Chapter Six

Pipelining

* Improve perfomance by increasing instruction throughput

Prrogran

mvealdon y 2 4 = B 0 12 14 1& 1e
ander Tirne T T T T T T T T T -
lininsrustions)

Irestrctiony ot
ke e, A00GED) ity || ALY o | PR

* Irest nuti oy Co
ke 2, Z0O0GED) B res okt Faz | MM e | PR
+ Irest nuti oy
b 2, SO0 B res Yok
—
B re
Progiram
axacrtion : 2 4 & =] 10 iz 14
ordar Tirne T T T T T T T *
in irctnacions)
e $iL, 100650 [Tt ren| mn | DR e
IreEATaton [w =]
P Fi2, 2000300 Ins i Fegz| MM e | PR
Irsncton m-]
Iwe 33, 20040 inz Ttk Feg| A S L
2ns 2res 2 nE 2ns 2res

| deal speedup is number of stagesin the pipeline. Do we achieve this?

Pipelining

 What makes it easy
— all instructions are the same length
— Jjust a few instruction formats

— memory operands appear only in loads and stores

 What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions

— data hazards: an instruction depends on a previous instruction

e We’ll build a simple pipeline and look at these issues

« We’ll talk about modern processors and what really makes it hard:
— exception handling

— trying to improve performance with out-of-order execution, etc.

Basic Ildea

MHEM: Memon wocess

WE: Wnite bach

i
3

F: Inrtaction #=ich I0: Insrustion dosode) ER: Exmoute
register file pemd addrecs caladation
i L
L 1]
[T 1}
Poad
A~ I
gl S L
LT] [ITIRTTT)
bl bty w o
- | H
B
t\.-ll‘\::ij I"

H

What do we need to add to actually split the datapath into stages?

Pipelined Datapath

oy
13
F
3
:

Lo s é

l

]

[T P |l
——

FERELE A

FET N
i
|
rn
i
iFEF] ii
P
b
H
i
|

k
&

i

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

Corrected Datapath

Graphically Representing Pipelines

Timee in doch, oydes)

Prricegr =
i P [H . | cG 2 CC 3 Cce 4 (H] ()

ﬁ"ndiursm..-:ﬁms:l H N e B B
b $40, 2Ny | M Reg | | [M -|: o Res
\“‘x

e ME=H Tlﬁ}m
L '-f-f-f

e Can help with answering questions like:

X

— how many cycles does it take to execute this code?
— what is the ALU doing during cycle 47

— use this representation to help understand datapaths

Pipeline Control

Iradya

Irairction
[-]

L]

IRC =T 24
Add
Fs
Pri v i
|
Fexd
i regltr L Faad
3 Sl !
Foexd g
ot 2ten
—EA - — Raflibind gy
; Wb ani

Iratircidon
[1%-14]

WEW A

L e

bl rife aed

' B |

£ f b

[BEXTUR |

& T sardra |
LY

o |

M| g

u

®

i

Pipeline control

* We have 5 stages. What needs to be controlled in each stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Write Back

e How would control be handled in an automobile plant?
— a fancy control center telling everyone what to do?

— should we use a finite state machine?

Pipeline Control

. Pass

control signals along just like the data

Execution/Address Calculation | Memory access stage | Write-back stage
stage control lines control lines control lines
Reg ALU ALU ALU Mem Mem Reg Mem to
Instruction Dst Opl Op0 Src |Branch| Read | Write write Reg
R-format 1 1 0 0 0 0 0 1 0
| w 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X
; "“;;Zlﬁi‘%'f'f-’?ZZZZZIZIZZZZZIZI ZZZ
m""'ﬁﬂp&:r ir-::::f: -’ 'ﬂi'f.}'si
.I I. }l
! g L)
A oy + 3 — M
S A— | —+++ - --'?E_ + o+ L
F/I0 ID/EX, EFCFEHI M B4 AAE

10

Datapath with Control

hEead |

|
L

:.vv"_.....uxv.. E

Iratraction

i

Iradtraction

[im—i1]

Fdrs

|
|
Irafiu-2dn
FHETY

L o]

11

Dependencies

e Problem with starting next instruction before first is finished

Tiree (in doch gudes)

dependencies that “go backward in time” are data hazards

=

Yeusof CCd Ce 2 Ce o3 Ceo4 CeE Ce & cey
regizer $2: 40 10 10 10 40— -0 -0
Program
e rion
of dar
in irrtnicions)]]]
sub 2 fLF | M ~|:|-EP:-=;: % .[l:m = “;?
e R : :’:":._ _
=17 Ern
ard $12, 52,45 M H s % -[l:gﬂ | | {Res
or $13, e, 2 M| J:_fﬁ;,_ %7-[] I [P

mdd $d4, B2, B2

swidE, A00ES M %ﬁ_
r =2

CC & =
-x -
— Rﬂ

12

Software Solution

 Have compiler guarantee no hazards

 Where do we insert the “nops” ?

sub $2, $1, $3
and $12, $2, $5

or $13, $6, $2
add $14, $2, $2
SW $15, 100($2)

e Problem: this really slows us down!

Forwarding

e Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register

— ALU forwarding

Time in doch, opdes) =

cCcd cc o2 cCo3 o4 LCE cC & ccr CCoe cC 9

Yalue of register F2: 10 10 10 10 10720 =20 =20 =20 -0
Palue of ERMAB - K R 3 -2 K R L R 3
talue of MIBMME: R R R R -2 R R R R

Program
avaahion ordar

fin irstnucions) [B = -
b ELHLE | M ~|:|-E|::.=g: %,f DH_‘?"'é"“E%
I _:| rj ...:_
!
and $12, 52, 36 Ol U Sy iD, DM |
o $13, 35, 32 M R ez

wdd fd 4, F2, 52 M

[

= B, A00GEY) H

/

what if this $2 was $13?

£
[z

ﬂﬁ}”‘g

Forwarding

1oy

rérel |

__.\-_':. riT

&
| *
o
[
-]
| €
g

Ealddre

1P A D ke
IF AU et
1P D ke
1P AT+ ke

IrAD

15

Can't always forward

e Load word can still cause a hazard:

— an instruction tries to read a register following a load instruction
that writes to the same register.

Tine fin dodh opdes) -
Prorgiranm ccd cCz cC 3 cC4 CCE CCS ccT cc e cCco
= aarhon
order

fin irstmucion =)]] F
Iw 2, 2004d) M_|:|.EFt-=g: % _[m___.-.;rt“:

mdd 33, T4, 42

=
v, $5, F 1 P % %Rﬁ

e Thus, we need a hazard detection unit to “stall” the load instruction

=

I
L
1

-
I

16

Stalling

* We can stall the pipeline by keeping an instruction in the same stage

Program Time {in doch gpdas)
axmatfon (EH] coc 2 cC 32 cC 4 CCE cc s ccr cC e cca cc 40
order
lininsructions)
b 2, 2004) H ﬂ.l: Rz _{ R

ard T4, F2 36 M

o 2, b 4

=3 38, 44, 42 | E_fh_ jD, _[m L L R
Acd, 5,47 M (Hr= %)7 IE'H‘%

Hazard Detection Unit

« Stall by letting an instruction that won’t write anything go forward

.........

" rhe [uf, AT PR
| 4 el |
| Ll | OYE |
E | = 3 £ | E --: i
| | A L g A | v
i 21 b1 A U1 | BxErd
E 5-] | [,.} ', | ; ----- |
| | ¥ M u TR M E o B i | ;|
| I o i | I |hl'l!hl’|"-'l'H
| b J ! :_ﬂ: | s ! | '—'b-" .\,...;
E |
| | |
&l |
|
|

|In:h'u-:ﬂm
]
' ¥

Foame | ;

L] |

= |

[FY. e

e on | ‘f_ J }M | Ot | |
TR it | FH R 0]
H | | v
R| | i H

u -]

| i

- i 1

1R I Pt P
17y L o] bt s — ||
IR O Pl b r: | B AR Pd
. =]
v

1P O Pl it

:al_z:
'

10 Peag] ahH T

18

Branch Hazards

 When we decide to branch, other instructions are in the pipeline!

Progranm Time (in doch opde =)
axearion oo 4 oo 2 (1Y
arder

lininsrustions)

tand @12, 82 95

o 532 |

Ezadd 14, $2 $2

- $ﬁ.5¢:u:$‘.’:|

cC o4

E 3

L]

_@w
-

=

]

o

CE

&

2
Ed

H=]
_51!

* We are predicting “branch not taken”

L&

el

\a
™

H

CC & [=
|
Jiezz!

need to add hardware for flushing instructions if we are wrong

19

Flushing Instructions

||||||||||||||||||||||

20

Improving Performance

e Try and avoid stalls! E.g., reorder these instructions:

lw $t0, 0($t1)
Iw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($tl1)

e Add a “branch delay slot”
— the next instruction after a branch is always executed

— rely on compiler to “fill” the slot with something useful

e Superscalar: start more than one instruction in the same cycle

21

Dynamic Scheduling

The hardware performs the “scheduling”
— hardware tries to find instructions to execute
— out of order execution is possible

— speculative execution and dynamic branch prediction

All modern processors are very complicated
— DEC Alpha 21264: 9 stage pipeline, 6 instruction issue
— PowerPC and Pentium: branch history table

— Compiler technology important

This class has given you the background you need to learn more

Video: An Overview of Intel’s Pentium Processor

(available from University Video Communications)

22

