Polyominoes, Gray Codes, and Venn Diagrams

$$
\text { Stirling Chow }{ }^{1} \quad \text { Frank Ruskey }{ }^{1}
$$

${ }^{1}$ Department of Computer Science University of Victoria, CANADA

Northwest Theory Day, April 2005

Definition - polyomino

- Made from unit squares joined along edges.
- No holes allowed.
- Must be connected.

(a) | | |
| :--- | :--- |
| | |

:

(d)

(c)

Definition - polyomino

- Made from unit squares joined along edges.
- No holes allowed.
- Must be connected.
- Translations allowed but
not flips or rotations.

(a) | | |
| :--- | :--- |
| | |

(b)

(c)

(d)

(c)

Definition - polyomino

- Made from unit squares joined along edges.
- No holes allowed.
- Must be connected.
- Translations allowed but not flips or rotations.
(a) \square
(b)

(c)

(d)

(c)

Definition - polyomino

- Made from unit squares joined along edges.
- No holes allowed.
- Must be connected.
- Translations allowed but not flips or rotations.

(a) | | |
| :--- | :--- |
| | |

(b)

(c)

(d)

(c)

Definition - convexity conditions

- Column convex if intersections with vertical lines are connected.
\Rightarrow Satisfy the recurrence: $a_{n}=5 a_{n-1}-7 a_{n-2}+4 a_{n-3}$ ([Polya], nice proof:[Hickerson]).
- Convex if both row and column convex.

(a) column-convex not row-convex

(b) row-convex

(c) convex not column-convex

Definition - convexity conditions

- Column convex if intersections with vertical lines are connected.
- Satisfy the recurrence: $a_{n}=5 a_{n-1}-7 a_{n-2}+4 a_{n-3}$ ([Polya], nice proof:[Hickerson]).
- Convex if both row and column convex.

(a) column-convex not row-convex

(b) row-convex not column-convex

(c) convex

Definition - convexity conditions

- Column convex if intersections with vertical lines are connected.
- Satisfy the recurrence: $a_{n}=5 a_{n-1}-7 a_{n-2}+4 a_{n-3}$ ([Polya],nice proof:[Hickerson]).
- Convex if both row and column convex.
- Gray codes: column convex only.
- Further restriction: number of cells in each column is fixed

(a) column-convex not row-convex

(b) row-convex not column-convex

(c) convex

Definition - convexity conditions

- Column convex if intersections with vertical lines are connected.
- Satisfy the recurrence: $a_{n}=5 a_{n-1}-7 a_{n-2}+4 a_{n-3}$ ([Polya],nice proof:[Hickerson]).
- Convex if both row and column convex.
- Gray codes: column convex only.
- Further restriction: number of cells in each column is fixed.

(a) column-convex not row-convex

(b) row-convex not column-convex

(c) convex

Definition - convexity conditions

- Column convex if intersections with vertical lines are connected.
- Satisfy the recurrence: $a_{n}=5 a_{n-1}-7 a_{n-2}+4 a_{n-3}$ ([Polya],nice proof:[Hickerson]).
- Convex if both row and column convex.
- Gray codes: column convex only.
- Further restriction: number of cells in each column is fixed.

(a) column-convex not row-convex

(b) row-convex not column-convex

(c) convex
- Column counts: $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$; below is the set $[1,2,2,1]$. thus $[1,2,2,1] \rightarrow\langle 2,3,2\rangle$.

(0,0,0)

(1,0,0)

(0,0,1)

$(1,0,1)$

(0,1,0)

(1,1,0)

$(\mathbf{0 , 1 , 1})$

(1,1,1)

- Column counts: $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$; below is the set $[1,2,2,1]$.
- Shift limits: $\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle$, where $A_{i}=a_{i}+a_{i+1}-1$; thus $[1,2,2,1] \rightarrow\langle 2,3,2\rangle$.

(0,0,0)

(1,0,0)

$(0,0,1)$

$(1,0,1)$

(0,1,0)

(1,1,0)

$(\mathbf{0}, \mathbf{1 , 1})$

$(1,1,1)$

- Column counts: $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$; below is the set $[1,2,2,1]$.
- Shift limits: $\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle$, where $A_{i}=a_{i}+a_{i+1}-1$; thus $[1,2,2,1] \rightarrow\langle 2,3,2\rangle$.
- Not unique $[1,3,1,3] \rightarrow\langle 3,3,3\rangle$ and $[2,2,2,2] \rightarrow\langle 3,3,3\rangle$.

(0,0,0)

(1,0,0)

(0,0,1)

$(1,0,1)$

(0,1,0)

(1,1,0)

$(\mathbf{0}, \mathbf{1 , 1})$

$(1,1,1)$

- Column counts: $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$; below is the set $[1,2,2,1]$.
- Shift limits: $\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle$, where $A_{i}=a_{i}+a_{i+1}-1$; thus $[1,2,2,1] \rightarrow\langle 2,3,2\rangle$.
- Not unique $[1,3,1,3] \rightarrow\langle 3,3,3\rangle$ and $[2,2,2,2] \rightarrow\langle 3,3,3\rangle$.
- No polyomino for $\langle 1,2,1\rangle$.

(0,0,0)

(1,0,0)

(0,0,1)

$(1,0,1)$

(0,1,0)

(1,1,0)

$(\mathbf{0}, \mathbf{1 , 1})$

$(1,1,1)$

- Column counts: $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$; below is the set $[1,2,2,1]$.
- Shift limits: $\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle$, where $A_{i}=a_{i}+a_{i+1}-1$; thus $[1,2,2,1] \rightarrow\langle 2,3,2\rangle$.
- Not unique $[1,3,1,3] \rightarrow\langle 3,3,3\rangle$ and $[2,2,2,2] \rightarrow\langle 3,3,3\rangle$.
- No polyomino for $\langle 1,2,1\rangle$.
- Encode individual polyominoes as $\left(p_{1}, p_{2}, \ldots, p_{k-1}\right) \in A_{1} \times A_{2} \times \cdots \times A_{k-1}$

(0,0,0)

(1,0,0)

$(0,0,1)$

$(1,0,1)$

(0,1,0)

(1,1,0)

$(\mathbf{0}, \mathbf{1 , 1})$

$(1,1,1)$

$(0,2,0)$

(1,2,0)

- The change $p_{i}:=p_{i} \pm 1$ corresponds to a small earthquake.
fault line

(1,1,3,2,3,1)
earthquake begins

(1, 1, 3, 2, 2, ,,$~ 1$)
two unit shift

(1,1,5,2,2,3,1)
> Can generate these using Gray codes for mixed-radix numbers (H-path in $k-1$ dimensional grid graph).
- A more interesting move is a single cell move within a column.
- The change $p_{i}:=p_{i} \pm 1$ corresponds to a small earthquake.

- Can generate these using Gray codes for mixed-radix numbers (H-path in $k-1$ dimensional grid graph).
\Rightarrow A more interesting move is a single cell move within a column. extremities)
- The change $p_{i}:=p_{i} \pm 1$ corresponds to a small earthquake.

- Can generate these using Gray codes for mixed-radix numbers (H-path in $k-1$ dimensional grid graph).
- A more interesting move is a single cell move within a column.
\Rightarrow Then $p_{i}:=p_{i} \pm 1$ and $p_{i+1}:=p_{i+1} \mp 1$ (except at extremities).
- The change $p_{i}:=p_{i} \pm 1$ corresponds to a small earthquake.

- Can generate these using Gray codes for mixed-radix numbers (H-path in $k-1$ dimensional grid graph).
- A more interesting move is a single cell move within a column.
- Then $p_{i}:=p_{i} \pm 1$ and $p_{i+1}:=p_{i+1} \mp 1$ (except at extremities).
- Define two operations (and their inverses) on \mathbf{A}-sequences:
$\tau_{i}: p_{i}:=p_{i}+1$ (only at the endpoints)
$\sigma_{i}: p_{i}:=p_{i}-1 ; p_{i+1}:=p_{i+1}+1 ;$
- Define two operations (and their inverses) on \mathbf{A}-sequences: $\tau_{i}: p_{i}:=p_{i}+1$ (only at the endpoints)
$\sigma_{i}: p_{i}:=p_{i}-1 ; p_{i+1}:=p_{i+1}+1$;
- The "problem" of $A_{i}=1$.
- Define two operations (and their inverses) on \mathbf{A}-sequences: $\tau_{i}: p_{i}:=p_{i}+1$ (only at the endpoints)
$\sigma_{i}: p_{i}:=p_{i}-1 ; p_{i+1}:=p_{i+1}+1$;
- The "problem" of $A_{i}=1$.
- Implies that $a_{i}, a_{i+1}=1$. (Since $\left.A_{i}=a_{i}+a_{i+1}-1\right)$
- If two or more $A_{i}=1$ then underlying graph is disconnected; otherwise it is connected.
- Define two operations (and their inverses) on \mathbf{A}-sequences: $\tau_{i}: p_{i}:=p_{i}+1$ (only at the endpoints)
$\sigma_{i}: p_{i}:=p_{i}-1 ; p_{i+1}:=p_{i+1}+1$;
- The "problem" of $A_{i}=1$.
- Implies that $a_{i}, a_{i+1}=1$. (Since $\left.A_{i}=a_{i}+a_{i+1}-1\right)$
- I.e., cells i and $i+1$ are frozen in place.
- If two or more $A_{i}=1$ then underlying graph is disconnected; otherwise it is connected.
- Define two operations (and their inverses) on \mathbf{A}-sequences: $\tau_{i}: p_{i}:=p_{i}+1$ (only at the endpoints) $\sigma_{i}: p_{i}:=p_{i}-1 ; p_{i+1}:=p_{i+1}+1$;
- The "problem" of $A_{i}=1$.
- Implies that $a_{i}, a_{i+1}=1$. (Since $\left.A_{i}=a_{i}+a_{i+1}-1\right)$
- I.e., cells i and $i+1$ are frozen in place.
- If two or more $A_{i}=1$ then underlying graph is disconnected; otherwise it is connected.
- Define two operations (and their inverses) on \mathbf{A}-sequences: $\tau_{i}: p_{i}:=p_{i}+1$ (only at the endpoints) $\sigma_{i}: p_{i}:=p_{i}-1 ; p_{i+1}:=p_{i+1}+1$;
- The "problem" of $A_{i}=1$.
- Implies that $a_{i}, a_{i+1}=1$. (Since $\left.A_{i}=a_{i}+a_{i+1}-1\right)$
- I.e., cells i and $i+1$ are frozen in place.
- If two or more $A_{i}=1$ then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ or $G\left(\left\langle A_{1}, \ldots, A_{k-1}\right\rangle\right)$.
- Define two operations (and their inverses) on \mathbf{A}-sequences: $\tau_{i}: p_{i}:=p_{i}+1$ (only at the endpoints) $\sigma_{i}: p_{i}:=p_{i}-1 ; p_{i+1}:=p_{i+1}+1$;
- The "problem" of $A_{i}=1$.
- Implies that $a_{i}, a_{i+1}=1$. (Since $\left.A_{i}=a_{i}+a_{i+1}-1\right)$
- I.e., cells i and $i+1$ are frozen in place.
- If two or more $A_{i}=1$ then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ or $G\left(\left\langle A_{1}, \ldots, A_{k-1}\right\rangle\right)$.
- An interesting case occurs when $A_{k-1}=1$ and $A_{i}>1$, for $i=1,2, \ldots, k-2$: the right-frozen case.
- $\operatorname{Free}=$ neither side frozen.
- Define two operations (and their inverses) on \mathbf{A}-sequences: $\tau_{i}: p_{i}:=p_{i}+1$ (only at the endpoints) $\sigma_{i}: p_{i}:=p_{i}-1 ; p_{i+1}:=p_{i+1}+1$;
- The "problem" of $A_{i}=1$.
- Implies that $a_{i}, a_{i+1}=1$. (Since $\left.A_{i}=a_{i}+a_{i+1}-1\right)$
- I.e., cells i and $i+1$ are frozen in place.
- If two or more $A_{i}=1$ then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ or $G\left(\left\langle A_{1}, \ldots, A_{k-1}\right\rangle\right)$.
- An interesting case occurs when $A_{k-1}=1$ and $A_{i}>1$, for $i=1,2, \ldots, k-2$: the right-frozen case.
- Free $=$ neither side frozen.

Lemma

If k is even, then $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ is bipartite.

Proof.
Define partite sets according to the parity of

$$
\sum_{j \text { odd }} p_{j}\left(=\sum_{j} j p_{j} \bmod 2\right) .
$$

Example

$G([2,2,1,1])$ is bipartite.

Lemma
If $k>3$ is odd, then $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ is bipartite iff $A_{1}=1$ or $A_{k-1}=1$.

Proof.

Odd cycle: $\tau_{1}, \sigma_{1}, \ldots, \sigma_{k-2}, \tau_{k-1}^{-1}$:

Example

$G([2,2,1])$ is not bipartite.

Lemma
If $k>3$ is odd, then $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ is bipartite iff $A_{1}=1$ or $A_{k-1}=1$.

Proof.

Odd cycle: $\tau_{1}, \sigma_{1}, \ldots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000,

Example

$G([2,2,1])$ is not bipartite.

Lemma
If $k>3$ is odd, then $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ is bipartite iff $A_{1}=1$ or $A_{k-1}=1$.

Proof.

Odd cycle: $\tau_{1}, \sigma_{1}, \ldots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000, 1000,

Example

$G([2,2,1])$ is not bipartite.

Lemma
If $k>3$ is odd, then $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ is bipartite iff $A_{1}=1$ or $A_{k-1}=1$.

Proof.

Odd cycle: $\tau_{1}, \sigma_{1}, \ldots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000, 1000, 0100,

Example

$G([2,2,1])$ is not bipartite.

Lemma
If $k>3$ is odd, then $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ is bipartite iff $A_{1}=1$ or $A_{k-1}=1$.

Proof.

Odd cycle: $\tau_{1}, \sigma_{1}, \ldots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000, 1000, 0100, 0010,

Example

$G([2,2,1])$ is not bipartite.

Lemma
If $k>3$ is odd, then $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ is bipartite iff $A_{1}=1$ or $A_{k-1}=1$.

Proof.

Odd cycle: $\tau_{1}, \sigma_{1}, \ldots, \sigma_{k-2}, \tau_{k-1}^{-1}$:
0000, 1000, 0100, 0010, 0001,

Example

$G([2,2,1])$ is not bipartite.

Lemma
If $k>3$ is odd, then $G\left(\left[a_{1}, \ldots, a_{k}\right]\right)$ is bipartite iff $A_{1}=1$ or $A_{k-1}=1$.

Proof.

Odd cycle: $\tau_{1}, \sigma_{1}, \ldots, \sigma_{k-2}, \tau_{k-1}^{-1}$:
0000, 0000.
1000,
0100,
0010, 0001,

Example

$G([2,2,1])$ is not bipartite.

Lemma

If $k>2$ is even, then $G(\mathbf{a})$ has no Hamilton path if $A_{2 i+1}$ is odd for all i, unless $a_{2}=a_{3}=\cdots=a_{k-1}=1$.

Proof.
Define a sign-reversing involution... If all $A_{2 i+1}$ are odd, then parity difference is

$$
d(\mathbf{A})=\prod_{j \text { even }} A_{j} .
$$

Example

$G(\langle 3,2,3,2,3\rangle)$ has no H-path.
$G(\langle 3,1,1,1,3\rangle)$ is a 3 by 3 grid and has a H -path.
Conjecture: There is a H -path if k even and some $A_{2 i+1}$ is even.

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Proof.

Convert each edge of H into a path of $B C$ vertices in H^{\prime}. The structure of B, C is a B by C grid graph. Need to be careful about the τ moves in H.... Need to show the existence of particular types of H -cycles in grid graphs....

Theorem

If \mathbf{A} has the form $\left(N_{>3}\right)^{0 \mid 1}\left(O_{>3} N_{>1}\right)^{*}(N)^{0 \mid 1} E$ or it's reverse, then there is a 1-move Gray code for \mathbf{A}

Proof.
Add pairs of columns on the left...

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$
$\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.

0	0	1	1
0	1	0	1
$?$	$?$	$?$	$?$

$\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ ? & ? & ? & ? & \end{array}$

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.

0	0	1	1
0	1	0	1
$?$	$?$	$?$	$?$

$\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ ? & ? & ? & 1 & 0\end{array}$

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.

0	0	1	1	
0	1	0	1	
0	1	1	0	0
0	0	0	0	0
0	0	0	0	1
0	0	1	1	0

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.

0	0	1	1					
0	1	0	1					
0	1	1	0	0	$?$	$?$	$?$	
0	0	0	0	0	0	0	0	1
0	0	0	0	1	1	1	1	0
0	0	1	1	0	$?$	$?$	$?$	

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.

0	0	1	1					
0	1	0	1					
0	1	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1
0	0	0	0	1	1	1	1	0
0	0	1	1	0	1	1	0	0

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.

0	0	1	1								
0	1	0	1								
0	1	1	0	0	0	1	1	1	$?$	$?$	$?$
0	0	0	0	0	0	0	0	1	1	1	1
0	1										
0	0	0	0	1	1	1	1	0	0	0	0
0	0	1	1	0	1	1	0	0	$?$	$?$	$?$

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.

0	0	1	1									
0	1	0	1									
0	1	1	0	0	0	1	1	1	0	0	1	1
0	0	0	0	0	0	0	0	1	1	1	1	1
0	0	0	0	1	1	1	1	0	0	0	0	1
0	0	1	1	0	1	1	0	0	0	1	1	0

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.

0	0	1	1												
0	1	0	1												
0	1	1	0	0	0	1	1	1	0	0	1	1	$?$	$?$	$?$
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	0	1	1	0	1	1	0	0	0	1	1	0	$?$	$?$	$?$

Theorem
If $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}\right\rangle\right)$ has a Hamilton path H and $B C$ is even and $B C \neq 6$, then $G\left(\left\langle B, A_{1}, A_{2}, \ldots, A_{k-1}, C\right\rangle\right)$ has a Hamilton path H^{\prime}.

Example

Converting $G(2,2)$ into $G(2,2,2,2)$.

0	0	1	1												
0	1	0	1												
0	1	1	0	0	0	1	1	1	0	0	1	1	0	0	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	0	1	1	0	1	1	0	0	0	1	1	0	0	1	1

Theorem
If \mathbf{A} has the form $\left(N_{>3}\right)^{0 \mid 1}\left(O_{>3} N_{>1}\right)^{*}(N)^{0 \mid 1} E$ or it's reverse, then there is a 1-move Gray code for \mathbf{A}

Right-frozen case - a poset

- Operations are τ_{1} and $\sigma_{1}, \sigma_{2}, \ldots$

Right-frozen case - a poset

- Operations are τ_{1} and $\sigma_{1}, \sigma_{2}, \ldots$.
- Underlying poset $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}, 1\right\rangle\right)$ orders p-sequences: $\left(p_{1}, p_{2}, \ldots, p_{k-1}\right) \leq\left(q_{1}, q_{2}, \ldots, q_{k-1}\right)$ iff

$$
\sum_{i=j}^{k-1} p_{i} \leq \sum_{i=j}^{k-1} q_{i}
$$

- The operations are the cover relations.

Right-frozen case - a poset

- Operations are τ_{1} and $\sigma_{1}, \sigma_{2}, \ldots$.
- Underlying poset $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}, 1\right\rangle\right)$ orders p-sequences: $\left(p_{1}, p_{2}, \ldots, p_{k-1}\right) \leq\left(q_{1}, q_{2}, \ldots, q_{k-1}\right)$ iff

$$
\sum_{i=j}^{k-1} p_{i} \leq \sum_{i=j}^{k-1} q_{i}
$$

- The operations are the cover relations.
- $G(\langle 2,2, \ldots, 2,1\rangle)$ is $M(n)$ (e.g., [Lindström][Stanley])
- Is a distributive lattice in general

Right-frozen case - a poset

- Operations are τ_{1} and $\sigma_{1}, \sigma_{2}, \ldots$.
- Underlying poset $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}, 1\right\rangle\right)$ orders p-sequences: $\left(p_{1}, p_{2}, \ldots, p_{k-1}\right) \leq\left(q_{1}, q_{2}, \ldots, q_{k-1}\right)$ iff

$$
\sum_{i=j}^{k-1} p_{i} \leq \sum_{i=j}^{k-1} q_{i}
$$

- The operations are the cover relations.
- $G((\underbrace{2,2, \ldots, 2}_{n}, 1\rangle)$ is $M(n)$ (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.

Right-frozen case - a poset

- Operations are τ_{1} and $\sigma_{1}, \sigma_{2}, \ldots$.
- Underlying poset $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}, 1\right\rangle\right)$ orders p-sequences: $\left(p_{1}, p_{2}, \ldots, p_{k-1}\right) \leq\left(q_{1}, q_{2}, \ldots, q_{k-1}\right)$ iff

$$
\sum_{i=j}^{k-1} p_{i} \leq \sum_{i=j}^{k-1} q_{i}
$$

- The operations are the cover relations.
- $G((\underbrace{2,2, \ldots, 2}_{n}, 1\rangle)$ is $M(n)$ (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.

- Is self-dual under the mapping

Right-frozen case - a poset

- Operations are τ_{1} and $\sigma_{1}, \sigma_{2}, \ldots$.
- Underlying poset $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}, 1\right\rangle\right)$ orders \mathbf{p}-sequences: $\left(p_{1}, p_{2}, \ldots, p_{k-1}\right) \leq\left(q_{1}, q_{2}, \ldots, q_{k-1}\right)$ iff

$$
\sum_{i=j}^{k-1} p_{i} \leq \sum_{i=j}^{k-1} q_{i}
$$

- The operations are the cover relations.
- $G((\underbrace{2,2, \ldots, 2}_{n}, 1\rangle)$ is $M(n)$ (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.
- Join irreducibles: $A_{1}^{\prime} A_{2}^{\prime} \cdots A_{i}^{\prime} 0 \cdots 0 x A_{j+1}^{\prime} \cdots A_{k-1}^{\prime}$, where $0 \leq x<A_{j}^{\prime}:=A_{j}-1$. There are $\sum_{j} j A_{j}^{\prime}$ of them.
- Is self-dual under the mapping

Right-frozen case - a poset

- Operations are τ_{1} and $\sigma_{1}, \sigma_{2}, \ldots$.
- Underlying poset $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k-1}, 1\right\rangle\right)$ orders \mathbf{p}-sequences: $\left(p_{1}, p_{2}, \ldots, p_{k-1}\right) \leq\left(q_{1}, q_{2}, \ldots, q_{k-1}\right)$ iff

$$
\sum_{i=j}^{k-1} p_{i} \leq \sum_{i=j}^{k-1} q_{i}
$$

- The operations are the cover relations.
- $G((\underbrace{2,2, \ldots, 2}_{n}, 1\rangle)$ is $M(n)$ (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.
- Join irreducibles: $A_{1}^{\prime} A_{2}^{\prime} \cdots A_{i}^{\prime} 0 \cdots 0 x A_{j+1}^{\prime} \cdots A_{k-1}^{\prime}$, where $0 \leq x<A_{j}^{\prime}:=A_{j}-1$. There are $\sum_{j} j A_{j}^{\prime}$ of them.
- Is self-dual under the mapping

$$
p_{1} \cdots p_{k-1} \mapsto\left(A_{1}^{\prime}-p_{1}\right) \cdots\left(A_{k-1}^{\prime}-p_{k-1}\right)
$$

Further properties

- The rank of a \mathbf{p}-sequence is

$$
r(\mathbf{p})=\sum_{j=1}^{k-1} j p_{j}
$$

- Rank generating function is

Further properties

- The rank of a p-sequence is

$$
r(\mathbf{p})=\sum_{j=1}^{k-1} j p_{j}
$$

- Rank generating function is

$$
\prod_{j=1}^{k-1} \frac{1-z^{j A_{j}}}{1-z^{j}}
$$

- Since G is the cover graph of a distributive lattice, its prism is Hamiltonian ([Pruesse \& R]). Thus G^{2} is Hamiltonian. Not the same as moving two cells!
\square

Further properties

- The rank of a p-sequence is

$$
r(\mathbf{p})=\sum_{j=1}^{k-1} j p_{j}
$$

- Rank generating function is

$$
\prod_{j=1}^{k-1} \frac{1-z^{j A_{j}}}{1-z^{j}}
$$

- Since G is the cover graph of a distributive lattice, its prism is Hamiltonian ([Pruesse \& R]). Thus G^{2} is Hamiltonian. Not the same as moving two cells!

Lemma
The graph $G(\langle 2, \ldots, 2,1\rangle)$ has a Hamilton path if and only if $\binom{n+1}{2}$ is even and $n \neq 5$.

This follows from the results of Savage, Shields, and West.

Lemma
The graph $G(\langle 2, \ldots, 2,1\rangle)$ has a Hamilton path if and only if $\binom{n+1}{2}$ is even and $n \neq 5$.

Proof.
This follows from the results of Savage, Shields, and West.
Theorem
For all $n>0$ the graph $G(\underbrace{2,2, \ldots, 2}\rangle)$ is Hamiltonian.

Lemma
The graph $G(\langle 2, \ldots, 2,1\rangle)$ has a Hamilton path if and only if $\binom{n+1}{2}$ is even and $n \neq 5$.

Proof.
This follows from the results of Savage, Shields, and West.
Theorem
For all $n>0$ the graph $G(\underbrace{2,2, \ldots, 2}_{n}\rangle)$ is Hamiltonian.

Lemma

The graph $G(\langle 2, \ldots, 2,1\rangle)$ has a Hamilton path if and only if $\binom{n+1}{2}$ is even and $n \neq 5$.

Proof.
This follows from the results of Savage, Shields, and West.
Theorem
For all $n>0$ the graph $G(\underbrace{2,2, \ldots, 2}_{n}\rangle)$ is Hamiltonian.
Proof.
Induction on n with a suitably strengthened hypothesis...

Lemma

There is no Hamilton path in $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k}, 1\right\rangle\right)$ if (1) has the same parity as $A_{1} A_{2} \cdots A_{k}$.

$$
\begin{equation*}
\sum_{j=1}^{k} j\left(A_{j}-1\right)=\sum_{j=1}^{k} j A_{j}^{\prime} \tag{1}
\end{equation*}
$$

Lemma

There is no Hamilton path in $G\left(\left\langle A_{1}, A_{2}, \ldots, A_{k}, 1\right\rangle\right)$ if (1) has the same parity as $A_{1} A_{2} \cdots A_{k}$.

$$
\begin{equation*}
\sum_{j=1}^{k} j\left(A_{j}-1\right)=\sum_{j=1}^{k} j A_{j}^{\prime} \tag{1}
\end{equation*}
$$

Proof.

Note that $00 \cdots 00$ and $A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k}^{\prime} 0$ are pendant vertices in a $A_{1} A_{2} \cdots A_{k}$ vertex bipartite graph G and that their distance from each other is precisely (1).

- The Poset $G(\langle 5,5,1\rangle)$. Join irreducibles in yellow. - The subposet of join-irreducibles. - Both are self-dual.

- The Poset $G(\langle 5,5,1\rangle)$. Join irreducibles in yellow.
- The subposet of join-irreducibles.
- Both are self-dual.

- The Poset $G(\langle 5,5,1\rangle)$. Join irreducibles in yellow.
- The subposet of join-irreducibles.
- Both are self-dual.
- Note: $G(\langle 5,5,1\rangle)$ not rank-unimodal.

- The Poset $G(\langle 5,5,1\rangle)$. Join irreducibles in yellow.
- The subposet of join-irreducibles.
- Both are self-dual.
- Note: $G(\langle 5,5,1\rangle)$ not rank-unimodal.

Posets - Join Irreducibles

Expanding

- $G(\langle 3,3,3,1\rangle)$.

Posets - Join Irreducibles

Expanding

- $G(\langle 3,3,3,1\rangle)$.
- Ends with 2 or not.

Posets - Join Irreducibles

Expanding

- $G(\langle 3,3,3,1\rangle)$.
- Ends with 2 or not.
- $G(\langle 3,3,3,3,1\rangle)$.

More on unimodality

- Let $c(S)$ be the smallest value of k for which $P\left(S^{i}\right)$ is rank unimodal for all $i \geq k$.
- Example What is $c(2,3)$? The rank gf is

More on unimodality

- Let $c(S)$ be the smallest value of k for which $P\left(S^{i}\right)$ is rank unimodal for all $i \geq k$. Well defined?
- Example What is $c(2,3)$? The rank gf is

More on unimodality

- Let $c(S)$ be the smallest value of k for which $P\left(S^{i}\right)$ is rank unimodal for all $i \geq k$. Well defined?
- Example What is $c(2,3)$? The rank gf is $(1+z)\left(1+z^{2}+z^{4}\right)=1+z+z^{2}+z^{3}+z^{4}+z^{5}$.

More on unimodality

- Let $c(S)$ be the smallest value of k for which $P\left(S^{i}\right)$ is rank unimodal for all $i \geq k$. Well defined?
- Example What is $c(2,3)$? The rank gf is $(1+z)\left(1+z^{2}+z^{4}\right)=1+z+z^{2}+z^{3}+z^{4}+z^{5}$.
- Ranks of 2, 3, 2:

| 1 | 1 | 1 | 1 | 1 | 1 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \circ | \circ | \circ | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 |

More on unimodality

- Let $c(S)$ be the smallest value of k for which $P\left(S^{i}\right)$ is rank unimodal for all $i \geq k$. Well defined?
- Example What is $c(2,3)$? The rank gf is $(1+z)\left(1+z^{2}+z^{4}\right)=1+z+z^{2}+z^{3}+z^{4}+z^{5}$.
- Ranks of 2, 3, 2 :
$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$

			1	1	1	1	1	1
1	1	1	2	2	2	1	1	1

- Ranks of 2,3,2,3 are

| 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \circ | \circ | \circ | \circ | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | | | | |
| | | | | \circ | \circ | \circ | \circ | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 |
| 1 | 1 | 1 | 2 | 3 | 3 | 2 | 3 | 4 | 3 | 2 | 3 | 3 | 2 | 1 | 1 | 1 | which is not unimodal.

- Continuing, $P\left((2,3)^{5}\right)$ is not unimodal, but $P\left((2,3)^{k}\right)$ appears to be unimodal for $k \geq 6$ (checked up to $k=200$).

$c(n, m)$

			3	4	5	6	7	8	9	10	11	12	13	14	15	16
17																
2	1	6	1	7	1	5	1	7	1	5	1	5	1	5	1	5
3	7	6	8	8	8	a	8	a	9	a	b	a	b	a	c	c
4	4	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	6	1	3	4	6	5	6	5	6	6	7	6	7	6	7	6
6	1	1	1	3	1	1	1	3	1	3	1	3	1	3	1	3
7	3	1	1	2	4	4	4	4	4	4	5	5	5	6	5	6
8	3	1	1	3	1	3	1	1	1	3	1	1	1	1	1	1
9	4	1	1	1	3	3	3	3	4	4	4	4	4	4	4	4
10	3	1	1	1	1	1	1	3	1	1	1	3	1	1	1	3
11	3	1	3	1	1	2	4	4	4	4	4	4	4	4	4	4
12	1	1	1	1	1	3	1	3	1	3	1	3	1	3	1	1
13	4	1	3	1	3	1	2	2	3	3	3	3	3	3	4	4
14	4	1	3	3	1	3	1	3	1	3	1	3	1	1	1	3
15	1	4	4	4	1	4	4	2	4	4	4	4	4	4	4	4
16	4	1	3	3	1	1	1	3	1	3	1	3	1	3	1	3
17	4	1	3	3	1	1	3	1	3	2	3	3	3	3	3	3
18	4	1	1	1	1	1	1	3	1	3	1	3	1	3	1	3
19	4	1	4	3	1	1	1	1	1	2	3	2	3	3	3	3
20	3	1	3	3	1	3	1	1	1	3	1	3	1	3	1	3

Remarks about $c(m, n)$

- Only the 2,2 entry is proven.
- Most entries are checked out to $k=30$. The numbers are huge; i.e., the underlying poset has $(\mathrm{nm})^{30}$ elements.
- Some conjectures:

Remarks about $c(m, n)$

- Only the 2,2 entry is proven.
- Most entries are checked out to $k=30$. The numbers are huge; i.e., the underlying poset has $(\mathrm{nm})^{30}$ elements.

Remarks about $c(m, n)$

- Only the 2,2 entry is proven.
- Most entries are checked out to $k=30$. The numbers are huge; i.e., the underlying poset has $(\mathrm{nm})^{30}$ elements.
- Some conjectures:
- For odd $m, \lim _{n \rightarrow \infty} c(m, n)=c_{m}$. In particular, $c_{3}=16$ (the value 16 first occurs for $k=90$)

Remarks about $c(m, n)$

- Only the 2,2 entry is proven.
- Most entries are checked out to $k=30$. The numbers are huge; i.e., the underlying poset has $(\mathrm{nm})^{30}$ elements.
- Some conjectures:
- For odd $m, \lim _{n \rightarrow \infty} c(m, n)=c_{m}$. In particular, $c_{3}=16$ (the value 16 first occurs for $k=90$).
- For even m with an odd factor, for large enough n, if n even then $c(m, n)=1$ and if n is odd then $c(m, n)=3$.

Remarks about $c(m, n)$

- Only the 2,2 entry is proven.
- Most entries are checked out to $k=30$. The numbers are huge; i.e., the underlying poset has $(\mathrm{nm})^{30}$ elements.
- Some conjectures:
- For odd $m, \lim _{n \rightarrow \infty} c(m, n)=c_{m}$. In particular, $c_{3}=16$ (the value 16 first occurs for $k=90$).
- For even m with an odd factor, for large enough n, if n even then $c(m, n)=1$ and if n is odd then $c(m, n)=3$.

Remarks about $c(m, n)$

- Only the 2,2 entry is proven.
- Most entries are checked out to $k=30$. The numbers are huge; i.e., the underlying poset has $(\mathrm{nm})^{30}$ elements.
- Some conjectures:
- For odd $m, \lim _{n \rightarrow \infty} c(m, n)=c_{m}$. In particular, $c_{3}=16$ (the value 16 first occurs for $k=90$).
- For even m with an odd factor, for large enough n, if n even then $c(m, n)=1$ and if n is odd then $c(m, n)=3$.
- If $m=2^{d}$ then $c(m, n)=1$ for $n \geq 2^{d+1}$.

Remarks about $c(m, n)$

- Only the 2,2 entry is proven.
- Most entries are checked out to $k=30$. The numbers are huge; i.e., the underlying poset has $(\mathrm{nm})^{30}$ elements.
- Some conjectures:
- For odd $m, \lim _{n \rightarrow \infty} c(m, n)=c_{m}$. In particular, $c_{3}=16$ (the value 16 first occurs for $k=90$).
- For even m with an odd factor, for large enough n, if n even then $c(m, n)=1$ and if n is odd then $c(m, n)=3$.
- If $m=2^{d}$ then $c(m, n)=1$ for $n \geq 2^{d+1}$.
- For $m \geq 25, c(m, 3)=1$ if $5 \mid m$; otherwise, $c(m, 3)=4$.
$m=(\{0\},\{5,10\}$, other $) \bmod 15$.

Remarks about $c(m, n)$

- Only the 2,2 entry is proven.
- Most entries are checked out to $k=30$. The numbers are huge; i.e., the underlying poset has $(\mathrm{nm})^{30}$ elements.
- Some conjectures:
- For odd $m, \lim _{n \rightarrow \infty} c(m, n)=c_{m}$. In particular, $c_{3}=16$ (the value 16 first occurs for $k=90$).
- For even m with an odd factor, for large enough n, if n even then $c(m, n)=1$ and if n is odd then $c(m, n)=3$.
- If $m=2^{d}$ then $c(m, n)=1$ for $n \geq 2^{d+1}$.
- For $m \geq 25, c(m, 3)=1$ if $5 \mid m$; otherwise, $c(m, 3)=4$.
- For $m \geq 15, c(m, 3)=1,3,4$ if
$m=(\{0\},\{5,10\}$, other $) \bmod 15$.

Open Problems

- Is the Gray code necessary condition sufficient?
- Remove the $B C \neq 6$ from a previous theorem. Gray codes for general column-convex polyominoes?

Open Problems

- Is the Gray code necessary condition sufficient?
- Remove the $B C \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?

Open Problems

- Is the Gray code necessary condition sufficient?
- Remove the $B C \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes? - Hexominoes?

Open Problems

- Is the Gray code necessary condition sufficient?
- Remove the $B C \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?
- Hexominoes?
- Prove some of the unimodality results. Perhaps the numbers
are asymptotically normal?

Open Problems

- Is the Gray code necessary condition sufficient?
- Remove the $B C \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?
- Hexominoes?
- Prove some of the unimodality results. Perhaps the numbers are asymptotically normal?

Open Problems

- Is the Gray code necessary condition sufficient?
- Remove the $B C \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?
- Hexominoes?
- Prove some of the unimodality results. Perhaps the numbers are asymptotically normal?

Thanks for still being here!

And please let me know if you have seen that poset before...

And on to the Venn diagrams.

Definition - Venn diagram

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Infinite intersection not allowed (usually, but not here!).

Definition - Venn diagram

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Infinite intersection not allowed (usually, but not here!).
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$. - Euler diagram if each such intersection is connected

Definition - Venn diagram

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Infinite intersection not allowed (usually, but not here!).
- Let X_{i} denote the interior or the exterior of the curve
C_{i} and consider $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected. no intersection is empty.

Definition - Venn diagram

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Infinite intersection not allowed (usually, but not here!).
- Let X_{i} denote the interior or the exterior of the curve
C_{i} and consider $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty. intersection is empty.

Definition - Venn diagram

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Infinite intersection not allowed (usually, but not here!).
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.
- Venn diagram if Euler and
 no intersection is empty.
- Independent family if no intersection is empty.

Definition - Venn diagram

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Infinite intersection not allowed (usually, but not here!).
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.
- Venn diagram if Euler and
 no intersection is empty.
- Independent family if no intersection is empty.
- Minimum area Venn diagrams.
- Curves are the boundaries of a polyomino.
- Each interior/exterior intersection is a square.
- Total bounded area is $2^{n}-1$.
- Each polyomino is a 2^{n-1}-omino.
- Introduced by Mark Thompson on a recreational math web page.

PolyVenn diagram with congruent curves

E	${ }^{\text {B }}$ E	A_{E}	A C D	$\mathrm{E}^{\text {D }}$	E	
	$B^{\text {C }}$	$\begin{array}{cc}\text { A } & \mathrm{C} \\ \mathrm{E}\end{array}$	A C B E	$\mathrm{E}^{\mathrm{C}} \mathrm{D}$	$B_{E^{D}}^{\text {D }}$	
	${ }^{\text {B }} \mathrm{E}^{\mathrm{D}}$	$\begin{array}{llll}\text { A } & \text { C } \\ B & \\ & \text { D }\end{array}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	 B C	A C B	
	B D	$\mathrm{B}^{\mathrm{B}}{ }_{\mathrm{E}} \mathrm{D}$	${ }_{E}^{\mathrm{A}}{ }^{\mathrm{D}}$	A $\begin{aligned} & \text { C } \\ & \text { B } \\ & \\ & \end{aligned}$	$\begin{array}{ll}\text { A } & \text { C } \\ & \text { D }\end{array}$	${ }^{\text {A }}$
	${ }^{\text {B }}$ E	$\mathrm{A}_{\mathrm{B}}{ }^{\text {E }}$		A C	C	A

- ロ 4気

D

Top figure colored by cardinality of the underlying set. Red $=1$, yellow $=2$, etc.

In a minimum bounding box

$A B$	A
B	

$\square \quad \square$

A	A	C	$A B C$	C
$A B$	$B C$	B		

	${ }_{\text {C }}$	C
$\begin{array}{\|c\|cc} \hline{ }^{\mathrm{A}} \mathrm{C}_{\mathrm{D}} & { }_{\mathrm{C}}^{\mathrm{C}} \\ \hline \end{array}$	${ }_{\text {C }}^{\text {B }}$	C_{D}
	B	D
A A B	B	

A naïve way to construct a polyVenn diagram for any n.

- A 5-Venn diagram with curve A highlighted.
- Area in general is $\frac{3}{2} 2^{n}$.

Symmetric chain decomposition of the Boolean lattice

(a)

- A partition of all 2^{n} subsets into chains of the form

$$
x_{1} \subset x_{2} \subset \cdots \subset x_{t}
$$

$$
\text { where }\left|x_{i}\right|=n-\left|x_{t-i+1}\right|
$$

$$
\text { and }\left|x_{i}\right|=\left|x_{i-1}-1\right| .
$$

- Various algorithms known:
- De Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk.
- Aigner.

- Are there congruent n-polyVenns for $n \geq 6$? We saw earlier that they exist for $n=2,3,4,5$.
- Is there a 5-polyVenn whose curves are convex polyominoes?
- Are there minimum bounding box n-polyVenns for $n \geq 6$? We saw earlier that they exist for $n=2,3,4,5$.
- Are there minimum area n-polyVenns for $n \geq 8$? We saw earlier examples for $n=6,7$.
- One problem for which we have not attempted solutions is the construction of n-polyVenns that fill an $w \times h$ box, where $w h=2^{n}-1$. Of course, a necessary condition is that $2^{n}-1$ not be a Mersenne prime. For example, is there are 4 -polyVenn that fits in a 3×5 rectangle or a 6 -polyVenn that fits in a 7×9 or 3×27 rectangle?

Thanks for coming!

