Section 4.1 Microsteps, hard wired

Implementing instructions using Micro steps

Level 1

The purpose of the Control Path

Generate the right sequence of control signals to execute the instruction

The purpose of the Control

Synchronous wired control

- Typical microsteps:
 - gate c(R1) to R2
 - start ALU
 - start Mp read cycle
 - seize bus

Control's function, restated

- Generate time sequences of microsteps
- How?

- the next micro step to be done depends on
 - which instruction we're executing (op code or order) and
 - what time it is, i.e. which step we're doing (τ)

• I.e.

- Next micro step = $f(order, \tau)$
- control's purpose is to calculate this function, where

 $\tau \epsilon 1, 2, 3, ..., n$

• Specifying function f tabular-ly

 $- \text{ order 1 } \rightarrow \mu \text{ step } (1,1)$

 \gg

>>>

- » µ step (1,2)

» µstep (1,n1)

٠

- Ditto for order2, ..., order _m
- How to compute
 - "order" and τ in hardware?

Computing "which order ?"

Putting it all together - a control

T1 means the same as tau = 1

Control in action: SimpleMachine

SimpleMachine has

- 2 general registers
- 16 opcodes
- fixed wordlength
- all instructions 1 word long
- same control problem as real machines

Example: LR1 X

R1 <--- c(Address X)

Microsteps:

micro steps	gates closed	t
MAR $$	15	1
MEMREAD	1, 22	2
inbus1 < c(PC)	16	5
increment	11	6
PC < c(RES1)	19,3,13	7
IR < c(MBR)	0, 14	8
/* end of fetch phase */		
MAR < c(IAR)	17	9
MEMREAD		
R1 < c(MBR)	0,3,4	13

Conventional Control - Wired logic Fill in the Blanks

