
Section 4.1
Microsteps, hard wired

Implementing instructions using
Micro steps

Level 1

The purpose of the
Control Path

Generate
the right sequence of control signals
to execute the instruction

The purpose of the
Control

Hardware resources of the Data Path

ALU

Mp

Register file

Control

or

control path

Synchronous wired control

• Typical microsteps:

• gate c(R1) to R2

• start ALU
• start Mp read cycle
• seize bus

Control’s function, restated

• Generate time sequences of microsteps

• How?

computation

• the next micro step to be done depends on

– which instruction we’re executing (op code or
order) and

– what time it is, i.e. which step we’re doing (τ)

computation

• I.e.

• Next micro step = f(order, τ)

• control’s purpose is to calculate this
function, where

� τ ε 1,2,3, . . . , n

computation

• Specifying function f tabular-ly

– order1 --> µ step (1,1)

» µ step (1,2)

» µ step (1,3)

» .

» .

» µstep (1,n1)

computation

• Ditto for order2, . . . , order m

• How to compute
– “order” and τ in hardware?

Computing “which order ?”

IOP, part of IR

OP3 OP4

OP1

OP2 OP5

OP6

1/m decoder
m = 2k where
k = len(IOP)

Computing what time is it?
Value of τ

Τ = 0

Τ = 1 T = 4

T = 5

clock

Counter mod n
reset

me

Putting it all together -
a control

T1 means the same as tau = 1

IOP = j

Tk

To every control
signal which should

be asserted at
timestep k of
opcode j

Control in action:
SimpleMachine

SimpleMachine has

• 2 general registers
• 16 opcodes

• fixed wordlength
• all instructions 1 word long
• same control problem as real machines

MAR

MDR

M p
GO 22

R/W 1

2

3
4

5

6

7 8

9
10
11, 12

13 14

15 16

17 18

19 20

0

M data bus

Out bus

Out bus

M
 a

dd
re

ss
 b

us

In bus 1

In bus 2

Simple machine
structure

R1 R2

ALU

RES 1 RES 2
PC IR

IOP IAR

1/16

Example: LR1 X

R1 <-- c(Address X)

Microsteps:

micro steps gates closed ττ

MAR <-- c(PC) 15 1
MEMREAD 1, 22 2
inbus1 <-- c(PC) 16 5
increment 11 6
PC <-- c(RES1) 19,3,13 7

IR <-- c(MBR) 0, 14 8
/* end of fetch phase */
MAR <-- c(IAR) 17 9
MEMREAD
R1 <-- c(MBR) 0,3,4 13

1

4

11

13

14

3

15

16

17

22
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Conventional Control - Wired logic
Fill in the Blanks

0

0

3

12

15

1

22

16

c13 c8

c7

c6

