
Control Data 6600
Design Goal

• Beat IBM 7090 at number crunching
• Do it using 100 nsec gates (1963, discretes)

Key Idea

• Cpu as refrigerator, permitting
• high drive currents for gates and memory cores,

causing short switching times

• dense packaging leading to short wires

CPU approach

• Build many specialized ALUs (functional
units) so that as many as
– 1 ADD

– 2 MPY

– 1 DIV

– 1 LONG ADD

CPU approach

– 1 SHIFT

– 1 BOOLEAN

– 2 INCREMENTS

– 1 BRANCH

• can occur simultaneously

CPU approach

• Use short instructions
– (4 per 60-bit word), quadrupling the fetch rate

• keep 10 instructions in a fast instr store
• offload small tasks

– running OS

– I/O

• to the PPUs

CPU approach

• Functional unit scheduling is programmer-
transparent

• from 1 to 10 may be simultaneously active

Scheduling rules

• Issue instructions until

– no FU is free, or

– some register would get 2 results

Scheduling rules

• Execute instructions until
– an input depends on a non-existent output

Instruction design

• Want 15-bit instructions

• need to include
– op src1 src2 dest’n

• Mp addresses are 18 bits

Instruction design

• Store pointers to Mp addresses in instrs

Aj

Instr

3

18

60

Instruction design

• There are 8 pointer registers Aj
• for each there is a data register Xj

• when address -> Aj then
– c(address) -> Xj 0 < j < 6

– c(Xj) -> address 5 < j < 8

• AUTOMATICALLY!

Example

SA1 A2

does

c(A2) -> A1 /* the address
c(c(A2) -> c(A1) /* the memory word

CDC 6600

There are also 8 index registers

B0 -B7, c(B0) = 0

C(A0) = 0 too

A program:

Add VEC1 to VEC2 component-wise,
putting the vector sum in VEC3

ADD: SB1 B1 - B1 ; ZERO B1
SB2 B1 + LENGTH; LENGTH OF VECTORS

LOOP: SA1 B1 + VEC1; A1 <- VEC1 + C(B1)
; X1 <- C(VEC1 + C(B1))
; I.e. VEC1j

SA2 B1 + VEC2; SAME DEAL FOR VEC2
IX6 X1 + X2 ; X6 <- C(X1) + C(X2) =

; JTH COMPONENT OF VEC1
; PLUS

JTH COMPONENT OF VEC2
SA6 B1 + VEC3 ; A6 <- VEC3 + C(B1)

; C(A6) <- C(X6) =
; JTH COMPONENT OF SUM

SB1 B1 + 1 ; BUMP INDEX REG
LT B1,B2, LOOP ; END TEST

PARALLELISM ANALYSIS

THE RULES:
ISSUE UNTIL NO FU FREE OR SOME REG
GETS 2 RESULTS

EXECUTE UNTIL A NECESSARY INPUT IS
NOT YET AVAILABLE

PARALLELISM ANALYSIS

Box used instr clock times
issued started finished

INC1 SB1(B1,B1) 1 1 2
INC2 SB2(B1,con) 1 2 3
INC1 SA1(B1, K) 2 2 3
INC2 SA2(B1,K0 3 3 4
ADD1 IX6(X1,X2) 1 4 5
INC1 SA6(B1,K) 3 5 6
INC2 SB1(B1,K) 4 5 6
INC1 LT(B1,B2) 6 7 7

WAIT FOR X2!
WAIT FOR X6!

PARALLELISM ANALYSIS

SAVES ONE CYCLE

HOW TO IMPROVE?

