
3rd Edition Sec 2.3

Fundamental Models

FUNDAMENTAL MODELS

• What are we trying to capture?
– Components (usually processes or objects)

– interactions among components
• process / message graph to represent it

• complexity arguments to quantify it
– (message passes are EXPENSIVE)

• correctness arguments (ESTELLE, Lotus, FORTE)

– failure modes

– security

Interaction models

1] client-server

2] peer processes

3] manager - worker (within a server)

4] ??

Interaction models:
based on communication channels

• Latency:
– propagation delay (approx 0.6 c, c = speed of light)

– queuing delay for channel

– queuing & service times in the OS (large)

– Manning’s rule: a messgae pass takes a msec

• data rate
– (24 Kb/s on dialup; 32 Tb/s on fibre)

Interaction models:
role of time

• No single clock & net delays unpredictable

• synchronous model: assume
– process step execution times bounded above &

below

– message passing times bounded above

– known drift rates of local clocks

• like synchronous computer design

Interaction models:
role of time

• Asynchronous model:
– denies all of the above;

– each may be arbitrarily large

– usually more realistic

Interaction models:
event ordering

Establishing time ordering among events
within a process
among processes

despite the lack of a common time reference

Process time diagram:

time

processes

P1 P2

A

Send(m1)

Rcv(m1)

Send (m2)Rcv(m2)

B

C

6

7
3

4

5

X 8

9

10

event ordering

• Let h be the relation “happened before”
a h b => a happened before b

then

a h b , b h c => a h c (transitive)

What can we assert about the diagram?

assertions

6 h 7 A hapbef Send(m1), same process

7 h 3 send(m1) hapbef (rcv)m1

***above are axioms ***

6 h 4 deduce A hapbef B

8 ?? 3

8 ?? 4

Failure Model

Sec 2.3.2

Faults:

• The fundamental mechanisms that create
wrong behaviour

• In hardware: transistors open or short

• In software, who knows?

Failures

• Elementary Wrong behaviour resulting from
a fault

• in hardware: 0 -> 1 or 1 -> 0

• in software: see below

malfunction

• Complex behaviour resulting from failure

• in hardware: wrong system state

• in software: wrong system state

Plausible distsys failures

• Omission failure:
– action a should have happened but didn’t

• process version:
– crash

• channel version
– dropped message (sendside, rcveside, or

channel)

Plausible distsys failures

• Timing failure (synchronous model)
– event a should happen before T but happened

after

• masked failure
– what redundancy should create

Properties of a channel with
protocols

• Validity:
– any msg sent is eventually received

• integrity:
– message sent = message received

