
1

Chapter Six

2

Pipelining

• Improve perfomance by increasing instruction throughput

Ideal speedup is number of stages in the pipeline. Do we achieve this?

3

Pipelining

• What makes i t easy

– all instructions are the same length

– just a few instruction formats

– memory operands appear only in loads and stores

• What makes i t hard?

– structural hazards: suppose we had only one memory

– control hazards: need to worry about branch instructions

– data hazards: an instruction depends on a previous instruction

• We’ll build a simple pipeline and look at these issues

• We’l l talk about modern processors and what real ly makes i t hard:

– exception handling

– trying to improve performance with out-of-order execution, etc.

4

Basic Idea

• What do we need to add to actually split the datapath into stages?

5

Pipelined Datapath

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

6

Corrected Datapath

7

Graphically Representing Pipelines

• Can help with answering questions l ike:

– how many cycles does i t take to execute this code?

– what is the ALU doing during cycle 4?

– use this representation to help understand datapaths

8

Pipeline Control

9

• We have 5 stages. What needs to be control led in each stage?

– Instruction Fetch and PC Increment

– Instruction Decode / Register Fetch

– Execution

– Memory Stage

– Write Back

• How would control be handled in an automobile plant?

– a fancy control center tel l ing everyone what to do?

– should we use a f inite state machine?

Pipeline control

10

• Pass control signals along just l ike the data

Pipeline Control

Execution/Address Calculation
stage control lines

Memory access stage
control lines

Write-back stage
control lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

11

Datapath with Control

12

• Problem with starting next instruction before f irst is f inished

– dependencies that “go backward in t ime” are data hazards

Dependencies

13

• Have compiler guarantee no hazards

• Where do we insert the “ nops ” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

• Problem: this real ly slows us down!

Software Solution

14

• Use temporary results, don’t wait for them to be written

– register f i le forwarding to handle read/write to same register

– ALU forwarding

Forwarding

what if this $2 was $13?

15

Forwarding

16

• Load word can sti l l cause a hazard:

– an instruction tries to read a register following a load instruction
that writes to the same register.

–

• Thus, we need a hazard detection unit to “stal l” the load instruction

Can't always forward

17

Stalling

• We can stal l the pipel ine by keeping an instruction in the same stage

18

Hazard Detection Unit

• Stall by lett ing an instruction that won’t write anything go forward

19

• When we decide to branch, other instructions are in the pipel ine!

• We are predict ing “branch not taken”

– need to add hardware for f lushing instructions i f we are wrong

Branch Hazards

20

Flushing Instructions

21

Improving Performance

• Try and avoid stalls! E.g., reorder these instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

• Add a “branch delay slot”

– the next instruction after a branch is always executed

– rely on compiler to “f i l l” the slot with something useful

• Superscalar: start more than one instruction in the same cycle

22

Dynamic Scheduling

• The hardware performs the “schedul ing”

– hardware tries to f ind instructions to execute

– out of order execution is possible

– speculat ive execution and dynamic branch predict ion

• All modern processors are very complicated

– DEC Alpha 21264: 9 stage pipeline, 6 instruction issue

– PowerPC and Pentium: branch history table

– Compiler technology important

• This class has given you the background you need to learn more

• Video: An Overview of Intel ’s Pentium Processor

(available from University Video Communications)

