
CS 350

PHBREAK:

RISC ISP architecture
the MIPS ISP

 you read:

text Chapter 3

CS 350

Summary of main points:

Two objectives;

1] Describe the MIPS ISP architecture

2] expose the Reduced Instruction Set Computer (RISC)
approach to architecture

CS 350

RISC approach: what it is not:

 CISC a la S/360, VAX (1970s)
Mp is slow

(no caches,
 cycle times of 1-6 microseconds

[vs. 100 nsec = 0.1 microsec today])

so instruction fetches are expensive,
so let's make every instruction do a lot

CS 350

 let's mimic higher-level contructs, eg

¶ loop control (S/360 BXLE)

¶ stack push/pop (Burroughs B-5000, VAX)

¶ procedure call instruction (VAX)

CS 350

"wired macroinstructions"

in general, lots of side-effects per instruction\

{ we can implement these easily (for free?),
by writing long microroutines in vertical microstore}

CS 350

 What happened?

seemed OK thru the 1970s, but in the 80s

¶ Mp got a lot faster, esp. with caches

CS 350

• Microstore became as slow as Mp

• People increasingly needed to use compilers
– but compilers couldn’t always generate

efficient CISC code

CS 350

• Programmers spent pages setting up a killer
effect, so

• code was hard to understand or modify

• solution: a form of KISS:

• Reduced Instruction Set Computer

CS 350

RISC approach: what it is:
Rationale

 Reduced (small) set of simple instructions

¶ able to be used effectively by compilers

 get rid of the slow microprogram store

i.e. instructions implemented by wired-logic controls

CS 350

wired-logic decoders will be feasible and fast,
as the instructions are simple and few in number

 programs will have more instructions, but
 Mp is now big (>1 Mbyte) and fast (<100 nsec)

CS 350

RISC Empirical result:

 In executing (e.g.) compiled C code

the product

(# of instrs executed) * (mean execution time per instruction)

is usually smaller for RISC than for CISC

CS 350

 the simpler control design was amenable to VLSI
(single-chip cpus) so

 the microprocessor world (MIPS, SPARC, PowerPC)
 is now all RISC

except(!) Intel . . . and Motorola 68X00

 but it could all change tomorrow.

CS 350

MIPS architecture

(note simplicity w r to S/360, VAX)

 ALL instrs have exactly 3 operands (KISS)

 there are just 32 fast registers, $0 - $31.

c($0) = 0, always.

CS 350

 230 memory cells,

4 bytes wide and byte addressed.

¶ Aligned word data begin at byte adresses of form 4n.

¶ Index registers must be incremented by 4 when addressing word data.

 ALL instructions 32 bits (1 word) long

CS 350

MIPS Instruction Formats

 some instructions (eg binary ops) are RR format:
op rs rt rd shamt funct
6 5 5 5 5 6

c(rs) bop c(rt) -> rd (Register Transfer)

bop $d, $s, $t #Assembler

CS 350

Example: If

 val(f) is in $16
g $17
h $18
i $19
j $20

then
f = (g+h) - (i+j)

compiles into

add $8, $17, $18 # g+h in $8
add $9, $19, $20 # i+j in $9
sub $16, $8, $9 # f gets answer

CS 350

I-type (Register-Storage) format:

• some instructions (eg mem -> reg, reg -> mem) are I-type
(Register-Storage) format:

op rs rt address
6 5 5 16

or, more naturally,

op ri rd address (op, index, dest'n, addr)

c[c(ri) + address] <-> rd (RTL)

CS 350

op $d, address($i) #comments

op $t, address($s)

lw $8,Astart($19)
#r8 <- c(Astart + c(r19))

Note: address is only 16 bits but addresses are 30 bits

CS 350

Example:

 swap(v[k], v[k+1}) is

in C:

swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

CS 350

in MIPS asm: if

v is in $4

k is in $5 (MIPS parameter passing
 convention)

then

muli $2, $5,4 #$2 has k*4, needed for
#word addressing

add $2, $4, $2 # v +k*4 in $2, DIY
 indexing, to form
address of v[k]

lw $15, 0($2) #$15 has temp = v[k]
lw $16, 4($2) #$16 has v[k+1]
sw $16, 0($2)
sw $15, 4($2)

CS 350

c[c(ri) + address] <-> rd

is the only memory addressing mode, the assembler
provides several others (later)

CS 350

Tests & Branches:

beq $1, $2, label #goto label iff
c($1) = c($2)

bne $1, $2, label #goto label iff
#c($1) .ne. c($2)

so
if f,g,h,i,j live in $16 - $20 then

if (i == j) goto L1;
f = g + h;

L1: f = f - h;

CS 350

compiles to
beq $19,$20, L1 #goto L1 if i=j
add $16,$17,$18 # f = g + h

L1: sub $16,$16,$19 #f = f - i

the format: i format like lw, sw:

op rs rt addr
6 5 5 16

CS 350

The C code

if (i == j) f = g+h; else f = g -h:

compiles to

bne $19,$20,Else #if i .NE. j
add $16,$17,$18 # f = g+h
j Exit

Else: sub $16,$17,$18 #f = g-h
Exit:

note the labels created by the compiler

CS 350

Less-than test:

slt $r,$d, $t #c($r) = 1 iff
#c($d) < c($t);

#else c($r) = 0

. . .

blt $r, $d, label #cf s/360 setting condition
code

implemented as

slt $1, $r,$d #$1 gets 1 if a<b
bne $1,$0, Less #if $1 != $0 ie a<b

• assembler instruction nonexistent in hardware

CS 350

In fact
blt $d, $t , label is assembled into

slt $1, $d, $t
bne $1, $0, label #always use $1 - convention

(blt in hardware would take 2 clock cycles or stretch the clock
interval)

CS 350

Case Statement:
(C's switch)

format:
slt $r $t $d shamt funct
6 5 5 5 5 6

CS 350

Now

The address field L1 is 16 bits.

So, to avoid limiting programs to 2 16 bytes,

branch target is PC relative addressed. Thus if

c(PC) = 1000

beq 19 20 100

branches to 100 + c(PC) = 1100 if c($19) = c($20)

where PC is 32 bits

leading us to the . . .

CS 350

Digression

Addressability

• definition: generating jump addresses in a space big enough to
span the Mp address space

• Why care?

• Sometimes, we don't:

IBM 7090 (1962-66)

•36 bit word

•one-word instructions comprising

op code | index reg | address

 15 bits

• 215 = 32K was maximum primary
 memory size, so

• no addressability problem

CS 350

• recent trends to larger Mp :

224 bytes (IBM System 360/370/390)

230 bytes (MIPS 3000 & 4000 chip)

and to no increase in instruction size:

32 bits (IBM 360/370/390)

32 bits (MIPS chip)

16 bits (DEC PDP-11/VAX,
for some instructions)

mean that an Mp address can't fit into an instruction!

CS 350

Addressability -
some solutions

1] addressing relative to the Program Counter or PC (Instruction
Address Register or IAR)

DEC PDP-11 (inventor?) and now
MIPS chip

2] memory organized as 4 banks and the contents of a 2-bit
bank register always prepended to the PC value

Control Data CDC 3600

write bank register instruction

a serious source of programming bugs
(forgot to change banks)

CS 350

3] base-displacement addressing (IBM S/360)

 address = disp field (12 bits) + c(Rj) (32 bits)

displacement base register

achievement: only 12 bits (disp) + 4 bits (select BR) =
16 bits of instruction space used to address 232 bytes
of Mp

CS 350

assembler has to calculate displacements
from symbolic labels
(Jump Foo) so

assembler must know c(Rj) at assembly time

solution: assembler statements

USING Rj /*directive to the assembler;

 does not create an instruction
for the hardware
 followed immediately by */

LA Rj, ADC /* Load Address is a machine
instruction,

adcon is an address
constant */

ADC: (beginning of code)

CS 350

• the above must appear at least every
 212 = 4K bytes throughout the source

(called, "establishing addressability")

End of Digression on
Addressability

CS 350

Loops:

the C fragment

Loop: g = g + A[i];
i = i + j;
if (i != h) goto Loop;

if
A[100] and if
g,h,i,j -> $17 , $18, $19, $20
4 -> $10

then

Loop: mult $9, $19,$10 #c($9) = i*4
lw $8, Astart($9) #c($8) = A[i]
add $17, $17, $8 # g = g + A[i]
add $19, $19, $20 # i = i + j
bne $19,$18, Loop

will do it

CS 350

Case statement:

 in C:
switch (k) {

case 0: f = i + j; break; /* if k=0 */

case 1: f = g + h; break; /* if k =1 */

case 2: f = g - h; break;

case 3: f = i - j; break

} /* here after break */

CS 350

Assume:

Jmptbl:Lbl0 #address of Lbl0 in jmptbl
Lbl1 # jmptbl + 4 (byte-addressed!)
Lbl2 # jmptbl + 8
Lbl3 # jmptbl + 12

f,g,h,i,j,k in $16, $17, . . ., $21
4 in $10

Switch:mult $9, $10, $21 # $9 has k*4

lw $8, Jmptbl($9) # $8 has jump addr

jr $8 # go there

Lbl0: add $16, $19, $20 # k=0 so f <- i + j
j Exit # the break

Lbl1: add $16, $17, $18 # k = 1 case
j Exit # the break

Lbl2: sub $16, $17, $18 # k = 2
j Exit

Lbl3: sub $16, $19, $20
Exit:

CS 350

Procedure Call

need to
1] jump to Proc and remember where we came from so we

can do the return

2] change scope of variables (procedural languages), or

3] switch contexts (same concept, operating
systems jargon) or

4] save and reload a bunch of registers
 (ISP jargon)

Minimal RISC MIPS only does the minimum - 1]

Maximal CISC VAX does it all! (Appendix E)

CS 350

Jump and Link (JAL) procaddr

1] save where we are in $31

c(PC) + 4 -> $31

2] jump to procaddr

c(c(PC)[bits 15-31]) = this instr[bits 15-31]

-> PC

CS 350

How to switch context/ save registers? (eg $31)

- a stack, of course

MIPS conventions:

$29 is stack pointer SP

stack grows into lower addresses
(subtract 4 from SP to push a word
 add 4 to SP to pop a word)

to minimize proc call overhead due to register saves and
restores:

proc params are in $4 -$7, extras on stack

callee saves (preserves) values in
$16 -$23, used by compiler for
long-lived values

nobody but caller saves $$8-$15
and $24-$25 (PH page A-23)

CS 350

Immediate operands
(efficient access to little constants)

• concept: put the constant itself, not its address in memory, into
the instruction

• pro:

saves one memory cell
saves one cycle to get the operand

• con
only room for 16-bit (halfword) constants
in the instruction

• example:

add 4 to c($29)
lw $24, Four($0) #c(Four) = 4
add $29, $29, $24

using immediate operands
addi $29, $29, 4

which assembles to

CS 350

op rs rt immediate

| 8 | 29 | 29 | 4 |
|____|____ |_____|______________|

#compare c($18) to 12

slti $8, $18, 12

load 0000 0000 0011 1101
0000 1001 0000 0000 into $16

lui $16, 61
addi $16, $16, 2304

CS 350

Summary
MIPS Addressing modes

(p 131 PH)

Register addressing:

rs, rt, rd are 5 bit fields pointing to registers

base-displacement addressing:

c($rs) + disp points to a memory cell.

lw $1, 100($2)

immediate addressing:

low-order 16 bits of instruction is the data

addi $1,$1, 224

CS 350

PC - relative

low-order 16 bits of instruction is the (branch target) address,
interpreted as relative to the PC

80008 bne$8,$21, Exit
80012
80016
80020 Exit

assembles to

80008 5 8 21 8
80012
80016
80020 Exit

CS 350

Common addressing modes
Missing from MIPS

auto-increment, auto decrement (DEC)

mov ($6)+, ($3)+ # c(c($6)) -> c($3)
increment c($6), c($3)

mov (SP)+, stacktop # pop stack
mov stacktop, -(SP) # push onto stack

CS 350

storage-to-storage (IBM, DEC)

mov A,B #A & B mem addresses

mov ($6), ($3) # $6 & $3 point to
mem addresses

super loop control (IBM)

BXLE R1,R3, braddr

braddr -> PC iff c(R1) < c(R3).
Else R1 <- c(R1) + 1

Arrays vs. Pointers

• Please study PH Section 3.11 carefully

• NB comparison of array and pointer
versions of the little program

