Section 8

Storage hierarchy
&
caches

Remember this?

(Section 2 --Ms devices)

Secondary Store Ms

Aceess ‘ Magnetic tape

A
10 sec Pag
-
1 sec -
100 msec floppy ‘ holographic
10 msec
1 msec _- ﬂ drum

100 nsec -’

1 meec -~ _~ Solid state memory

bytes
100 nsec | | >
108 104 10> 105 107 108 10° 101 101r 1012 1013

Remarks

o Capacity and access time bear avaguely
linear relationship (log-log scale)

e |.e wecan have
— big, slow memories and
— small, fast memories.

e Obviously what wewantisa. ..

Big, Fast memory!

e How to do 1t??

Thought ...

* A few things are accessed very frequently
— tight code loops
— current record
— next record in sequence. . .

e Hold them inasmall, fast store (memory)

Thought ctd. . .

e Some things are accessed somewhat
frequently

— rest of currently-executing procedure or process
— rest of current file

e put them in abigger, slower store

Thought ctd. . .

e Somethings are accessed hardly at all

e put themin avery dow, big, cheap store

This suggests:

e A hierarchy of storage devices.

DL
D2 . .
D3 Getting slower, bigger, cheaper per byte
D4 as we descend the linear ordering or hierarchy
v

For instance?

The hierarchy:

e D1: bipolar transistor registers
— few nsec accesstime
— capacity maybe 256 Mb (8 chips)
— cost maybe few hundred dollars

The hierarchy:

 D2: MOS transistor Mp
— maybe 10-100 nsec access time
—sizeaGB or so
— cost afew hundred to few thousand dollars

The hierarchy:

e D3: solid state disc (modern)
or rotating drum (old fashioned)

— access time microseconds to afew msec
— capacity afew 10s of GB
— cost a few thousands of dollars

The hierarchy:

e D4:. moving-head disc, for surel
— Cost afew hundred to few tens of thousands
— access time tens to 100s of msec
— capacity afew GBtoa TB

The hierarchy:

o D5: arrays of moving head disc (storage
farms)

e parameters. see D4

The hierarchy:

e D6: tapes or robot-arm served farms of chip
or magnetic film devices
— capacity : Terabytes to unbounded (tape
warehouses)

— access times. msec to seconds to hours (tape
archives)

— costs: megadollars

Next thought: time

e Yesterday’s popular item istoday’sold hat..

e |.e Items must

— rise up inthe hierarchy

as they get more popular (more frequently
used) and

— fall down asthey get less frequently used

Detalls;

o Unit of data: segment or page

 page replacement algorithm:

— chooses who to boot out of Level n(Ln) to
make room for someone new from Level n-1

— Least Recently Used (LRU) often very good
— assignment: read about LRU

Story so far:

Cpu
register files percol ae
Mp
solid state disc
trickle

L4,5

farms of discs

L6

mass storage systems

What about programmer’s eye
view?

e Soundsvery complex: can we hide 1t?
e Yes

e How??

Virtua Memory!

Programmer sees one huge space of
segments and/ or pages

some of the content is high up, some low
down

It percolates up and trickles down as
dictated by the page replacement algorithm

Invisible to application programmer except
for wildly varying access time

work donein O/Sfilesysand VM

Multics war story

The tape warehouse in Secaucus NJ

Making It work better:
Caches

 Fundamental performance improver for

— CPUs (instruction and operand caches)
— World Wide Web
— storage hierarchies etc etc

The idea

 |dentify thethings | need often and save

them automatically in asmall fast (cache)
memory

 supply them quickly from the cache
Instead of lowly from the original source

Cache;
How does it work?

e akind of associative store

e ordinary memory access protocol:
—yougiveitY
—Itgivesyouc(Y)=Z

e assoclative store protocol:
—yougiveit Z
—Itgivesyou Y suchthat c(Y) =Z

Associative Store refined:

e You may not care where Z isin the store

e You do care

— 1] if Z i1spresent somewhere, and if so:
— 2] avalue associated with tag Z called the
payload

e Huh?

Associative store as cache

e Suppose we have a big slow memory and
we have cached some popular items

Small fast cache

e now we need c(XXX). We need to know:

o 1] Isc(XXX) In the cache??

o 2] If yes, what ISIt?

e S0, In the cache we stored:
Tag payload

Cache cdll
uvw

Big memory Content of big memory cell
address

Retrieval from cache

e 1] present tag value XXX

— cache searches EVERY cell for tagvalue =
XXX

—If 1t finds XXX in some cell x , it returns the
corresponding payload value

— but payload value = ¢(XXX) where XXX isan
address in the Big Slow Memory

Trick:
using an ordinary memory
as acache

e Hashcode XXX (the addressin Big
Memory) to compute X (the addressin

cache) uniquely
e simple hash function:
— usethelast n bitsof X to be x (Simple & fast!)

— note
o sizeof(X) >> sizeof(x)
« homomorphism: many XXX map to the same x

e Which oneisit?

— Store the remaining (N-n) bits of XXX asatag
In c(x) -- tellsuswhich XXX ispresent in X

o also store c(XXX) In X:

Cache
cal x

Example;

Addr content Addrcontent
123 | abc 0
1
2
133 | def s T ahc
4
5
é..
cache

Big Memory

Cache’ s big problem
e Rapidly changing data ...
 cache consistency

e provide avalidity bit in each cache word,
turned OFF if we know the datais stale...

Exploit spatial locality reference

 What ISIt?

— If you just touched word X, you will probably
next touch one of X-2, X-1, X, X+1, X+2

e Sodon’t just put X, c(X) In the cache
e put ablock (4-8 words) of pairs

X-2

X+2

c(X-2)

c(X+2)

INn the cache

PHBreak

e Read P& H Sections 7.2 & 7.3 for

— discussion of cache basics

— formulas for calculating performance and areal
example (DEC workstation using MIPS chip)

