
Section 8

Storage hierarchy
&

caches

Remember this?

(Section 2 --Ms devices)

Secondary Store Ms

Taccess

10 sec
1 sec
100 msec
10 msec
1 msec

100 µsec

1 µsec

100 nsec
103 107 108 109 1010 1011 1012 1013105 106104

drum

floppy disc holographic

Mass store

Magnetic tape

Solid state memory
bytes

Remarks

• Capacity and access time bear a vaguely
linear relationship (log-log scale)

• I.e. we can have
– big, slow memories and

– small, fast memories.

• Obviously what we want is a . . .

Big, Fast memory!

• How to do it??

Thought ...

• A few things are accessed very frequently
– tight code loops

– current record

– next record in sequence . . .

• Hold them in a small, fast store (memory)

Thought ctd. . .

• Some things are accessed somewhat
frequently
– rest of currently-executing procedure or process

– rest of current file

• put them in a bigger, slower store

Thought ctd. . .

• Some things are accessed hardly at all

• put them in a very slow, big, cheap store

This suggests:

• A hierarchy of storage devices:

Getting slower, bigger, cheaper per byte
as we descend the linear ordering or hierarchy

D1
D2
D3
D4
...

For instance?

The hierarchy:

• D1: bipolar transistor registers
– few nsec access time

– capacity maybe 256 Mb (8 chips)

– cost maybe few hundred dollars

The hierarchy:

• D2: MOS transistor Mp
– maybe 10-100 nsec access time

– size a GB or so

– cost a few hundred to few thousand dollars

The hierarchy:

• D3: solid state disc (modern)
 or rotating drum (old fashioned)

– access time microseconds to a few msec

– capacity a few 10s of GB

– cost a few thousands of dollars

The hierarchy:

• D4: moving-head disc, for sure!
– Cost a few hundred to few tens of thousands

– access time tens to 100s of msec

– capacity a few GB to a TB

The hierarchy:

• D5: arrays of moving head disc (storage
farms)

• parameters: see D4

The hierarchy:

• D6: tapes or robot-arm served farms of chip
or magnetic film devices
– capacity : Terabytes to unbounded (tape

warehouses)

– access times: msec to seconds to hours (tape
archives)

– costs: megadollars

Next thought: time

• Yesterday’s popular item is today’s old hat..
• I.e. items must

– rise up in the hierarchy

as they get more popular (more frequently
used) and

– fall down as they get less frequently used

Details:

• Unit of data: segment or page
• page replacement algorithm:

– chooses who to boot out of Level n (Ln) to
make room for someone new from Level n-1

– Least Recently Used (LRU) often very good

– assignment: read about LRU

Story so far:

L1

L2

L3

L4,5

L6

percolate

trickle

Cpu

register files

Mp

solid state disc

farms of discs

mass storage systems

What about programmer’s eye
view?

• Sounds very complex: can we hide it?

• Yes!

• How??

Virtual Memory!

• Programmer sees one huge space of
segments and/ or pages

• some of the content is high up, some low
down

• it percolates up and trickles down as
dictated by the page replacement algorithm

• invisible to application programmer except
for wildly varying access time

• work done in O/S filesys and VM

Multics war story

The tape warehouse in Secaucus NJ

Making it work better:
Caches

• Fundamental performance improver for
– CPUs (instruction and operand caches)

– World Wide Web

– storage hierarchies etc etc

The idea

• Identify the things I need often and save
them automatically in a small fast (cache)
memory

• supply them quickly from the cache
instead of slowly from the original source

Cache:
How does it work?

• a kind of associative store
• ordinary memory access protocol:

– you give it Y

– it gives you c(Y) = Z

• associative store protocol:
– you give it Z

– it gives you Y such that c(Y) = Z

Associative Store refined:

• You may not care where Z is in the store
• You do care

– 1] if Z is present somewhere, and if so:

– 2] a value associated with tag Z called the
payload

• Huh?

Associative store as cache

• Suppose we have a big slow memory and
we have cached some popular items

• now we need c(XXX). We need to know:

cpu

Big slow memory

Small fast cache

• 1] is c(XXX) in the cache??
• 2] If yes, what is it?

• So, in the cache we stored:

XXX C(XXX)

Tag payload

Big memory
address

Content of big memory cell

Cache cell
uvw

Retrieval from cache

• 1] present tag value XXX
– cache searches EVERY cell for tagvalue =

XXX

– if it finds XXX in some cell x , it returns the
corresponding payload value

– but payload value = c(XXX) where XXX is an
address in the Big Slow Memory

Trick:
using an ordinary memory

as a cache
• Hashcode XXX (the address in Big

Memory) to compute x (the address in
cache) uniquely

• simple hash function:
– use the last n bits of X to be x (Simple & fast!)

– note
• sizeof(X) >> sizeof(x)

• homomorphism: many XXX map to the same x

• Which one is it?
– Store the remaining (N-n) bits of XXX as a tag

in c(x) -- tells us which XXX is present in x

• also store c(XXX) in x:

First N- n bits of XXX
Cache
cell x C(XXX) in big memory

Example:

Addr content

123 abc

133 def

Big Memory

cache

0
1
2
3
4
5
…
9

Addr content

12 abc

Cache’s big problem

• Rapidly changing data …

• cache consistency

• provide a validity bit in each cache word,
turned OFF if we know the data is stale...

Exploit spatial locality reference

• What is it?
– If you just touched word X, you will probably

next touch one of X-2, X-1, X, X+1, X+2

• So don’t just put X, c(X) in the cache
• put a block (4-8 words) of pairs

X-2 c(X-2)
 . . .
X+2 c(X+2) in the cache

PHBreak

• Read P&H Sections 7.2 & 7.3 for
– discussion of cache basics

– formulas for calculating performance and a real
example (DEC workstation using MIPS chip)

