
Part 7

Virtual Memory:
from relocation registers

to
paged & segmented virtual memory

VM

• Finished discussing CPUs
• hardware to implement Virtual Memory

(VM)
– an important part of most cpus

– various versions, including

Terms Used . . .

• Relocation register
• base register

• segment registers
• page registers
• Dynamic Address Translation (DAT) box

• Memory Management Unit (MMU)

Problem: relocate this program!

Assembler Half-assembled

Geo: CLA X

STA Y

JMP Geo

X: BSS 1

Y: BSS 1

0000 CLA 0003

0001 STA 0004

0002 JMP 0000

0003 (value of X)

0004 (value of Y)

Move to 1000 ff:
 fixup needed:

1000 CLA 0003

1001 STA 0004

1002 JMP 0000

1003 (value of X)

1004 (value of Y)

 0003 + 1000 = 1003

 0004 + 1000 = 1004

 0000 + 1000 = 1000

Program relocation: who cares?
The Problem:

 Use of Mp in a multiprogrammed system:

200 FREE

50 C

200 B

100 A

200 FREE

50 C 400 D

200 FREE

100 A

Solutions:

• O/S 360 solution
– : wait until C dies, then load D (awk!)

• rational solution:
– move or relocate C

to create

– 400K of contiguous free memory

NB

• Same problem arises
when swapping between disc and
primary memory

How to relocate?

1] Position Independent code
• all addresses relative to Program Counter value

• rare (PDP-11)

2] Re-execute the linking loader (boo!)

3] Simple, fast hardware solution (good)
all of these cause a constant

(relocation bias or offset)

to be added to each memory address just before it
is referenced.

How?

• Provide a single relocation register RELOC
– invisible to application programmers

– accessible to operating system programmers

• Let
Y <-- y + c(IR) + c(RELOC)

done in hardware

How?

• Write all code to begin at “virtual” cell 000
– (as though they were going to run in cells

000
001

002
003
. . .)

• Load the real starting address in RELOC
• So . . .

Virtual addresses

000

nnn

Coder’s world
(called a segment)

Real Addresses

000

K

nnn+K

Real Memory space

RELOC

Points here, I.e.
C(RELOC) = K

K

Refinement

• Add a bound register where

c(BOUND) = nnn //segment length

IF [y + c(IR) > nnn]

THEN INTERRUPT;

--Provides some protection

Do in hardware:

Assessment:

• What have we achieved so far?
– Relocation register

• (sometimes called a base register , do not confuse
with S/360 base register)

allows us to move a job or process or executable
around in Mp as a single unit

• Example: Honeywell 6050

Next step:

• Suppose our job needs more Mp
• Mp is available but not contiguously:

job

B In use

50K free

Can we avoid
having to move B?

i.e. can we avoid the
need
for a single contiguous
Mp area
for a job??

Supply two relocation registers
Use bit 0 of the effective address to select which register to use:

0000
0001
 .
 .

0111
1000

1111

K1

K2

Virtual space Real space

What have we done?

• A process can now be moved around in real
Mp (or swapped in and out)

by segment
• Mp need only be contiguous within each

segment
• relocation registers RELOC are called

segment registers if there are >1 of them

Generalization to n
segment registers:

Structure of coder’s virtual addresses:

Segment # cell within segment

Example

• For
– 6 bit virtual address (64 addresses)

– 2 bit segment number (4 segments)

– 4 bits of cell-within-segment address
(16 cells/segment)

• we have:

0000
0001
 .
 .
 .

1111

Segment 00

0000
0001
 .
 .
 .

1111

Segment 11

. . .

00. 0000
0001
 .
 .
 .

1111

Segment 01

01. 11.

0

1
2

3

VM Real memory

NB

• Real memory segments are variable length,
but < 17 cells long

• the real space may be
– smaller,

– the same size, or

– bigger than the virtual space

Example:
PDP-11/45 segment box

• Sits between cpu and (real) memory
• maps virtual addresses emanating from cpu

into real addresses for memories
• 11/45 virtual memory architecture:

11/45 virtual memory architecture

3 bit segment number
13 bit displacement in segment, organized as

7 bit block number
6 bit displacement in block

.

data program

1 2 8 1 2 8

8K
max

64 bytes

11/45 virtual memory architecture

• Segments can be relocated independently of
one another

• blocks cannot
• so, swapping and relocation are by segment

11/45 virtual memory architecture
the memory management unit (MMU)

VA ASF BLOCKNO DIB

3 7 6

ASR0
 .
 .
ASR7

SAF

SAF

PBN DIB

+

.

12

12 6

11/45 virtual memory architecture

• Physical addresses (18 bit = 256K) form a
bigger space than virtual addresses

 (64 + 64 K)
• access control (read-write-execute

permission bits) in registers associated with
Active Segment Registers (ASRs)

• MMU registers writable and readable when
processor is in System mode only

11/45 MMU

• Price (1978)
– $5 000 US

– 90 nsec latency per memory access

For our next trick . . .

• blocks are fixed length, must be contiguous
• Segments are variable length in units of 1

block or 64 bytes
• so swapping will fragment Mp (areas of free

Mp of different, hence wrong sizes)
• IF we can have noncontiguous, fixed size

blocks, the problem disappears
• i.e.

noncontiguous, fixed size blocks

segment Blocks of physical memory

DEFINITION: such blocks are called pages

Paged virtual memory:
How to implement?

• Segment Register points not to a segment
but to a page table

• page table translates or maps page numbers
(1,2,3, …) to real Mp addresses of pages IF
the page is memory-resident

• IF the page is not memory-resident , raise
an interrupt, and enter a procedure to get it

• diagram:

Architecture of MMU for
segmented and paged VM

ASF PAGENO DIP

ASRn

ASRn+1

DIP.Page Table

K

 truncated page addr

NB

• One page TABLE per segment
• pages cannot start anywhere:

– start address must be 0 modulo pagesize

• address translation time now includes
memory cycles

• the pagetable might not be memory-resident
(AWK!)

Sample systems

• 1 segment, no pages: Honeywell 6000
• 16 segments, no pages: DEC PDP-11/45

• paged, no segments: ATLAS,
 MIPS chip

• paged & segmented: IBM 360/67
 GE 645 (multics)

GE 645 / multics overview

• Mother of modern multiprocess Oss
– originated many of the concepts

• needed an infinite virtual memory,

 based on a very finite physical Mp (512K
words)

• segment as fundamental primitive:
processes, files, I/O devices . . .

GE 645 / multics overview

• Segments can be large, so paging needed
too (pages of 1K and 64 words)

• process structure:
– large set of large segments

– some data

– some code

– some files

 Process structure

• A single descriptor base register (dbr)
• holds a process descriptor which points to a

• segment descriptor table, whose entries
point to

• page tables, whose entries point to pages

• context switch: reload the dbr
• multiple users can share a segment or page
• address translation time: unbounded

Protection or access control

• Definition: ensuring that a process has
access to every segment we wish it to, in the
modes we wish (R-W-E)

• -- and no others!
• Invaluable to

– limit damage from bugs

– enforce security

• How?? The Segment Table Entry

 Adding protection information to
STEs:

Segment table entry (in a table or ASR)

Pointer to segment

Adding protection information to
STEs:

Pointer to segment

(addressing info)Protection
info

• Bad modularity -- STE now has two
different kinds of information…

• so separate them! . . .

Address & protection info
separated:

Master list of
segment addrs

To segment

protection

Generalize:

• Why just segments?
• Allow pointer to point to anything:

– subroutine

– process

– I/O device . . .

capability

Master list of
 object addrs

To object

protection

Definition: this thing
is now called a
capability to the object
(key to the lock)

More ideas

• Allow a user program to load and store
capabilities:
– Load Cap

– Store Cap instructions

• Preventing forgery??

• Provide special capability registers where
active caps must be held

• LC, SC only work for special memory areas
• another process can give you a cap by

moving it (what rules??)
• caps are encrypted to prevent forgeries

• see: The CAP-1 Capability Machine, R.
Needham et al, circa 1980

PH Break
Virtual Memory & the MIPS chip

• You learn:

• Section 7.4 (Virtual Memory)

