Chapter Five

The Processor: Datapath & Control

e We're ready to look at an implementation of the MIPS
e Simplified to contain only:
— memory-reference instructions: Iw, sw
— arithmetic-logical instructions: add, sub, and, or, slt

— control flow instructions: beq,]

e Generic Implementation:

— use the program counter (PC) to supply instruction address

— get the instruction from memory
— read registers

— use the instruction to decide exactly what to do

e Allinstructions use the ALU after reading the registers

Why? memory-reference? arithmetic? control flow?

More Implementation Detalils

e Abstract/ Simplified View:

— et
— Fgistar ¥
Plfp botrass Ircstnicion fe Ragizters 3 AL || Mt
Instrusbon Foasg <har.
mamary [CLata
¥ Fossgistor ¥ mamaory
Ot

Two types of functional units:
— elements that operate on data values (combinational)

— elements that contain state (sequential)

State Elements

e Unclocked vs. Clocked
e Clocks used in synchronous logic

— when should an element that contains state be updated?
falling edge

A I U R o N O R

< _ >
cycletime

rising edge

An unclocked state element

e The set-reset latch

— output depends on present inputs and also on past inputs

ol

Latches and Flip-flops

e Outputis equal to the stored value inside the element
(don't need to ask for permission to look at the value)

e Change of state (value) is based on the clock
e Latches: whenever the inputs change, and the clock is asserted

« Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

“logically true",
— could mean electrically low

A clocking methodology defines when signals can beread and written
— wouldn't want toread a signal at the same time it was being written

D-latch

e Two inputs:

— the data value to be stored (D)

— the clock signal (C) indicating when to read & store D
e Two outputs:

— the value of the internal state (Q) and it's complement

D flip-flop

e OQutput changes only on the clock edge

latch laich
C [

Our Implementation

 An edge triggered methodology

e Typical execution:

— read contents of some state elements,

— send values through some combinational logic

— write results to one or more state elements

alarn ant;

e ant

Combinatioral |ogic

Cloch, cpde J

Register File

e Built using D flip-flops

Feamd ragistar
rianber 1
Registar) ——%—¥
Fagztzr 1 o e Y R ragistar
q
R - b U e fend dmim 4 ron bar A -:hRﬁ_.
oty n -4 — o - » Eb;ﬁm
. =
Rsiztzr n Wi Fowgi sbat s
i
Reemd ragistar =™ rxgister
rim ber 2 Feamed .
o [Write
o F
B U 1 Rexd datn 2 :
o

10

Register File

e Note: we still use the real clock to determine when to write

Witz

Regi=ter ramboar

Registar duty

decoder
n-1

Regizter 0

Ragitar 1

Register n-1

90 90

R=gistar n

11

Simple Implementation

e |Include the functional units we need for each instruction

. rertnuction
wdkess —
| Flern Wit
et ction fe—f :}MH Sy |
ety i
O i —
Mg eos Fz=d
il
A rsrucionm amory b. Program courtar . hddar it Datn
T datm Y
tlam Faed
[ML cortral = . Dt o2 ey unit b. Sigrrecterdon unit
Eél reziztrd 4\
Fizad
— —s
Fhﬁs':r E = s d
raxn bar s register 2 : >,ﬂ_|_| Tero|l—w
. Peges Atz AU
_E... Wit readt .
el Feil __/ Why do we need this stuff?
. -]
it
o { —{ s
Fegiiinite
. Registzrs k. L

12

Building the Datapath

e Use multiplexors to stitch them together

P Src |

Add

- &L operation Mem Wit
Fz= -
addre oz t P i bRt

=Ca

In=ruction
hddress Read
Irertrus tion e
eI oy [t
Write enons
data

hemFend |

Control

e Selecting the operations to perform (ALU, read/write, etc.)
e Controlling the flow of data (multiplexor inputs)
e Information comes from the 32 bits of the instruction

 Example:

add $8, $17, $18 Instruction Format:

000000

10001

10010

01000

00000

100000

op

rs

rt

rd

shamt

funct

ALU's operation based on instruction type and function code

14

Control

e e.g., what should the ALU do with this instruction
e Example: Iw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

e ALU control input

000 AND

001 OR

010 add

110 subtract

111 set-on-less-than

* Why is the code for subtract 110 and not 0117

Control

e Must describe hardware to compute 3-bit ALU conrol input
— given instruction type

00 = Iw, sw T ALUOp

01= be_q, _ computed from instruction type
11 = arithmetic

— function code for arithmetic

e Describe it using a truth table (can turn into gates):

ALUOp Funct field Operation
ALUOpP1|ALUOpPO| F5 F4 F3 F2 F1 FO
0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0] 1 001
1 X X X 1 0 1 0 111

Control

Memto- Reg Mem Mem
Instruction| RegDst | ALUSrc| Reg Write Read Write | Branch | ALUOp1| ALUpO
R-format 1 0 0 1 0 0 0 1 0
| w 0 1 1 1 1 0 0 0 0
Sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

17

Control

e Simple combinational logic (truth tables)

Ihpata
[xE
Oyt
YLLK O
L) cooritrod i g2
A Lk Ll
(e 2] » - N "
(w_n] | (W] x| |
BEoparrion Refomnat b o¢| b FegCot
——
L)— ALUZre
Flarn toRiag
L)— Fe ghirite
Mizri Rezad
Pelasn 'Write
Etanch
ALk

MLLCRD

Our Simple Control Structure

e All of the logic is combinational

« We wait for everything to settle down, and the right thing to be done
— ALU might not produce “right answer” right away
— we use write signals along with clock to determine when to write

e Cycle time determined by length of the longest path

Sarke Sk
alarn ant Combinatioral |ogic & ant
1 2

Cliozh, opde J

We are ignoring some details like setup and hold times

Single Cycle Implementation

Calculate cycle time assuming negligible delays except:

memory (2ns), ALU and adders (2ns), register file access (1ns)

L

ooAmE

rectmuction [26-241]
e l=m Wit
V| mddre m= Irertruction [A0-16] Mem ol
n=ruction |
-0 L- bress Fead
_ i et
lnertrertinn Fertruction [15-11]
Y

g = [t
F ot

Wriw Dota
Festruction [15-0]

prviny L L)

Il e Fiamd

20

Where we are headed

e Single Cycle Problems:
— what if we had a more complicated instruction like floating point?

— wasteful of area

e One Solution:
— use a “smaller” cycle time
— have different instructions take different numbers of cycles

— a “multicycle” datapath:

1E -

Mddres=z E'_
i Regiser ¥
- reFtnudion
w o duin “‘E-E-'E and A0 LA Tt
Regiser ¥
™ B

Dixtm

Regiser ¥

3

Multicycle Approach

 We will be reusing functional units
— ALU used to compute address and to increment PC
— Memory used for instruction and data

e Our control signals will not be determined soley by instruction
— e.g., what should the ALU do for a “subtract” instruction?

e We'll use a finite state machine for control

22

Review: finite state machines

e Finite state machines:

— a set of states and

— next state function (determined by current state and the input)

— output function (determined by current state and possibly input)

B Cumant state

7 e 3

Cloch,

Fputs

e e)

Haxt
Timi=

r\\im_ﬂy

e ipts

— We’ll use a Moore machine (output based only on current state)

23

Review: finite state machines

 Example:

B.21 A friend would like you to build an “electronic eye” for use as a fake
security device. The device consists of three lights lined up in a row,
controlled by the outputs Left, Middle, and Right, which if asserted,
indicate that a light should be on. Only one light is on at a time, and the
light “moves” from left toight and then from right to left, thus scaring away
thieves who believe that the device is monitoring their activity. Draw the
graphical representation for the finite state machine used to specify the
electronic eye. Note that the rate of the eye’s movement will be controlled
by the clock speed (which should not be too great) and that there are
essentially no inputs.

24

Multicycle Approach

* Break up the instructions into steps, each step takes a cycle
— balance the amount of work to be done
— restrict each cycle to use only one major functional unit
 Atthe end of a cycle
— store values for use in later cycles (easiest thing to do)

— introduce additional “internal” registers

Faed :
Laddra- regdtari H
Faed =
Harwa mi LT i
LBy =" F Lpabars
L) Fetard
b o
Wik]
Priviy Wi i
b e
-

25

Five Execution Steps

e |nstruction Fetch

e Instruction Decode and Register Fetch

e Execution, Memory Address Computation, or Branch Completion

e Memory Access or R-type instruction completion

 Write-back step

INSTRUCTIONS TAKE FROM 3 -5 CYCLES!

26

Step 1: Instruction Fetch

e Use PC to getinstruction and put itin the Instruction Register.
e Increment the PC by 4 and put the result back in the PC.

e Can be described succinctly using RTL "Register-Transfer Language"”

IR = Memory[PC];
PC =PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

27

Step 2: Instruction Decode and Register Fetch

 Readregisters rs and rtin case we need them

e« Compute the branch address in case the instruction is a branch
e RTL:

A = Reg[IR[25-21]];

B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

 We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

28

Step 3 (Iinstruction dependent)

 ALU is performing one of three functions, based on instruction type

 Memory Reference:

ALUOuUt = A + sign-extend(IR[15-0]);

e R-type:

ALUOut = A op B;

e Branch:

if (A==B) PC = ALUOuUL;

29

Step 4 (R-type or memory-access)

 Loads and stores access memory
MDR = Memory[ALUOut];

or
Memory[ALUOut] = B;

e R-type instructions finish

Reg[IR[15-11]] = ALUOuUt;

The write actually takes place at the end of the cycle on the edge

30

Write-back step

. Reg[IR[20-16]]= MDR;

What about all the other instructions?

31

Summary:

Action for R-type Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4

Instruction
decode/register fetch

A = Reg [IR[25-21]]
B = Reg [IR[20-16]]
ALUOuUt = PC + (sign-extend (IR[15-0]) << 2)

Execution, address
computation, branch/
jump completion

ALUOut=AopB

ALUOut = A + sign-extend if (A ==B) then
(IR[15-0)) PC = ALUOut

PC =PC [31-28] Il
(IR[25-0]<<2)

Memory access or R-type
completion

Reg [IR[15-11]] =
ALUOut

Load: MDR = Memory[ALUOut]
or
Store: Memory [ALUOut] =B

Memory read completion

Load: Reg[IR[20-16]] = MDR

32

Simple Questions

 How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beqg $t2, $t3, Label / #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)
Label:

* Whatis going on during the 8th cycle of execution?
e Inwhat cycle does the actual addition of $t2 and $t3 takes place?

33

Implementing the Control

e Value of control signals is dependent upon:
— what instruction is being executed

— which step is being performed

e Use the information we’ve acculumated to specify a finite state machine
— specify the finite state machine graphically, or

— use microprogramming

* Implementation can be derived from specification

34

Graphical Specification of FSM

| hsructon ftch

Siart

I straction deoode
regiFer fetch

AU Sh =0

Mizrorg =ddress

Er -+ -
: arch
oo ptEton zh 2

completon

LY

Fb=rrcry

MUKl = 44
ALLUOE = 0O

£
I

o
L=

& Mmooy
] - e —] b e —] F:““'i"'t wmpleion

2 =}

Pz iR =]

krh=1
Writetach sep

o4

RegD==0

Rt rite -

MemoReg=1

How many state bits will we need?

Finite State Machine for Control

* Implementation:

Convteod logle
npirts
A
I
[} T [Pi-\. 3 i-'i-\. -ﬁ
Bl A B B R B el el ale
!':': w':'l o o a2 q':'l 2 (2]

SEEE——— R |

36

PLA Implementation

e |f| picked a horizontal or vertical line could you explain it?

CpE. |
f bod,

v

ot
i I—[:‘:; P W
g [
- —
WT_D,
A (-] =
E o
e I_D'*
— HHH
ﬂ-l.
=0 [L_
EERELFREEFE™ "3 -I-I.I'E .
T—[} =1 #
Pt
% FowitaCond
- e 14T
ralenn Faad
g e telen it
| Rt
- g e Ledesi b Fing
» P Sourced
- Pt Sourced
3 PR
- — MLLCED
L USreEd
i B SreED
s - mLUSIEN
- R gt
- Fa gDt
4- ()

7 L e
=4
T —E TTTTT g

ROM Implementation

e ROM ="Read Only Memory"
— values of memory locations are fixed ahead of time
* A ROMcan be used to implement a truth table
— if the address is m-bits, we can address 2™ entries in the ROM.

— our outputs are the bits of data that the address points to.

0000011

0011100

m n 0101100
— > ——> 0111000
1000000

1010001

1100110

1110111

m is the "heigth™, and n is the "width"

38

ROM Implementation

e How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 219 = 1024 different addresses)

 How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

e ROMis 219x 20 = 20K bits (and a rather unusual size)

e Rather wasteful, since for lots of the entries, the outputs are the
same
— i.e., opcode is often ignored

39

ROM vs PLA

 Break up the table into two parts
— 4 state bits tell you the 16 outputs, 2% x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 2!° x 4 bits of ROM
— Total: 4.3K bits of ROM

e PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares
 Size is (#inputs = #product-terms) + (#outputs ~ #product-terms)
For this example = (10x17)+(20x17) = 460 PLA cells

e PLA cells usually about the size of a ROM cell (slightly bigger)

40

Another Implementation Style

e Complex instructions: the "next state" is often current state + 1

| Cortrlumit

PLA or ROM

Dy s . Tii

it |
1 i
i i e g
N e s - B
i w, Mdder
| badre sz salect logic ——
? F
ol
Iy
5

Detalls

aaaaaa

Dispatch ROM 1 Dispatch ROM 2
Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 | w 0011
000010 jmp 1001 101011 sw 0101
000100 beq 1000 FLL o B4
100011 Iw 0010
101011 SwW 0010 1

I

:'\. = =

T eme e

|
| AdidC

o
f

M
- &
[

ol
AR

i

| o owick RO | | Cispatch Ridd 4
{mmmm mmmm? o |
Iretruction ragister
oposde dald
State number Address-control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by O 0
9 Replace state number by 0 0

42

Microprogramming

Contnol it | Potrie
' [[PC¥riCond
| [l
3 | Fiam Faed
Bz meode i s oy | |hifem Fead Cemtmpeth

| Mlam Wit

{ | IRite
| | Bt
LA ripa s ::' tl2m o Reg
| | PG Sores
! | 0x
AR]
AR

\ LA

| | | B= ﬁ".‘rn:
| [Reghmt
L 2

| Addrd

Lot

. | Wi oprogram countar |
- | < lpe= ko il o) |
", N'l | Mo e e T P e e s 4

Ires rucion ragister
oo = fiddd

e What are the “microinstructions” ?

Microprogramming

A specification methodology

— appropriate if hundreds of opcodes, modes, cycles, etc.

— signals specified symbolically using microinstructions

ALU Register PCWrite
Label control |SRC1| SRC2| control | Memory control Sequencing
Fetch Add PC |4 Read PC |ALU Seq
Add PC Extshft | Read Dispatch 1
Mem1l Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformatl |Func code |A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond |Fetch
JUMP1 Jump address |Fetch

Will two implementations of the same architecture have the same microcode?

What would a microassembler do?

44

Microinstruction format

Field name Value Signals active Comment
Add ALUOp =00 Cause the ALU to add.
ALU control Subt ALUOp =01 Cause the ALU to subtract; this implements the compare for
branches.
Func code ALUOp =10 Use the instruction's function code to determine ALU control.
SRC1 PC ALUSrcA =0 Use the PC as the first ALU input.
A ALUSIcA=1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.
SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB =11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register
numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and
Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0
Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1
Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD =0 the MDR).
Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD=1
Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD=1 data.
ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite
PC write control ALUOut-cond PCSource =01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.
jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite
Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.
Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

45

Maximally vs. Minimally Encoded

* No encoding:
— 1 bit for each datapath operation
— faster, requires more memory (logic)
— used for Vax 780 — an astonishing 400K of memory!
e Lots of encoding:
— send the microinstructions through logic to get control signals
— uses less memory, slower
« Historical context of CISC:
— Too much logic to put on a single chip with everything else
— Use a ROM (or even RAM) to hold the microcode

— It’s easy to add new instructions

46

Microcode: Trade-offs

« Distinction between specification and implementation is sometimes blurred

e Specification Advantages:

— Easy to design and write

— Design architecture and microcode in parallel
 Implementation (off-chip ROM) Advantages

— Easy to change since values are in memory

— Can emulate other architectures

— Can make use of internal registers
 Implementation Disadvantages, SLOWER now that:

— Control is implemented on same chip as processor

— ROM is no longer faster than RAM

— No need to go back and make changes

47

The Big Picture

Initial

Firite siarte

represantaion dizgram Micrpeagam
o I
Yo" Tm
Srquencing Ecplicit reat Miaoprogram counter
el s unsion + dizpatdh FOWS
Yo" m¥
Logi=z Loz Truth
repr e riaion eqmions tables
Ta— O m¥
o plement=ion Frogramm =bl= Riemd arly
technigue logic amay it 1 Oy

48

