
Part 9

Microprogramming:
Implementing Instructions with

Microsteps

We’ll examine

 controls

• first, we need to study synchronous and
asynchronous models of sequential circuitssequential circuits

wired microprogrammed

sync async sync

Sequential Circuits

C
X Z

Yy

δ

Where all boldface symbols are vector-valued
C = combinational logic
X = primary input vector Z = primary output vector
y = feedback input vector Y = feedback output vector

Sequential Circuits

Now

Z is not f(X). Rather

Z = Z(X; y)
Y = Y(X; y) where

y is the system state

Simple Sequential circuits:

• Flipflops:
– SC

– TRIGGER
JK etc etc

theorem

• Circuit s sequential => s has feedback loops
• converse is false

Back to Microprogramming
(Tanenbaum’s Level 1)

• We’ll examine
– synchronous, microprogrammed control

– we have examined synchronous wired logic
control (Simple Machine: Section 4 and MIPS chip: Section 5)

• Later we’ll examine
– asynchronous wired logic control

Synchronous vs. Asynchronous:
what’s the difference?

• Synchronous:
– actions happen TIME = T

– there is a clock

• Asynchronous:
– action happens when previous action is

complete -- no absolute time

– no clock

Attributes

• Synchronous
– much easier to design

– perhaps 30% fewer
gates

– used in 100% of cpus
today

– changes in gate delay
cause trouble

• Asynchronous
– used between modules

today (eg busses) but
not in cpus

Synchronous Microprogrammed
control

• The big idea:
– connect all cpu gating leads to the bits of a

register called MicroInstruction Instruction
Register or MIIR

– gate Gi is closed (active) iff

c(MIIR[I]) = 1

– there is one bit of MIIR per gating lead

– sometimes called horizontal
microprogramming

MIIR

MIIR 1

G1 G2 G3 . . . Gating leads of the cpu . . . Gn

Of course

MIIR(i)

Lead gated

Gate, or tapX

Gi

FF

X

is actually

How to load words into the
MIIR?

From a little store

1

G1 G2 G3 . . . Gating leads of the cpu . . . Gn

Microprogram store Mµ
MIARs

The Microinstruction Address
Register MIAR

• Words are n bits wide = #(gating leads)
– (maybe 500)

• if K = max(#(microsteps per instruction))
then
– there is a block of K or fewer words in Mµ per

instruction

– opcode selects the first word

– opcode + τ selects jth word, 0 < j < K+1 where
τ is the value of the clock

How it looks:

τ = 1
τ = 2
τ = 3
τ = 4

τ = 1
τ = 2
τ = 3
τ = 4
τ = 5

Block for
opcode 00

Block for
opcode 01

.

.

.

Embellishments:

• Jumps in microcode memory or store:
– add an extra field to microprogram store words:

Gating signals address of next word

Embellishments:

• Subroutines of microcode
– FETCH, calculate effective address, etc

• constrained fields:

constrained fields:

• Suppose we have 256 Index Registers (IRs)
hence 256 gating leads

in each Microword

to select each of them

• but an instruction uses only ONE IR, so . . .256 bits

constrained fields:

• Pro: saved (256 - 8) bits of each microword

• Con: loss of future flexibillity.
– If you ever want an instruction using 2 IRs, . . .

8 bits (Part of) microword

1/256

constrained fields:

• Pushing this idea further we wind up with:

• a little instruction! [called microinstruction]

• this style is called, Vertical
Microprogramming

Micro opcode IR tag bits memory address (Mp)

microword

Effectively, we’ve built a cpu inside the cpu.

Retrospective

• Pro:
– simpler hardware design, fewer parts

– very flexible: rewire the cpu by changing
microcode

• Con:
– each instruction execution takes many

microstore cycles - it must be FAST

Microprogram sequencers

• Definition: the thing which fetched
microwords into the MIIR for execution

1] simplest:
Loop: read microstore[MIAR]

c[MMDR] --> MIIR
WAIT /* 1 minor clock cycle
IF [tag_bit =1] GOTO Fetch_routine
ELSE DO

MIAR <-- c[MIAR] + 1
 OD
GOTO Loop

Microprogram sequencers

2] Fancier:
multiple subroutines; subroutine linkage
microinstruction

conditional transfers (for variable field-
length operations etc)

Trends in microprogramming

• Pre-RISC:
– user-alterable microprogram store

• do-it-yourself instruction definition

– universal use of it in microproessors

– assemblers, register transfer languages, HLLS

• But RISC blew it all away (why??)
• used today in complex, slow I/O controllers

• Prof. Maurice V Wilkes’ idea,
– see: “The Best Way to Design a Computer”

PH Break

• Now, read Section 5.5 of PH:
– vertical microprogramming for the MIPS chip

