Part 9

Microprogramming:
|mplementing Instructions with
Microsteps

We'll examine

controls
wired \ microprogrammed
sync async sync

e first, we need to study synchronous and
asynchronous models of sequential circuits

Seguential Circuits

» /

Y

i

Where all boldface symbols are vector-valued

C = combinational logic

X = primary input vector Z = primary output vector
y = feedback input vector Y = feedback output vector

Seguential Circuits

Now

Z 1snot f(X). Rather

Y(X;y) where

y iIsthe system state

Simple Sequential circuits,

e Flipflops:
— SC

— TRIGGER
JK etc etc

theorem

e Circuit sseguential => s has feedback loops
e converseisfase

Back to Microprogramming
(Tanenbaum’s Level 1)

o We'll examine
— synchronous, microprogrammed control

— we have examined synchronous wired logic
control (Simple Machine: Section 4 and MIPS chip: Section 5)

o Later we'll examine
— asynchronous wired logic control

Synchronous vs. Asynchronous;
what’ s the difference?

e Synchronous.
—actionshappen TIME =T
— thereisaclock

e Asynchronous:

— action happens when previous action IS
compl ete -- no absolute time

— no clock

Attributes

e Synchronous e Asynchronous
— much easier to design — used between modules
— perhaps 30% fewer today (eg busses) but
gates not in cpus
— used in 100% of cpus
today

— changes in gate delay
cause trouble

Synchronous Microprogrammed
control

 Thebigidea
— connect all cpu gating leads to the bits of a
register called Microlnstruction Instruction

Register or MIIR
— gate G; isclosed (active) iff
c(MIIR[I]) =1

— thereisone bit of MIIR per gating lead

— sometimes called horizontal
microprogramming

MIIR

G, G G, Gatingleadsofthecpu... G,

MIIR

Of course

X Gate, or tap
>
L ead gated

1S actual‘ly/

MIR(i)

FF

How to load words into the

MIIR?
From alittle store
G1T ?2 T63 ~ Gating leads of thecpu . . . TGn
1

MIARS

The Microinstruction Address
Register MIAR

* \Words are n bits wide = #(qgating |eads)
— (maybe 500)
e If K =max(#(microsteps per instruction))
then

— thereisablock of K or fewer wordsin M per
Instruction

— opcode selects the first word

—opcode +t selectsjt" word, 0 <j < K+1 where
t 1sthe value of the clock

Block for
opcode 00

How It looks:;

Block for
opcode 01

v

~+ ~ ~t ~—

P WNEF

- ~ -+ e~ e~

Embedllishments:

e Jumps in microcode memory or store:
— add an extrafield to microprogram store words:

Embellishments:

e Subroutines of microcode
— FETCH, calculate effective address, etc

e constraned fields:

constrained fields;

o Suppose we have 256 Index Registers (IRS)
hence 256 gating leads
In each Microword
to select each of them

e but an instr&éﬁBirtfusesonly OAE IR, s0...

constrained fields;

(Part of) microword

* Pro: saved (256 - 8) hits of each microword

e Con: loss of future flexibillity.
— If you ever want an instructionusing 2 IRs, . . .

constrained fields;

 Pushing thisideafurther we wind up with:

microword

o alittleinstruction! [called microinstruction]

 thisstyleiscalled, Vertical
Microprogramming

Retrospective

Effectively, we' ve built a cpu inside the cpu.

* Pro:
— simpler hardware design, fewer parts

— very flexible: rewire the cpu by changing
microcode

e ConN:

— each Instruction execution takes many
microstore cycles - it must be FAST

Microprogram seguencers

* Déefinition: the thing which fetched
microwords into the MIIR for execution

1] simplest:

L oop:

read microstore[MIAR]
c[MMDR] --> MIIR
WAIT /* 1 minor clock cycle
|F [tag _bit =1] GOTO Fetch _routine
ELSE DO
MIAR <-- c[MIAR] + 1

OD

GOTO Loop

Microprogram seguencers

2] Fancier:
multiple subroutines; subroutine linkage
microinstruction

conditional transfers (for variable field-
length operations etc)

Trends in microprogramming

e Pre-RISC:

— user-alterable microprogram store
 do-it-yourself instruction definition

— universal use of it In microproessors
— assemblers, register transfer languages, HLL S

 But RISC blew it all away (why??)
 used today in complex, slow |/O controllers

 Prof. MauriceV Wilkes idea,
— see: “The Best Way to Design a Computer”

PH Break

* Now, read Section 5.5 of PH:
— vertical microprogramming for the MIPS chip

