
CS 350

DEC pdp-11 family

• Performance range : 10:1

• architectural goals: (1970)
– address space: 64K (boo!)

– dense code (Mp expensive)

– easy interrupt processing

– re-entrant code

– easy peripheral interfacing

stacks

CS 350

pdp-11 ISP

• 8 General Purpose Registers (GPRs)

• instructions taking 0,1 or 2 operands

• symmetric instruction set

• nearly-orthogonal instruction set
– easier for compilers (and humans)

CS 350

pdp-11 cpu cycles

• Fetch intruction cycle

• source operand cycle

• destination operand cycle

• Execute

• honour interrupts

CS 350

Address generation

MODE REGISTER RnIN
D

IR
E

C
T

IO
N

X B DISP

4 4 12

CF:

360

CS 350

pdp-11 best feature:
addressing modes

00 Rn contains operand (register mode)

01 Rn contains ptr to operand; (autoincrement)
[increment Rn AFTER operand fetch]

10 Rn contains ptr to operand; (autodecrement)
[decrement Rn BEFORE operand fetch]

11 Add c(Rn) to c(nextword) to get operand address

CS 350

Modes: single operand
instruction

INC R3 00 0 R3 <- C(R3) + 1
INC (R3) 00 1 C(R3) <- C(C(R3)) + 1
INC (R3)+ 01 0 As above, then bump R3
INC @(R3)+ 01 1 register points to address,

then increment
INC GEO(R3) 11 0 GEO + c(R3) is address
INC @GEO(R3) 11 1 GEO + c(R3) points

to address

CS 350

Double operand:

MOV R1,R2 00 0 00 0 R2 <- C(R1)

(R1), R2 00 1 00 0 R2 <- C(C(R1)) “LDA”

R2, (R1) 00 0 00 1 C(R1) <- C(R2) “STA”

(R1), (R2) 00 1 00 1 C(R2) <- C(C(R1)) “MOV”

CS 350

Double operand
MOV R1, ARRAY(R2) 00 0 11 0

ARRAY + C(R2) <- C(R1)
INDEXED STORE

ARRAY(R2), R1 11 0 00 0
INDEXED LOAD

ARRAY(R2), VEC(R1) 11 0 11 0
DOUBLY INDEXED

TOM, GEORGE 11 0 11 0
INDEXED RELATIVE TO PC

@TOM, @GEORGE 11 1 11 1
AS ABOVE, AND INDEXED

CS 350

TERRIFYING TIMING

MOV @TOM, @GEORGE

REQUIRES
14 MICROSECONDS 11/20
5.6 MICROSECONDS 11/40

CS 350

Stacks!
Hi address-
stack top

Lo address-
stack bottomRn

MOV ITEM, -(Rn) PUSH ITEM ON STACK
MOV (Rn)+, ITEM POP STACK TO ITEM

CS 350

CONDITIONAL BRANCHES

ON A 4-BIT CONDITION CODE

RANGE: (-128, + 127)

CS 350

DATA TYPES

WORD OR BYTE

NEARLY EVERY INSTRUCTION HAS TWO VERSIONS

MOV MOVB
INC INCB

NEARLY EVERY ADDRESSING MODE WORKS WITH EVERY
INSTRUCTION

CS 350

R7 IS THE PROGRAM
COUNTER

WORKS FOR ALL VALUES OF MODE & INDIRECT BITS

BEST ONES ARE:

01 0 R7 CONTAINS POINTER TO OPERAND

OP #N ASSEMBLES TO OP

N

CS 350

R7 IS THE PROGRAM
COUNTER

01 1 R7 CONTAINS PTR TO PTR TO OPERAND:

OP @#A OP

ABSOLUTE ADR(A)

CS 350

PHBREAK:

RISC ISP architecture
the MIPS ISP

 you read:

text Chapter 3

CS 350

Summary of main points:

Two objectives;

1] Describe the MIPS ISP architecture

2] expose the Reduced Instruction Set Computer (RISC)
approach to architecture

CS 350

RISC approach: what it is not:

 CISC a la S/360, VAX (1970s)
Mp is slow

(no caches,
 cycle times of 1-6 microseconds

[vs. 100 nsec = 0.1 microsec today])

so instruction fetches are expensive,
so let's make every instruction do a lot

CS 350

 let's mimic higher-level contructs, eg

¶ loop control (S/360 BXLE)

¶ stack push/pop (Burroughs B-5000, VAX)

¶ procedure call instruction (VAX)

CS 350

"wired macroinstructions"

in general, lots of side-effects per instruction\

{ we can implement these easily (for free?),
by writing long microroutines in vertical microstore}

CS 350

 What happened?

seemed OK thru the 1970s, but in the 80s

¶ Mp got a lot faster, esp. with caches

CS 350

RISC

• Microstore became as slow as Mp

• People needed to use compilers
– compilers couldn’talsways generate efficient

CISC code

CS 350

RISC

• Programmers spent pages setting upa killer
effect so

• code was hard to understand or modify

• solution: a form of KISS:

• Reduced Instruction Set Computer

CS 350

RISC

RISC approach: what it is:
Rationale

 Reduced (small) set of simple instructions

¶ able to be used effectively by compilers

 get rid of the slow microprogram store

i.e. instructions implemented by wired-logic controls

CS 350

RISC

wired-logic decoders will be feasible and fast,
as the instructions are simple and few in number

 programs will have more instructions, but
 Mp is now big (>1 Mbyte) and fast (<100 nsec)

CS 350

RISC

RISC Empirical result:

 In executing (e.g.) compiled C code

the product

(# of instrs executed) * (mean execution time per instruction)

is usually smaller for RISC than for CISC

CS 350

RISC

 the simpler control design was amenable to VLSI
(single-chip cpus) so

 the microprocessor world (MIPS, SPARC, PowerPC)
 is now all RISC

except Intel and Motorola 68X00

 but it could all change tomorrow.

 the simpler control design was amenable to VLSI
(single-chip cpus) so

 the microprocessor world (MIPS, SPARC, PowerPC)
 is now all RISC

except Intel and Motorola 68X00

 but it could all change tomorrow.

CS 350

MIPS architecture

(note simplicity w r to S/360, VAX)

 ALL instrs have exactly 3 operands (KISS)

 there are just 32 fast registers, $0 - $31.

c($0) = 0, always.

CS 350

