3rd Edition Sec 2.3

Fundamental Models

FUNDAMENTAL MODELS

 What are we trying to capture?
— Components (usually processes or objects)

— Interactions among components
 process/ message graph to represent it
e complexity arguments to quantify it
— (message passes are EXPENSIVE)
e correctness arguments (ESTELLE, Lotus, FORTE)

— faillure modes
— Security

| nteraction models

1] client-server
2] peer processes
3] manager - worker (within a server)

4] 72

| nteraction models:
based on communication channels

e Latency:
— propagation delay (approx 0.6 ¢, ¢ = speed of light)

— queuing delay for channel
— gqueuing & service timesin the OS (large)
— Manning'’ s rule: a messgae pass takes a msec

e datarate
— (24 Kb/son dialup; 32 Th/s on fibre)

| nteraction models;

role of time

 No single clock & net delays unpredictable

synchronous model: assume

— process step execution times bounded above &
below

— message passing times bounded above
— known drift rates of local clocks

* |ike synchronous computer design

| nteraction models;

role of time

« Asynchronous moddl:
— denies all of the above;

— each may be arbitrarily large
— usually morerealistic

| nteraction models;

event ordering

Establishing time ordering among events
within a process
among Processes

despite the lack of a common time reference

Process time diagram:

event ordering

e Let hbetherelation * happened before’
ah b =>ahappened before b

then
ahb,bhc=>ahc (transtive)

What can we assert about the diagram?

assertions

6h7 A hapbef Send(m1l), same process
/7h3 send(ml) hapbef (rcv)ml
***above are axioms ***

6h4 deduce A hapbef B

8773
8774

Failure Modél

Faults;

 The fundamental mechanisms that create
wrong behaviour

 In hardware: transistors open or short

e |n software, who knows?

Fallures

* Elementary Wrong behaviour resulting from
afault

e INnhardware:0->1or 1->0

e |n software: see below

mal function

e Complex behaviour resulting from failure
* In hardware: wrong system state

* |n software. wrong system state

Plausible distsys failures

 Omission fallure:
— action a should have happened but didn't

* processversion:
— crash

e channdl version

— dropped message (sendside, rcveside, or
channel)

Plausible distsys failures

* Timing failure (synchronous model)

— event a should happen before T but happened
after

 masked fallure
— what redundancy should create

Properties of a channel with
protocols

o Validity:
— any msg sent is eventually recelved

* INntegrity:
— message sent = message recelved

