Chapter Six



Pipelining

* Improve perfomance by increasing instruction throughput
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| deal speedup is number of stagesin the pipeline. Do we achieve this?



Pipelining

 What makes it easy
— all instructions are the same length
— Jjust a few instruction formats

— memory operands appear only in loads and stores

 What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions

— data hazards: an instruction depends on a previous instruction

e We’ll build a simple pipeline and look at these issues

« We’ll talk about modern processors and what really makes it hard:
— exception handling

— trying to improve performance with out-of-order execution, etc.
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What do we need to add to actually split the datapath into stages?



Pipelined Datapath
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Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?



Corrected Datapath




Graphically Representing Pipelines
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e Can help with answering questions like:

X

— how many cycles does it take to execute this code?
— what is the ALU doing during cycle 47

— use this representation to help understand datapaths



Pipeline Control
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Pipeline control

* We have 5 stages. What needs to be controlled in each stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Write Back

e How would control be handled in an automobile plant?
— a fancy control center telling everyone what to do?

— should we use a finite state machine?



Pipeline Control

. Pass

control signals along just like the data
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Datapath with Control
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Dependencies

e Problem with starting next instruction before first is finished

Tiree (in doch gudes)

dependencies that “go backward in time” are data hazards
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Software Solution

 Have compiler guarantee no hazards

 Where do we insert the “nops” ?

sub $2, $1, $3
and $12, $2, $5

or $13, $6, $2
add $14, $2, $2
SW $15, 100($2)

e Problem: this really slows us down!



Forwarding

e Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register

— ALU forwarding
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Forwarding
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Can't always forward

e Load word can still cause a hazard:

— an instruction tries to read a register following a load instruction
that writes to the same register.
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Stalling

* We can stall the pipeline by keeping an instruction in the same stage
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Hazard Detection Unit

« Stall by letting an instruction that won’t write anything go forward
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Branch Hazards

 When we decide to branch, other instructions are in the pipeline!
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* We are predicting “branch not taken”
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need to add hardware for flushing instructions if we are wrong
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Flushing Instructions
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Improving Performance

e Try and avoid stalls! E.g., reorder these instructions:

lw $t0, 0($t1)
Iw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($tl1)

e Add a “branch delay slot”
— the next instruction after a branch is always executed

— rely on compiler to “fill” the slot with something useful

e Superscalar: start more than one instruction in the same cycle
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Dynamic Scheduling

The hardware performs the “scheduling”
— hardware tries to find instructions to execute
— out of order execution is possible

— speculative execution and dynamic branch prediction

All modern processors are very complicated
— DEC Alpha 21264: 9 stage pipeline, 6 instruction issue
— PowerPC and Pentium: branch history table

— Compiler technology important

This class has given you the background you need to learn more

Video: An Overview of Intel’s Pentium Processor

(available from University Video Communications)
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