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IBM $/360

e 37015360, re-implemented , plus afew new
features

e 39015370, re-implemented , plus afew new
features

 still amainstay of IBM’s business
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/360

 Instroduced in 1964 to replace three (1)
Incompatible families
— 7090 fixed-point word oriented
— 1401 decimal character-oriented
— 1620 decimal numeric oriented

e With one architecture
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/360

 Instruction set a UNION of Instruction sets
— fixed-point binary (7090)
— floating binary (7090)
— decimal character-oriented (1401)
— string processing
* 4 hardware datatypes
— byte, halfword, word, doubleword
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/360

 One OS (wdll, 5)
— 0S/360 big batch OS, no virtual memory
— DOS/360 little batch OS, no virtual memory
— DAMPS real time (360/44)
— VM virtual memory for 360/67, 370s
— TSSfailure, virtual memory for 360/67
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/360

8 models with amost identical 1SP
— (the 360 I SP)

performance range of 300:1 (!)
microprogrammed CPUs In Models 20 - 67

microstore times of 200 nsec - 1 nsec
data bus widths of 1 - 8 bytes

memory cycle times of 7.2 msec - 0.75 nsec
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Moddls

e 2025304044 506567 758591

 Anomalies:
— 44 for real time process control

— 67 to compete with GE 645 in timesharing
market (paging, segmentation, swap drums,
unigque OS)

— 25 had user-alterable control store
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Prices;

 Model 40 with 250 Kbytes Mp, 3 nsec
cycletime: $40 000/month (not sold)

« modd 75: $100 000 / month

« model 91 (pipelined): $10M
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360 ISP design

* Previous large machines.
— addressed 32K cells of Mp maximum
— cell = word of length 36 bits or so
—registers. AC, MQ, few Index Registers
— fixed length instructions & operands

Op IR address
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360 ISP goals

e Bigger address space (2%4)
o cf. Motorola 68000 of 25 years later

o General Purpose registers and more of them
e 16

* Use program store more efficiently
e variable length instructions
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360 ISP decisions

* Registers. 16 GPRS, useable as

— accumulators
— MQs

— Index registers
— base registers
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Instruction length

e 2-06 bytes
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Address Formation

 How to avoid storing 24 bits of real address
per instruction?

« Uselocality of reference principle

— next memory reference likely to be “close” to
the last reference
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Address Formation

 Usea GPR (32 hits) to point to the generdl
vicinity of the desired cell

e useasmall address (12 bits) inthe
Instruction to hit the precise location

CS 350



Address Formation

 How to avoid storing 24 bits of real address
per instruction?

— Instruction holds a 12-bit field (spans 4096
bytes) called displacement

— 24- bit memory address formed from
displacement, c(base register [GPR]) &
c(index register [GPR]) asfollows:
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Address formation

c(base register |) + disp + c(X1) -> EA




Good & Bad

e \What’s good?

— Uses codespace efficiently IF locality of
referenceisvalid

e What' s bad?

— Need to make a gpr point within 4096 of

address A before we can access it (“establishing
addressahility)
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Good & Bad

o Baseregistersare NOT invisibleto the
programmer , do the OS can NOT use them

for program relocation (blunder)

e tendsto tie up many GPRs
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Program relocation

* Newer models had programmer-invisible
relocation registers (DAT box, MMU) in
addition to the above

— 360/67, al 370s, MIPS chip, . . .

e Older 360s could not relocate programs or
data(!)

« BTW, MIPS uses a 64-bit address space
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360 Critigue
(1998)

Not enough address space!
— 224 bytesinsufficient
no virtual address spaces

— program & data relocation impractical
— batch throughput oscillated

not enough GPRs (16)
Inadequate interrupt structure
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However

360 redefined computer architecture
— Gerritt Blauuw: “the end of architecture”’
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| nstruction Formats

e Gods:

o flexibility

o efficient use of code space (Mp
was expensive in 1962)
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Register-Register (RR)

OP

R1

R2

* eg. AR R3, R4

*short

* can’t reference memary

2 bytes



Register - Storage, indexed

RX
8 4 4 4 12
op R1 X2 B2 D2
\_
—~,
Storage address

*eg L R5 GEO(RS3)
*twice aslong as RR format
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Register - Storage, unindexed

8 4 4 4 12
op R1 R3 B2 D2
o _
RS format N
Storage address

E.g LM R1, R6, SUE

no more indexing, 2nd register can be specified
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Storage- Storage

8 8 4 12 4 12
op L B1 D1 B2 D2
\ J
v Y
ADDRESS ADDRESS

E.G. MVC 12, TOM, SUE
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360 INSTRUCTION FORMATS

Note lack of orthogonality of opcode space
to format space --

* not all opcodes work with all formats

Note lack of symmetry:
— OP(A,B) ~=>OP(B,A)
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360 INSTRUCTION DESIGN

e 256 opcodes, many are spares

 FOUR Instruction sets
— fixed-point binary arithmetic & logic
— floating-point binary
— decimal
— miscellany (protection, 1/O)

— “machine s aunion of machines’
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360 INSTRUCTION DESIGN

e EG.
— S R3, GEORGE(X2): BINARY RX
— AP TOM, GEORGE; DECIMAL SS
— CLI SUE, C'X’' : COMPARE IMMEDIATE
—SSK R1,R2: PROTECTION

e 5-bit key in PSW must match key of
memory block - grossly inadeguate
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CPU

360 Bus Structure

control

A

\A/

a

A

\A/
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w NPk O

cell

360 Storage structure

Byte O 1 2 3
T
Word at
— _ J
address 0 Y
— Hafwordat 2
Byte 4 5 6 7

Bits 0 78 15 16 2324 31
Little-endian order -- isthis natural?
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360 Storage structure

e Halfword addresses=0 mod 2
e word addresses= 0 mod 4

e doubleword addresses = 0 mod 8
e Why?
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360 Implementations

 How to get a performance range of 300:1
using ONE logic family?
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Modéel 40

ALU: 1 bytewide
microinstruction time: 625 nsec
Mp cycle: 2.5 nsec

max Mp: 0.25 Mbyte

rent: $20 000 / month
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Model 50 M otorola 68000

ALU: 32 bitswide
microinstruction time: 500 nsec

e microinstr time: 250 nsec
Mp cycle: 1.5 nsec

max Mp: 0.5 Mbyte * Mpcycle: 0.5 meec
interrupt response: <600msec || * Max Mp: 16 Mbyte
$30 000 / month e $200

e 1963 . 1933
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odp-11 ISP

8 General Purpose Registers (GPRs)
Instructions taking 0,1 or 2 operands
symmetric instruction set

nearly-orthogonal instruction set
— easier for compilers (and humans)
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ndp-11 cpu cycles

Fetch intruction cycle
source operand cycle
destination operand cycle
Execute

honour Interrupts
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Address generation

MODE = REGISTER Rn
)
r;H CF:
3
@)
Z X| B | DISP
4 4 12
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pdp-11 best feature:
addressing modes

00

01

10

11

Rn contains operand (register mode)

Rn contains ptr to operand; (autoincrement)
[Increment Rn AFTER operand fetch]

Rn contains ptr to operand; ( autodecrement)
[decrement Rn BEFORE operand fetch]

Add c(Rn) to c(nextword) to get operand address
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NC
NC
NC
NC

INC
INC

Modes: single operand

INstruction
R3 000 R3<-C(R3) +1
(R3) 001 C(R3) <- C(C(R3)) +1
(R3)+ 010 As above, then bump R3
@(R3)+ 011 register points to address,
then increment
GEO(R3) 110 GEO + ¢(R3) isaddress

@GEO(R3) 11 1
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Double operand:

MOV R1,R2 000 000 R2<- C(R1)
(R1),R2 001 000 R2<-C(C(R1) “LDA”
R2,(R1]) 000 001 C(Rl1)<-C(R2) “STA’

(R1),(R2) 001 001 C(R2)<- C(C(R1)) “MOV”
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Double operand

MOV R1, ARRAY(R2) 000 110
ARRAY + C(R2) <- C(R1)
INDEXED STORE
ARRAY(R2),R1 110 000
INDEXED LOAD
ARRAY (R2), VEC(R1) 110 110
DOUBLY INDEXED
TOM, GEORGE 110 110
INDEXED RELATIVE TO PC
@TOM, @GEORGE 111 111
AS ABOVE, AND INDEXED
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TERRIFYING TIMING

MOV @TOM, @GEORGE

REQUIRES
14 MICROSECONDS 11/20
5.6 MICROSECONDS 11/40
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Rn

Stacks!

H’AV

Hi address-
stack top

Lo address-
stack bottom

MOV ITEM, -(Rn)

PUSH ITEM ON STACK
MOV (Rn)+, ITEM POP STACK TO ITEM
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CONDITIONAL BRANCHES

ON A 4-BIT CONDITION CODE

RANGE: (-128, + 127)
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DATA TYPES

WORD ORBYTE

NEARLY EVERY INSTRUCTION HAS TWO VERSIONS

MOV MOVB
INC INCB

NEARLY EVERY ADDRESSING MODE WORKSWITH EVERY
INSTRUCTION
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R7 1S THE PROGRAM
COUNTER

WORKS FOR ALL VALUES OF MODE & INDIRECT BITS
BEST ONES ARE:

010 R7CONTAINSPOINTER TO OPERAND

OP#N ASSEMBLESTO OP
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R7 1S THE PROGRAM
COUNTER

011 R7CONTAINSPTRTOPTR TO OPERAND:

OP @#A
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PHBREAK:

RISC | SP architecture
the MIPS ISP

you read:

text Chapter 3
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Summary of main points:
Two objectives,

1] Describe the MIPS ISP architecture

2] expose the Reduced Instruction Set Computer (RISC)
approach to architecture
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RISC approach: what it is not:

CISC ala §360, VAX (1970s)
Mpisslow

( no caches,
cycle times of 1-6 microseconds
[vs. 100 nsec = 0.1 microsec today] )

so instruction fetches are expensive,

so let's make every instruction do alot
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let's mimic higher-level contructs, eg
11 1oop control (S/360 BXLE)
1| stack push/pop (Burroughs B-5000, VAX)

1 procedure call instruction (VAX)
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"wired macroinstructions"
In general, lots of side-effects per instruction\

{ we can implement these easily (for free?),
by writing long microroutines in vertical microstore}
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What happened?
seemed OK thru the 1970s, but in the 80s

TM, got alot faster, esp. with caches
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e Microstore became as low as Mp

* People needed to use compilers

— compilers couldn’ talsways generate efficient
CISC code
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Programmers spent pages setting upakiller
effect so

code was hard to understand or modify

solution: aform of KISS:
Reduced Instruction Set Computer
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RISC approach: what it is:
Rationale
Reduced (small) set of ssmple instructions
{ able to be used effectively by compilers
get rid of the slow microprogram store

.. instructions implemented by wired-logic controls
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wired-logic decoders will be feasible and fast,
as the instructions are simple and few in number

programs will have more instructions, but
M, isnow big (>1 Mbyte) and fast (<100 nsec)
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RISC Empirical result:
In executing (e.g.) compiled C code
the product
(# of instrs executed) * (mean execution time per instruction)

Isusually smaller for RISC than for CISC
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the smpler control design was amenableto VLS
(single-chip cpus) so

the microprocessor world (MIPS, SPARC, PowerPC)
Isnow all RISC

except Intel and Motorola 68X 00

but it could all change tomorrow.
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M| PS architecture

(note ssmplicity w r to /360, VAX)

ALL instrs have exactly 3 operands (KI1SS)
there are just 32 fast registers, $0 - $31.

c($0) = 0, always.
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230 memory cells,
4 bytes wide and byte addressed.
1 Aligned word data begin at byte adresses of form 4n.
1 Index registers must be incremented by 4 when addressing word data.

ALL instructions 32 bits (1 word) long
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