2.5 µsec

• max Mp: 0.25 Mbyte

• rent: $20 000 / month

CS 350

Model 50 Motorola 68000

• ALU: 32 bits wide

• microinstruction time: 500 nsec

• Mp cycle: 1.5 µsec
• max Mp: 0.5 Mbyte

• interrupt response: < 600 µsec

• $30 000 / month

• 1963

• microinstr time: 250 nsec

• Mp cycle: 0.5 µsec

• max Mp: 16 Mbyte

• $200

• 1983

CS 350

pdp-11 ISP

• 8 General Purpose Registers (GPRs)

• instructions taking 0,1 or 2 operands

• symmetric instruction set

• nearly-orthogonal instruction set
– easier for compilers (and humans)

CS 350

pdp-11 cpu cycles

• Fetch intruction cycle

• source operand cycle

• destination operand cycle

• Execute

• honour interrupts

CS 350

Address generation

MODE REGISTER RnIN
D

IR
E

C
T

IO
N

X B DISP

4 4 12

CF:

360

CS 350

pdp-11 best feature:
addressing modes

00 Rn contains operand (register mode)

01 Rn contains ptr to operand; (autoincrement)
[increment Rn AFTER operand fetch]

10 Rn contains ptr to operand; (autodecrement)
[decrement Rn BEFORE operand fetch]

11 Add c(Rn) to c(nextword) to get operand address

CS 350

Modes: single operand
instruction

INC R3 00 0 R3 <- C(R3) + 1
INC (R3) 00 1 C(R3) <- C(C(R3)) + 1
INC (R3)+ 01 0 As above, then bump R3
INC @(R3)+ 01 1 register points to address,

then increment
INC GEO(R3) 11 0 GEO + c(R3) is address
INC @GEO(R3) 11 1 GEO + c(R3) points

to address

CS 350

Double operand:

MOV R1,R2 00 0 00 0 R2 <- C(R1)

(R1), R2 00 1 00 0 R2 <- C(C(R1)) “LDA”

R2, (R1) 00 0 00 1 C(R1) <- C(R2) “STA”

(R1), (R2) 00 1 00 1 C(R2) <- C(C(R1)) “MOV”

CS 350

Double operand
MOV R1, ARRAY(R2) 00 0 11 0

ARRAY + C(R2) <- C(R1)
INDEXED STORE

ARRAY(R2), R1 11 0 00 0
INDEXED LOAD

ARRAY(R2), VEC(R1) 11 0 11 0
DOUBLY INDEXED

TOM, GEORGE 11 0 11 0
INDEXED RELATIVE TO PC

@TOM, @GEORGE 11 1 11 1
AS ABOVE, AND INDEXED

CS 350

TERRIFYING TIMING

MOV @TOM, @GEORGE

REQUIRES
14 MICROSECONDS 11/20
5.6 MICROSECONDS 11/40

CS 350

Stacks!
Hi address-
stack top

Lo address-
stack bottomRn

MOV ITEM, -(Rn) PUSH ITEM ON STACK
MOV (Rn)+, ITEM POP STACK TO ITEM

CS 350

CONDITIONAL BRANCHES

ON A 4-BIT CONDITION CODE

RANGE: (-128, + 127)

CS 350

DATA TYPES

WORD OR BYTE

NEARLY EVERY INSTRUCTION HAS TWO VERSIONS

MOV MOVB
INC INCB

NEARLY EVERY ADDRESSING MODE WORKS WITH EVERY
INSTRUCTION

CS 350

R7 IS THE PROGRAM
COUNTER

WORKS FOR ALL VALUES OF MODE & INDIRECT BITS

BEST ONES ARE:

01 0 R7 CONTAINS POINTER TO OPERAND

OP #N ASSEMBLES TO OP

N

CS 350

R7 IS THE PROGRAM
COUNTER

01 1 R7 CONTAINS PTR TO PTR TO OPERAND:

OP @#A OP

ABSOLUTE ADR(A)

CS 350

PHBREAK:

RISC ISP architecture
the MIPS ISP

 you read:

text Chapter 3

CS 350

Summary of main points:

Two objectives;

1] Describe the MIPS ISP architecture

2] expose the Reduced Instruction Set Computer (RISC)
approach to architecture

CS 350

RISC approach: what it is not:

 CISC a la S/360, VAX (1970s)
Mp is slow

(no caches,
 cycle times of 1-6 microseconds

[vs. 100 nsec = 0.1 microsec today])

so instruction fetches are expensive,
so let's make every instruction do a lot

CS 350

 let's mimic higher-level contructs, eg

¶ loop control (S/360 BXLE)

¶ stack push/pop (Burroughs B-5000, VAX)

¶ procedure call instruction (VAX)

CS 350

"wired macroinstructions"

in general, lots of side-effects per instruction\

{ we can implement these easily (for free?),
by writing long microroutines in vertical microstore}

CS 350

 What happened?

seemed OK thru the 1970s, but in the 80s

¶ Mp got a lot faster, esp. with caches

CS 350

• Microstore became as slow as Mp

• People needed to use compilers
– compilers couldn’talsways generate efficient

CISC code

CS 350

• Programmers spent pages setting upa killer
effect so

• code was hard to understand or modify

• solution: a form of KISS:

• Reduced Instruction Set Computer

CS 350

RISC approach: what it is:
Rationale

 Reduced (small) set of simple instructions

¶ able to be used effectively by compilers

 get rid of the slow microprogram store

i.e. instructions implemented by wired-logic controls

CS 350

wired-logic decoders will be feasible and fast,
as the instructions are simple and few in number

 programs will have more instructions, but
 Mp is now big (>1 Mbyte) and fast (<100 nsec)

CS 350

RISC Empirical result:

 In executing (e.g.) compiled C code

the product

(# of instrs executed) * (mean execution time per instruction)

is usually smaller for RISC than for CISC

CS 350

 the simpler control design was amenable to VLSI
(single-chip cpus) so

 the microprocessor world (MIPS, SPARC, PowerPC)
 is now all RISC

except Intel and Motorola 68X00

 but it could all change tomorrow.

CS 350

MIPS architecture

(note simplicity w r to S/360, VAX)

 ALL instrs have exactly 3 operands (KISS)

 there are just 32 fast registers, $0 - $31.

c($0) = 0, always.

CS 350

 230 memory cells,

4 bytes wide and byte addressed.

¶ Aligned word data begin at byte adresses of form 4n.

¶ Index registers must be incremented by 4 when addressing word data.

 ALL instructions 32 bits (1 word) long

