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DEC pdp-11 family

• Performance range : 10:1

• architectural goals:  (1970)
– address space: 64K  (boo!)

– dense code (Mp expensive)

– easy interrupt processing

– re-entrant code

– easy peripheral interfacing

stacks
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pdp-11 ISP

• 8 General Purpose Registers (GPRs)

• instructions taking 0,1 or 2 operands

• symmetric instruction set

• nearly-orthogonal instruction set
– easier for compilers (and humans )
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pdp-11 cpu cycles

• Fetch intruction cycle

• source operand cycle

• destination operand cycle

• Execute

• honour interrupts
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Address generation
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pdp-11 best feature:
addressing modes

00 Rn contains operand  (register mode)

01 Rn contains ptr to operand; (autoincrement)
[increment Rn AFTER operand fetch]

10  Rn contains ptr to operand;  ( autodecrement)
[decrement Rn BEFORE operand fetch]

11 Add c(Rn) to c(nextword) to get operand address
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Modes: single operand
instruction

INC R3     00 0 R3 <- C(R3) + 1
INC (R3)     00 1 C(R3) <- C(C(R3)) + 1
INC (R3)+     01 0 As above, then bump R3
INC @(R3)+ 01 1 register points to address,

then increment
INC GEO(R3)  11 0 GEO + c(R3) is address
INC @GEO(R3) 11 1 GEO + c(R3) points 

to address
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Double operand:

MOV R1,R2 00 0  00 0 R2 <- C(R1)

(R1), R2 00 1  00 0 R2 <- C(C(R1))  “LDA”

R2, (R1) 00 0  00 1 C(R1) <- C(R2)   “STA”

(R1), (R2) 00 1  00 1 C(R2) <- C(C(R1))  “MOV”
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Double operand
MOV R1, ARRAY(R2) 00 0  11 0

ARRAY + C(R2) <- C(R1)
INDEXED STORE

ARRAY(R2), R1 11 0  00 0
INDEXED LOAD

ARRAY(R2), VEC(R1)  11 0  11 0
DOUBLY INDEXED

TOM, GEORGE 11 0  11 0
INDEXED RELATIVE TO PC

@TOM, @GEORGE 11 1  11 1
AS ABOVE, AND INDEXED
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TERRIFYING TIMING

MOV @TOM, @GEORGE 

REQUIRES
14 MICROSECONDS  11/20
5.6 MICROSECONDS  11/40
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Stacks!
Hi address-
stack top

Lo address-
stack bottomRn

MOV ITEM, -(Rn) PUSH ITEM ON STACK
MOV (Rn)+, ITEM POP STACK TO ITEM
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CONDITIONAL BRANCHES

ON A 4-BIT CONDITION CODE

RANGE: (-128, + 127 )
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DATA TYPES

WORD OR BYTE

NEARLY EVERY INSTRUCTION HAS TWO VERSIONS

MOV   MOVB
INC INCB

NEARLY  EVERY ADDRESSING MODE WORKS WITH EVERY 
INSTRUCTION
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R7 IS THE PROGRAM
COUNTER

WORKS FOR ALL VALUES OF MODE & INDIRECT BITS

BEST ONES ARE:

01 0 R7 CONTAINS POINTER TO OPERAND

OP #N   ASSEMBLES TO    OP

N
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R7 IS THE PROGRAM
COUNTER

01 1 R7 CONTAINS PTR TO PTR TO OPERAND:

OP   @#A OP

ABSOLUTE ADR(A)
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PHBREAK:

RISC ISP architecture
the MIPS ISP

 you read:

text Chapter 3
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Summary of main points:

Two objectives;

1] Describe the MIPS ISP architecture

2] expose the Reduced Instruction Set  Computer (RISC)  
approach to architecture
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RISC approach: what it is not:

 CISC a la S/360, VAX  (1970s)
Mp is slow

( no caches, 
  cycle times of 1-6 microseconds

[vs. 100 nsec = 0.1 microsec today] )

so instruction fetches are expensive, 
so let's make every instruction do a lot
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 let's mimic higher-level contructs, eg

¶ loop control (S/360 BXLE)

¶ stack push/pop (Burroughs B-5000,  VAX)

¶ procedure call instruction (VAX)
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"wired macroinstructions"

in general, lots of side-effects per instruction\

{ we can implement these easily (for free?), 
by writing long microroutines in vertical microstore}
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 What happened?

seemed OK thru the 1970s, but in the 80s 

¶ Mp  got a lot faster, esp. with caches
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RISC

• Microstore became as slow as Mp

• People needed to use compilers
– compilers couldn’talsways generate efficient

CISC code
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RISC

• Programmers spent pages setting upa killer
effect so

• code was hard to understand or modify

• solution: a form of KISS:

• Reduced Instruction Set Computer
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RISC

RISC approach: what it is:
Rationale

 Reduced (small) set of simple instructions 

¶ able to be used effectively by compilers

 get rid of the slow microprogram store

i.e. instructions implemented by wired-logic controls 
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RISC

wired-logic decoders will be feasible and fast, 
as the instructions are simple and few in number

 programs will have more instructions, but
  Mp  is now big (>1 Mbyte) and fast (<100 nsec)
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RISC

RISC Empirical result:

 In executing (e.g.) compiled C code

the product

(# of instrs executed) * (mean execution time per instruction)

is usually smaller for RISC than for CISC
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RISC

 the simpler control design was amenable to VLSI 
(single-chip cpus) so

 the microprocessor world (MIPS, SPARC, PowerPC)
   is now all RISC

except Intel and Motorola 68X00
  
 but it could all change tomorrow.

 the simpler control design was amenable to VLSI 
(single-chip cpus) so

 the microprocessor world (MIPS, SPARC, PowerPC)
   is now all RISC

except Intel and Motorola 68X00
  

 but it could all change tomorrow.
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MIPS architecture

(note simplicity w r to S/360, VAX)

 ALL instrs have exactly 3 operands (KISS)

 there are just 32 fast registers, $0 - $31.

c($0) = 0, always.
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