Polyominoes, Gray Codes, and Venn Diagrams

Stirling Chow¹ Frank Ruskey¹

¹Department of Computer Science University of Victoria, CANADA

Northwest Theory Day, April 2005

- Made from unit squares joined along edges.
- No holes allowed.
- Must be connected.
- Translations allowed but not flips or rotations.

- Made from unit squares joined along edges.
- No holes allowed.
- Must be connected.
- Translations allowed but not flips or rotations.

- Made from unit squares joined along edges.
- No holes allowed.
- Must be connected.
- Translations allowed but not flips or rotations.

- Made from unit squares joined along edges.
- No holes allowed.
- Must be connected.
- Translations allowed but not flips or rotations.

- Column convex if intersections with vertical lines are connected.
- Satisfy the recurrence: a_n = 5a_{n-1} − 7a_{n-2} + 4a_{n-3} ([Polya],nice proof:[Hickerson]).
- Convex if both row and column convex.
- Gray codes: column convex only.
- Further restriction: number of cells in each column is fixed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Column convex if intersections with vertical lines are connected.
- Satisfy the recurrence: a_n = 5a_{n-1} − 7a_{n-2} + 4a_{n-3} ([Polya],nice proof:[Hickerson]).
- Convex if both row and column convex.
- Gray codes: column convex only.
- Further restriction: number of cells in each column is fixed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Column convex if intersections with vertical lines are connected.
- Satisfy the recurrence: a_n = 5a_{n−1} − 7a_{n−2} + 4a_{n−3} ([Polya],nice proof:[Hickerson]).
- Convex if both row and column convex.
- Gray codes: column convex only.
- Further restriction: number of cells in each column is fixed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Column convex if intersections with vertical lines are connected.
- Satisfy the recurrence: a_n = 5a_{n−1} − 7a_{n−2} + 4a_{n−3} ([Polya],nice proof:[Hickerson]).
- Convex if both row and column convex.
- Gray codes: column convex only.
- Further restriction: number of cells in each column is fixed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- Column convex if intersections with vertical lines are connected.
- Satisfy the recurrence: a_n = 5a_{n−1} − 7a_{n−2} + 4a_{n−3} ([Polya],nice proof:[Hickerson]).
- Convex if both row and column convex.
- Gray codes: column convex only.
- Further restriction: number of cells in each column is fixed.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Column counts: $[a_1, a_2, \ldots, a_k]$; below is the set [1, 2, 2, 1].

- ▶ Shift limits: $\langle A_1, A_2, ..., A_{k-1} \rangle$, where $A_i = a_i + a_{i+1} 1$; thus $[1, 2, 2, 1] \rightarrow \langle 2, 3, 2 \rangle$.
- ▶ Not unique $[1,3,1,3] \rightarrow \langle 3,3,3 \rangle$ and $[2,2,2,2] \rightarrow \langle 3,3,3 \rangle$.
- No polyomino for $\langle 1, 2, 1 \rangle$.
- Encode individual polyominoes as (p₁, p₂,..., p_{k−1}) ∈ A₁ × A₂ × ··· × A_{k−1}

- Column counts: $[a_1, a_2, \ldots, a_k]$; below is the set [1, 2, 2, 1].
- ▶ Shift limits: $\langle A_1, A_2, \ldots, A_{k-1} \rangle$, where $A_i = a_i + a_{i+1} 1$; thus $[1, 2, 2, 1] \rightarrow \langle 2, 3, 2 \rangle$.
- ▶ Not unique $[1,3,1,3] \rightarrow \langle 3,3,3 \rangle$ and $[2,2,2,2] \rightarrow \langle 3,3,3 \rangle$.
- No polyomino for $\langle 1, 2, 1 \rangle$.
- ► Encode individual polyominoes as (p₁, p₂,..., p_{k-1}) ∈ A₁ × A₂ × ··· × A_{k-1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ⊙

- Column counts: $[a_1, a_2, \ldots, a_k]$; below is the set [1, 2, 2, 1].
- ▶ Shift limits: $\langle A_1, A_2, \ldots, A_{k-1} \rangle$, where $A_i = a_i + a_{i+1} 1$; thus $[1, 2, 2, 1] \rightarrow \langle 2, 3, 2 \rangle$.
- ▶ Not unique $[1,3,1,3] \rightarrow \langle 3,3,3 \rangle$ and $[2,2,2,2] \rightarrow \langle 3,3,3 \rangle$.
- No polyomino for $\langle 1, 2, 1 \rangle$.
- ► Encode individual polyominoes as (p₁, p₂,..., p_{k-1}) ∈ A₁ × A₂ × ··· × A_{k-1}

- ▶ Column counts: $[a_1, a_2, \ldots, a_k]$; below is the set [1, 2, 2, 1].
- ▶ Shift limits: $\langle A_1, A_2, \ldots, A_{k-1} \rangle$, where $A_i = a_i + a_{i+1} 1$; thus $[1, 2, 2, 1] \rightarrow \langle 2, 3, 2 \rangle$.
- ▶ Not unique $[1,3,1,3] \rightarrow \langle 3,3,3 \rangle$ and $[2,2,2,2] \rightarrow \langle 3,3,3 \rangle$.
- ► No polyomino for (1, 2, 1).
- ► Encode individual polyominoes as (p₁, p₂,..., p_{k-1}) ∈ A₁ × A₂ ×···× A_{k-1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ⊙

- ▶ Column counts: $[a_1, a_2, \ldots, a_k]$; below is the set [1, 2, 2, 1].
- ▶ Shift limits: $\langle A_1, A_2, \dots, A_{k-1} \rangle$, where $A_i = a_i + a_{i+1} 1$; thus $[1, 2, 2, 1] \rightarrow \langle 2, 3, 2 \rangle$.
- ▶ Not unique $[1,3,1,3] \rightarrow \langle 3,3,3 \rangle$ and $[2,2,2,2] \rightarrow \langle 3,3,3 \rangle$.
- ► No polyomino for (1, 2, 1).
- ► Encode individual polyominoes as $(p_1, p_2, ..., p_{k-1}) \in A_1 \times A_2 \times \cdots \times A_{k-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ⊙

- ► Can generate these using Gray codes for mixed-radix numbers (H-path in k − 1 dimensional grid graph).
- A more interesting move is a single cell move within a column.

Then p_i := p_i ± 1 and p_{i+1} := p_{i+1} ∓ 1 (except at extremities).

- ► Can generate these using Gray codes for mixed-radix numbers (H-path in k − 1 dimensional grid graph).
- A more interesting move is a single cell move within a column.

Then p_i := p_i ± 1 and p_{i+1} := p_{i+1} ∓ 1 (except at extremities).

- ► Can generate these using Gray codes for mixed-radix numbers (H-path in k − 1 dimensional grid graph).
- A more interesting move is a single cell move within a column.

Then p_i := p_i ± 1 and p_{i+1} := p_{i+1} ∓ 1 (except at extremities).

- ► Can generate these using Gray codes for mixed-radix numbers (H-path in k − 1 dimensional grid graph).
- A more interesting move is a single cell move within a column.

▶ Then $p_i := p_i \pm 1$ and $p_{i+1} := p_{i+1} \mp 1$ (except at extremities).

$$\sigma_i : p_i := p_i - 1; p_{i+1} := p_{i+1} + 1;$$

- The "problem" of $A_i = 1$.
 - ▶ Implies that $a_i, a_{i+1} = 1$. (Since $A_i = a_i + a_{i+1} 1$) ▶ Let cells *i* and *i* + 1 are frozen in place
- If two or more A_i = 1 then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G([a_1,\ldots,a_k])$ or $G(\langle A_1,\ldots,A_{k-1}\rangle)$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- ► An interesting case occurs when A_{k-1} = 1 and A_i > 1, for i = 1, 2, ..., k - 2: the right-frozen case.
- ▶ *Free* = neither side frozen.

$$\sigma_i: p_i := p_i - 1; p_{i+1} := p_{i+1} + 1;$$

- The "problem" of $A_i = 1$.
 - Implies that $a_i, a_{i+1} = 1$. (Since $A_i = a_i + a_{i+1} 1$)
 - ▶ I.e., cells *i* and *i* + 1 are frozen in place.
- If two or more A_i = 1 then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G([a_1,\ldots,a_k])$ or $G(\langle A_1,\ldots,A_{k-1}\rangle)$.

- An interesting case occurs when A_{k−1} = 1 and A_i > 1, for i = 1, 2, ..., k − 2: the right-frozen case.
- ▶ *Free* = neither side frozen.

$$\sigma_i: p_i := p_i - 1; p_{i+1} := p_{i+1} + 1;$$

- The "problem" of $A_i = 1$.
 - Implies that $a_i, a_{i+1} = 1$. (Since $A_i = a_i + a_{i+1} 1$)
 - ▶ I.e., cells *i* and *i* + 1 are frozen in place.
- If two or more A_i = 1 then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G([a_1,\ldots,a_k])$ or $G(\langle A_1,\ldots,A_{k-1}\rangle)$.

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のへの

- ► An interesting case occurs when A_{k-1} = 1 and A_i > 1, for i = 1, 2, ..., k - 2: the right-frozen case.
- ▶ *Free* = neither side frozen.

$$\sigma_i: p_i := p_i - 1; p_{i+1} := p_{i+1} + 1;$$

- The "problem" of $A_i = 1$.
 - Implies that $a_i, a_{i+1} = 1$. (Since $A_i = a_i + a_{i+1} 1$)
 - ▶ I.e., cells *i* and *i* + 1 are frozen in place.
- If two or more A_i = 1 then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G([a_1,\ldots,a_k])$ or $G(\langle A_1,\ldots,A_{k-1}\rangle)$.

- An interesting case occurs when A_{k−1} = 1 and A_i > 1, for i = 1, 2, ..., k − 2: the right-frozen case.
- Free = neither side frozen.

$$\sigma_i: p_i := p_i - 1; p_{i+1} := p_{i+1} + 1;$$

- The "problem" of $A_i = 1$.
 - Implies that $a_i, a_{i+1} = 1$. (Since $A_i = a_i + a_{i+1} 1$)
 - ▶ I.e., cells *i* and *i* + 1 are frozen in place.
- If two or more A_i = 1 then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G([a_1,\ldots,a_k])$ or $G(\langle A_1,\ldots,A_{k-1}\rangle)$.

- An interesting case occurs when A_{k−1} = 1 and A_i > 1, for i = 1, 2, ..., k − 2: the right-frozen case.
- ► *Free* = neither side frozen.

$$\sigma_i: p_i := p_i - 1; p_{i+1} := p_{i+1} + 1;$$

- The "problem" of $A_i = 1$.
 - Implies that $a_i, a_{i+1} = 1$. (Since $A_i = a_i + a_{i+1} 1$)
 - ▶ I.e., cells *i* and *i* + 1 are frozen in place.
- If two or more A_i = 1 then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G([a_1,\ldots,a_k])$ or $G(\langle A_1,\ldots,A_{k-1}\rangle)$.

- An interesting case occurs when A_{k−1} = 1 and A_i > 1, for i = 1, 2, ..., k − 2: the right-frozen case.
- Free = neither side frozen.

$$\sigma_i: p_i := p_i - 1; p_{i+1} := p_{i+1} + 1;$$

- The "problem" of $A_i = 1$.
 - Implies that $a_i, a_{i+1} = 1$. (Since $A_i = a_i + a_{i+1} 1$)
 - ▶ I.e., cells *i* and *i* + 1 are frozen in place.
- If two or more A_i = 1 then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G([a_1, \ldots, a_k])$ or $G(\langle A_1, \ldots, A_{k-1} \rangle)$.

- An interesting case occurs when A_{k−1} = 1 and A_i > 1, for i = 1, 2, ..., k − 2: the right-frozen case.
- Free = neither side frozen.

$$\sigma_i: p_i := p_i - 1; p_{i+1} := p_{i+1} + 1;$$

- The "problem" of $A_i = 1$.
 - Implies that $a_i, a_{i+1} = 1$. (Since $A_i = a_i + a_{i+1} 1$)
 - I.e., cells i and i + 1 are frozen in place.
- If two or more A_i = 1 then underlying graph is disconnected; otherwise it is connected.
- The graph is denoted $G([a_1,\ldots,a_k])$ or $G(\langle A_1,\ldots,A_{k-1}\rangle)$.

- An interesting case occurs when A_{k−1} = 1 and A_i > 1, for i = 1, 2, ..., k − 2: the right-frozen case.
- Free = neither side frozen.

If k is even, then $G([a_1, \ldots, a_k])$ is bipartite.

Proof.

Define partite sets according to the parity of

$$\sum_{j \text{ odd}} p_j \ (= \sum_j j p_j \text{ mod } 2).$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

If k > 3 is odd, then $G([a_1, \ldots, a_k])$ is bipartite iff $A_1 = 1$ or $A_{k-1} = 1$.

Proof. Odd cycle: $\tau_1, \sigma_1, \ldots, \sigma_{k-2}, \tau_{k-1}^{-1}$:

Example G([2, 2, 1]) is not bipartite.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

If k > 3 is odd, then $G([a_1, \ldots, a_k])$ is bipartite iff $A_1 = 1$ or $A_{k-1} = 1$.

Proof.

Odd cycle: $\tau_1, \sigma_1, \dots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000,

Example G([2, 2, 1]) is not bipartite.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

If k > 3 is odd, then $G([a_1, \ldots, a_k])$ is bipartite iff $A_1 = 1$ or $A_{k-1} = 1$.

Proof.

Odd cycle: $\tau_1, \sigma_1, \dots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000, 1000,

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

If k > 3 is odd, then $G([a_1, \ldots, a_k])$ is bipartite iff $A_1 = 1$ or $A_{k-1} = 1$.

Proof.

Odd cycle: $\tau_1, \sigma_1, \dots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000, 1000, 0100,

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

If k > 3 is odd, then $G([a_1, \ldots, a_k])$ is bipartite iff $A_1 = 1$ or $A_{k-1} = 1$.

Proof.

Odd cycle: $\tau_1, \sigma_1, \dots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000, 1000, 0100, 0010,

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

If k > 3 is odd, then $G([a_1, \ldots, a_k])$ is bipartite iff $A_1 = 1$ or $A_{k-1} = 1$.

Proof.

Odd cycle: $\tau_1, \sigma_1, \dots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000, 1000, 0100, 0010, 0001,

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

If k > 3 is odd, then $G([a_1, \ldots, a_k])$ is bipartite iff $A_1 = 1$ or $A_{k-1} = 1$.

Proof.

Odd cycle: $\tau_1, \sigma_1, \ldots, \sigma_{k-2}, \tau_{k-1}^{-1}$: 0000, 0000. 1000, 0100, 0010, 0001,

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

If k > 2 is even, then $G(\mathbf{a})$ has no Hamilton path if A_{2i+1} is odd for all i, unless $a_2 = a_3 = \cdots = a_{k-1} = 1$.

Proof.

Define a sign-reversing involution... If all A_{2i+1} are odd, then parity difference is

$$d(\mathbf{A}) = \prod_{j \text{ even}} A_j.$$

Example $G(\langle 3, 2, 3, 2, 3 \rangle)$ has no H-path. $G(\langle 3, 1, 1, 1, 3 \rangle)$ is a 3 by 3 grid and has a H-path. Conjecture: There is a H-path if k even and some A_{2i+1} is even.
If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Proof.

Convert each edge of H into a path of BC vertices in H'. The structure of B, C is a B by C grid graph. Need to be careful about the τ moves in H.... Need to show the existence of particular types of H-cycles in grid graphs....

Theorem

If **A** has the form $(N_{>3})^{0|1}(O_{>3}N_{>1})^*(N)^{0|1}E$ or it's reverse, then there is a 1-move Gray code for **A**

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof.

Add pairs of columns on the left...

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 0 1

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 0 1 ? ? ? ? ? 0 0 0 0 0 0 0 0 0 1 ? ? ? ? ?

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 0 1 ? ? ? ? ? 0 0 0 0 0 0 0 0 0 1 ? ? ? 1 0

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 0 1 0 1 1 0 0 ? ? ? 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 ? ? ?

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 1 ? ? ? 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 ? ? ?

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 1 $0 \ 0 \ 1$ 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 ? ? ? 0 0 1 1 0 1 1 0

If $G(\langle A_1, A_2, ..., A_{k-1} \rangle)$ has a Hamilton path H and BC is even and BC $\neq 6$, then $G(\langle B, A_1, A_2, ..., A_{k-1}, C \rangle)$ has a Hamilton path H'.

Example

Converting G(2,2) into G(2,2,2,2). 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 $1 \quad 1$ 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1

If **A** has the form $(N_{>3})^{0|1}(O_{>3}N_{>1})^*(N)^{0|1}E$ or it's reverse, then there is a 1-move Gray code for **A**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Operations are τ_1 and $\sigma_1, \sigma_2, \ldots$

▶ Underlying poset $G(\langle A_1, A_2, \ldots, A_{k-1}, 1 \rangle)$ orders **p**-sequences: $(p_1, p_2, \ldots, p_{k-1}) \leq (q_1, q_2, \ldots, q_{k-1})$ iff

$$\sum_{i=j}^{k-1} p_i \le \sum_{i=j}^{k-1} q_i$$

- The operations are the cover relations.
- $G(\langle 2, 2, \dots, 2, 1 \rangle)$ is M(n) (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.
- ▶ Join irreducibles: $A'_1 A'_2 \cdots A'_i 0 \cdots 0 x A'_{j+1} \cdots A'_{k-1}$, where $0 \le x < A'_j := A_j 1$. There are $\sum_j j A'_j$ of them.

- Operations are τ_1 and $\sigma_1, \sigma_2, \ldots$
- ▶ Underlying poset $G(\langle A_1, A_2, \ldots, A_{k-1}, 1 \rangle)$ orders **p**-sequences: $(p_1, p_2, \ldots, p_{k-1}) \leq (q_1, q_2, \ldots, q_{k-1})$ iff

$$\sum_{i=j}^{k-1} p_i \leq \sum_{i=j}^{k-1} q_i$$

- The operations are the cover relations.
- $G(\langle 2, 2, \dots, 2, 1 \rangle)$ is M(n) (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.
- ▶ Join irreducibles: $A'_1 A'_2 \cdots A'_j 0 \cdots 0 \times A'_{j+1} \cdots A'_{k-1}$, where $0 \le x < A'_j := A_j 1$. There are $\sum_j j A'_j$ of them.

- Operations are τ_1 and $\sigma_1, \sigma_2, \ldots$
- ▶ Underlying poset $G(\langle A_1, A_2, \dots, A_{k-1}, 1 \rangle)$ orders **p**-sequences: $(p_1, p_2, \dots, p_{k-1}) \leq (q_1, q_2, \dots, q_{k-1})$ iff

$$\sum_{i=j}^{k-1} p_i \leq \sum_{i=j}^{k-1} q_i$$

- The operations are the cover relations.
- $G(\langle \underbrace{2, 2, \ldots, 2}_{n}, 1 \rangle)$ is M(n) (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.
- ▶ Join irreducibles: $A'_1 A'_2 \cdots A'_j 0 \cdots 0 x A'_{j+1} \cdots A'_{k-1}$, where $0 \le x < A'_j := A_j 1$. There are $\sum_j j A'_j$ of them.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Operations are τ_1 and $\sigma_1, \sigma_2, \ldots$
- ▶ Underlying poset $G(\langle A_1, A_2, \ldots, A_{k-1}, 1 \rangle)$ orders **p**-sequences: $(p_1, p_2, \ldots, p_{k-1}) \leq (q_1, q_2, \ldots, q_{k-1})$ iff

$$\sum_{i=j}^{k-1} p_i \leq \sum_{i=j}^{k-1} q_i$$

- The operations are the cover relations.
- $G(\langle \underbrace{2,2,\ldots,2}_{n},1\rangle)$ is M(n) (e.g., [Lindström][Stanley])

Is a distributive lattice in general.

▶ Join irreducibles: $A'_1A'_2 \cdots A'_i 0 \cdots 0 x A'_{j+1} \cdots A'_{k-1}$, where $0 \le x < A'_j := A_j - 1$. There are $\sum_j jA'_j$ of them.

- Operations are τ_1 and $\sigma_1, \sigma_2, \ldots$
- ▶ Underlying poset $G(\langle A_1, A_2, \ldots, A_{k-1}, 1 \rangle)$ orders **p**-sequences: $(p_1, p_2, \ldots, p_{k-1}) \leq (q_1, q_2, \ldots, q_{k-1})$ iff

$$\sum_{i=j}^{k-1} p_i \leq \sum_{i=j}^{k-1} q_i$$

- The operations are the cover relations.
- $G(\langle \underbrace{2,2,\ldots,2}_{n},1\rangle)$ is M(n) (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.
- ▶ Join irreducibles: $A'_1A'_2 \cdots A'_i 0 \cdots 0 x A'_{j+1} \cdots A'_{k-1}$, where $0 \le x < A'_j := A_j 1$. There are $\sum_j jA'_j$ of them.
- ► Is self-dual under the mapping $p_1 \cdots p_{k-1} \mapsto (A'_1 - p_1) \cdots (A'_{k-1} - p_{k-1}).$

- Operations are τ_1 and $\sigma_1, \sigma_2, \ldots$
- ▶ Underlying poset $G(\langle A_1, A_2, \ldots, A_{k-1}, 1 \rangle)$ orders **p**-sequences: $(p_1, p_2, \ldots, p_{k-1}) \leq (q_1, q_2, \ldots, q_{k-1})$ iff

$$\sum_{i=j}^{k-1} p_i \leq \sum_{i=j}^{k-1} q_i$$

- The operations are the cover relations.
- $G(\langle \underbrace{2,2,\ldots,2}_{n},1\rangle)$ is M(n) (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.
- ▶ Join irreducibles: $A'_1A'_2 \cdots A'_i 0 \cdots 0 x A'_{j+1} \cdots A'_{k-1}$, where $0 \le x < A'_j := A_j 1$. There are $\sum_j j A'_j$ of them.

- ロ ト - 4 回 ト - 4 □ - 4

- Operations are τ_1 and $\sigma_1, \sigma_2, \ldots$
- ▶ Underlying poset $G(\langle A_1, A_2, \dots, A_{k-1}, 1 \rangle)$ orders **p**-sequences: $(p_1, p_2, \dots, p_{k-1}) \leq (q_1, q_2, \dots, q_{k-1})$ iff

$$\sum_{i=j}^{k-1} p_i \leq \sum_{i=j}^{k-1} q_i$$

- The operations are the cover relations.
- $G(\langle \underbrace{2, 2, \ldots, 2}_{n}, 1 \rangle)$ is M(n) (e.g., [Lindström][Stanley])
- Is a distributive lattice in general.
- ▶ Join irreducibles: $A'_1A'_2 \cdots A'_i 0 \cdots 0 x A'_{j+1} \cdots A'_{k-1}$, where $0 \le x < A'_j := A_j 1$. There are $\sum_j jA'_j$ of them.
- ▶ Is self-dual under the mapping $p_1 \cdots p_{k-1} \mapsto (A'_1 - p_1) \cdots (A'_{k-1} - p_{k-1}).$

・ロト・(部・・モー・(中・・日・)

Further properties

The rank of a p-sequence is

$$r(\mathbf{p}) = \sum_{j=1}^{k-1} j p_j.$$

Rank generating function is

$$\prod_{j=1}^{k-1} \frac{1-z^{jA_j}}{1-z^j}$$

Since G is the cover graph of a distributive lattice, its prism is Hamiltonian ([Pruesse & R]). Thus G² is Hamiltonian. Not the same as moving two cells!

Further properties

The rank of a p-sequence is

$$r(\mathbf{p}) = \sum_{j=1}^{k-1} j p_j.$$

Rank generating function is

$$\prod_{j=1}^{k-1} \frac{1-z^{jA_j}}{1-z^j}$$

Since G is the cover graph of a distributive lattice, its prism is Hamiltonian ([Pruesse & R]). Thus G² is Hamiltonian. Not the same as moving two cells!

Further properties

The rank of a p-sequence is

$$r(\mathbf{p}) = \sum_{j=1}^{k-1} j p_j.$$

Rank generating function is

$$\prod_{j=1}^{k-1} \frac{1-z^{jA_j}}{1-z^j}$$

Since G is the cover graph of a distributive lattice, its prism is Hamiltonian ([Pruesse & R]). Thus G² is Hamiltonian. Not the same as moving two cells!

The graph $G(\langle 2, ..., 2, 1 \rangle)$ has a Hamilton path if and only if $\binom{n+1}{2}$ is even and $n \neq 5$.

Proof.

This follows from the results of Savage, Shields, and West.

Theorem

For all n > 0 the graph $G(\langle 2, 2, \dots, 2 \rangle)$ is Hamiltonian.

Proof.

Induction on *n* with a suitably strengthened hypothesis...

The graph $G(\langle 2, ..., 2, 1 \rangle)$ has a Hamilton path if and only if $\binom{n+1}{2}$ is even and $n \neq 5$.

Proof.

This follows from the results of Savage, Shields, and West.

Theorem

For all n > 0 the graph $G(\langle 2, 2, \dots, 2 \rangle)$ is Hamiltonian.

Proof.

Induction on *n* with a suitably strengthened hypothesis...

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The graph $G(\langle 2, ..., 2, 1 \rangle)$ has a Hamilton path if and only if $\binom{n+1}{2}$ is even and $n \neq 5$.

Proof.

This follows from the results of Savage, Shields, and West.

Theorem

For all n > 0 the graph $G(\langle \underbrace{2, 2, \ldots, 2}_{n} \rangle)$ is Hamiltonian.

Proof.

Induction on *n* with a suitably strengthened hypothesis...

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The graph $G(\langle 2, ..., 2, 1 \rangle)$ has a Hamilton path if and only if $\binom{n+1}{2}$ is even and $n \neq 5$.

Proof.

This follows from the results of Savage, Shields, and West.

Theorem

For all n > 0 the graph $G(\langle \underbrace{2, 2, \dots, 2}_{n} \rangle)$ is Hamiltonian.

Proof.

Induction on *n* with a suitably strengthened hypothesis...

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

There is no Hamilton path in $G(\langle A_1, A_2, ..., A_k, 1 \rangle)$ if (1) has the same parity as $A_1A_2 \cdots A_k$.

$$\sum_{j=1}^{k} j(A_j - 1) = \sum_{j=1}^{k} jA'_j.$$
 (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

Note that $00\cdots 00$ and $A'_1A'_2\cdots A'_k0$ are pendant vertices in a $A_1A_2\cdots A_k$ vertex bipartite graph G and that their distance from each other is precisely (1).

There is no Hamilton path in $G(\langle A_1, A_2, ..., A_k, 1 \rangle)$ if (1) has the same parity as $A_1A_2 \cdots A_k$.

$$\sum_{j=1}^{k} j(A_j - 1) = \sum_{j=1}^{k} jA'_j.$$
 (1)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof.

Note that $00\cdots 00$ and $A'_1A'_2\cdots A'_k0$ are pendant vertices in a $A_1A_2\cdots A_k$ vertex bipartite graph G and that their distance from each other is precisely (1).

► The Poset G((5,5,1)). Join irreducibles in yellow.

▶ The subposet of join-irreducibles.

(日) (圖) (E) (E) (E)

Both are self-dual.

Note: $G(\langle 5, 5, 1 \rangle)$ not rank-unimodal.

- ► The Poset G((5,5,1)). Join irreducibles in yellow.
- ► The subposet of join-irreducibles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Both are self-dual.

Note: $G(\langle 5, 5, 1 \rangle)$ not rank-unimodal.

- ► The Poset G((5,5,1)). Join irreducibles in yellow.
- ► The subposet of join-irreducibles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Both are self-dual.
- Note: G(⟨5, 5, 1⟩) not rank-unimodal.

- ► The Poset G((5,5,1)). Join irreducibles in yellow.
- ► The subposet of join-irreducibles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Both are self-dual.
- ► Note: G((5,5,1)) not rank-unimodal.

Posets - Join Irreducibles

Expanding

- $\blacktriangleright G(\langle 3,3,3,1\rangle).$
- Ends with 2 or not.
- G((3, 3, 3, 3, 1)).

(ロ)、(型)、(E)、(E)、 E、 の(の)

Posets - Join Irreducibles

Expanding

- $\blacktriangleright G(\langle 3,3,3,1\rangle).$
- Ends with 2 or not.
- G((3,3,3,3,1)).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Posets - Join Irreducibles

Expanding

- $G(\langle 3, 3, 3, 1 \rangle).$
- Ends with 2 or not.

•
$$G((3, 3, 3, 3, 1)).$$

・ロト・日本・モート モー うへで
- Let c(S) be the smallest value of k for which P(Sⁱ) is rank unimodal for all i ≥ k.
- Continuing, P((2,3)⁵) is not unimodal, but P((2,3)^k) appears to be unimodal for k ≥ 6 (checked up to k = 200).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

- Let c(S) be the smallest value of k for which P(Sⁱ) is rank unimodal for all i ≥ k. Well defined?
- **Example** What is c(2,3)? The rank gf is

which is not unimodal.

Continuing, P((2,3)⁵) is not unimodal, but P((2,3)^k) appears to be unimodal for k ≥ 6 (checked up to k = 200).

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

- Let c(S) be the smallest value of k for which P(Sⁱ) is rank unimodal for all i ≥ k. Well defined?
- **Example** What is c(2,3)? The rank gf is $(1+z)(1+z^2+z^4) = 1+z+z^2+z^3+z^4+z^5.$ Ranks of 2, 3, 2:

which is not unimodal.

Continuing, P((2,3)⁵) is not unimodal, but P((2,3)^k) appears to be unimodal for k ≥ 6 (checked up to k = 200).

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

- Let c(S) be the smallest value of k for which P(Sⁱ) is rank unimodal for all i ≥ k. Well defined?
- **Example** What is c(2,3)? The rank gf is $(1+z)(1+z^2+z^4) = 1+z+z^2+z^3+z^4+z^5$.
- Ranks of 2, 3, 2:

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

which is not unimodal.

Continuing, P((2,3)⁵) is not unimodal, but P((2,3)^k) appears to be unimodal for k ≥ 6 (checked up to k = 200).

- Let c(S) be the smallest value of k for which P(Sⁱ) is rank unimodal for all i ≥ k. Well defined?
- **Example** What is c(2,3)? The rank gf is $(1+z)(1+z^2+z^4) = 1+z+z^2+z^3+z^4+z^5$.
- Ranks of 2, 3, 2, 3 are

which is not unimodal.

Continuing, P((2,3)⁵) is not unimodal, but P((2,3)^k) appears to be unimodal for k ≥ 6 (checked up to k = 200). c(n,m)

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2	1	6	1	7	1	5	1	7	1	5	1	5	1	5	1	5
3	7	6	8	8	8	а	8	а	9	а	b	а	b	а	С	С
4	4	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	6	1	3	4	6	5	6	5	6	6	7	6	7	6	7	6
6	1	1	1	3	1	1	1	3	1	3	1	3	1	3	1	3
7	3	1	1	2	4	4	4	4	4	4	5	5	5	6	5	6
8	3	1	1	3	1	3	1	1	1	3	1	1	1	1	1	1
9	4	1	1	1	3	3	3	3	4	4	4	4	4	4	4	4
10	3	1	1	1	1	1	1	3	1	1	1	3	1	1	1	3
11	3	1	3	1	1	2	4	4	4	4	4	4	4	4	4	4
12	1	1	1	1	1	3	1	3	1	3	1	3	1	3	1	1
13	4	1	3	1	3	1	2	2	3	3	3	3	3	3	4	4
14	4	1	3	3	1	3	1	3	1	3	1	3	1	1	1	3
15	1	4	4	4	1	4	4	2	4	4	4	4	4	4	4	4
16	4	1	3	3	1	1	1	3	1	3	1	3	1	3	1	3
17	4	1	3	3	1	1	3	1	3	2	3	3	3	3	3	3
18	4	1	1	1	1	1	1	3	1	3	1	3	1	3	1	3
19	4	1	4	3	1	1	1	1	1	2	3	2	3	3	3	3
20	3	1	3	3	1	3	1	1	1	3	1	3	1	3	_ 1 _∽	3 م

Only the 2,2 entry is proven.

- Most entries are checked out to k = 30. The numbers are huge; i.e., the underlying poset has (nm)³⁰ elements.
- Some conjectures:
 - For odd $(n_1, \lim_{n \to \infty} c(n_1, n) = c_m$. In particular, $c_2 = 15$ (the value 16 first occurs for k = 90). For even (n, n) with an odd factor, for large enough n, if n even then $c(n_1, n) = 1$ and if n is odd then $c(n_1, n) = 3$. If $m = 2^n$ then $c(n_1, n) = 1$ for $n \ge 2^{n+1}$. For $m \ge 2^n$, $c(n_1, 3) = 1$ if $5 \mid m$ otherwise, $c(n_1, 3) = 4$. For $m \ge 15$, $c(n_1, 3) = 1$ if $5 \mid m$ otherwise, $c(n_1, 3) = 4$.

▲ロト ▲母 ト ▲目 ト ▲目 ト 一旦 - のへで

Only the 2,2 entry is proven.

- Most entries are checked out to k = 30. The numbers are huge; i.e., the underlying poset has (nm)³⁰ elements.
- Some conjectures:
 - For odd m, lim_{n→∞} c(m, n) = c_m. In particular, c₃ = 16 (the value 16 first occurs for k = 90).
 - For even *m* with an odd factor, for large enough *n*, if *n* even then c(m, n) = 1 and if *n* is odd then c(m, n) = 3.

▲ロト ▲周ト ▲ヨト ▲ヨト 三国 - のなの

- ▶ If $m = 2^d$ then c(m, n) = 1 for $n \ge 2^{d+1}$
- ▶ For $m \ge 25$, c(m, 3) = 1 if $5 \mid m$; otherwise, c(m, 3) = 4.
- For $m \ge 15$, c(m, 3) = 1, 3, 4 if
 - $m = (\{0\}, \{5, 10\}, \text{other}) \mod 15$.

Only the 2,2 entry is proven.

- Most entries are checked out to k = 30. The numbers are huge; i.e., the underlying poset has (nm)³⁰ elements.
- Some conjectures:
 - For odd m, lim_{n→∞} c(m, n) = c_m. In particular, c₃ = 16 (the value 16 first occurs for k = 90).
 - For even *m* with an odd factor, for large enough *n*, if *n* even then c(m, n) = 1 and if *n* is odd then c(m, n) = 3.

- If $m = 2^d$ then c(m, n) = 1 for $n \ge 2^{d+1}$
- For $m \ge 25$, c(m, 3) = 1 if $5 \mid m$; otherwise, c(m, 3) = 4.
- For m ≥ 15, c(m, 3) = 1, 3, 4 if m = ({0}, {5, 10}, other) mod 15.

- Only the 2,2 entry is proven.
- Most entries are checked out to k = 30. The numbers are huge; i.e., the underlying poset has (nm)³⁰ elements.
- Some conjectures:
 - For odd m, lim_{n→∞} c(m, n) = c_m. In particular, c₃ = 16 (the value 16 first occurs for k = 90).
 - For even *m* with an odd factor, for large enough *n*, if *n* even then c(m, n) = 1 and if *n* is odd then c(m, n) = 3.

- If $m = 2^d$ then c(m, n) = 1 for $n \ge 2^{d+1}$
- For $m \ge 25$, c(m,3) = 1 if $5 \mid m$; otherwise, c(m,3) = 4.
- For $m \ge 15$, c(m, 3) = 1, 3, 4 if
 - $m = (\{0\}, \{5, 10\},$ other $) \mod 15$.

Only the 2,2 entry is proven.

- Most entries are checked out to k = 30. The numbers are huge; i.e., the underlying poset has (nm)³⁰ elements.
- Some conjectures:
 - For odd m, lim_{n→∞} c(m, n) = c_m. In particular, c₃ = 16 (the value 16 first occurs for k = 90).
 - For even m with an odd factor, for large enough n, if n even then c(m, n) = 1 and if n is odd then c(m, n) = 3.

- If $m = 2^d$ then c(m, n) = 1 for $n \ge 2^{d+1}$
- For $m \ge 25$, c(m, 3) = 1 if $5 \mid m$; otherwise, c(m, 3) = 4.
- For m ≥ 15, c(m,3) = 1,3,4 if m = ({0}, {5,10}, other) mod 15.

Only the 2,2 entry is proven.

- Most entries are checked out to k = 30. The numbers are huge; i.e., the underlying poset has (nm)³⁰ elements.
- Some conjectures:
 - For odd m, lim_{n→∞} c(m, n) = c_m. In particular, c₃ = 16 (the value 16 first occurs for k = 90).
 - For even m with an odd factor, for large enough n, if n even then c(m, n) = 1 and if n is odd then c(m, n) = 3.

- If $m = 2^d$ then c(m, n) = 1 for $n \ge 2^{d+1}$.
- For $m \ge 25$, c(m, 3) = 1 if 5 | m; otherwise, c(m, 3) = 4.
- For m≥ 15, c(m,3) = 1,3,4 if m = ({0}, {5,10}, other) mod 15.

Only the 2,2 entry is proven.

- Most entries are checked out to k = 30. The numbers are huge; i.e., the underlying poset has (nm)³⁰ elements.
- Some conjectures:
 - For odd m, lim_{n→∞} c(m, n) = c_m. In particular, c₃ = 16 (the value 16 first occurs for k = 90).
 - For even m with an odd factor, for large enough n, if n even then c(m, n) = 1 and if n is odd then c(m, n) = 3.

- If $m = 2^d$ then c(m, n) = 1 for $n \ge 2^{d+1}$
- For $m \ge 25$, c(m,3) = 1 if $5 \mid m$; otherwise, c(m,3) = 4.
- For m ≥ 15, c(m,3) = 1, 3, 4 if m = ({0}, {5, 10}, other) mod 15.

Only the 2,2 entry is proven.

- Most entries are checked out to k = 30. The numbers are huge; i.e., the underlying poset has (nm)³⁰ elements.
- Some conjectures:
 - For odd m, lim_{n→∞} c(m, n) = c_m. In particular, c₃ = 16 (the value 16 first occurs for k = 90).
 - For even m with an odd factor, for large enough n, if n even then c(m, n) = 1 and if n is odd then c(m, n) = 3.

(日) (同) (三) (三) (三) (○) (○)

- If $m = 2^d$ then c(m, n) = 1 for $n \ge 2^{d+1}$
- For $m \ge 25$, c(m,3) = 1 if 5 | m; otherwise, c(m,3) = 4.
- For m≥ 15, c(m,3) = 1,3,4 if m = ({0}, {5,10}, other) mod 15.

Is the Gray code necessary condition sufficient?

- Remove the $BC \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?
- Hexominoes?
- Prove some of the unimodality results. Perhaps the numbers are asymptotically normal?

- Is the Gray code necessary condition sufficient?
- Remove the $BC \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?
- Hexominoes?
- Prove some of the unimodality results. Perhaps the numbers are asymptotically normal?

- Is the Gray code necessary condition sufficient?
- Remove the $BC \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?
- Hexominoes?
- Prove some of the unimodality results. Perhaps the numbers are asymptotically normal?

- Is the Gray code necessary condition sufficient?
- Remove the $BC \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?
- Hexominoes?
- Prove some of the unimodality results. Perhaps the numbers are asymptotically normal?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Is the Gray code necessary condition sufficient?
- Remove the $BC \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?
- Hexominoes?
- Prove some of the unimodality results. Perhaps the numbers are asymptotically normal?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Is the Gray code necessary condition sufficient?
- Remove the $BC \neq 6$ from a previous theorem.
- Gray codes for general column-convex polyominoes?
- Gray codes for convex polyominoes?
- Hexominoes?
- Prove some of the unimodality results. Perhaps the numbers are asymptotically normal?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Thanks for still being here!

And please let me know if you have seen that poset before...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

And on to the Venn diagrams.

- ► Made from simple closed curves C₁, C₂,..., C_n.
- Infinite intersection not allowed (usually, but not here!).
- Let X_i denote the interior or the exterior of the curve C_i and consider X₁ ∩ X₂ ∩ · · · ∩ X_n.
- *Euler diagram* if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.
- Independent family if no intersection is empty.

- ► Made from simple closed curves C₁, C₂,..., C_n.
- Infinite intersection not allowed (usually, but not here!).
- Let X_i denote the interior or the exterior of the curve C_i and consider X₁ ∩ X₂ ∩ · · · ∩ X_n.
- *Euler diagram* if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.
- Independent family if no intersection is empty.

- ► Made from simple closed curves C₁, C₂,..., C_n.
- Infinite intersection not allowed (usually, but not here!).
- Let X_i denote the interior or the exterior of the curve C_i and consider X₁ ∩ X₂ ∩ · · · ∩ X_n.
- *Euler diagram* if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.
- Independent family if no intersection is empty.

- ► Made from simple closed curves C₁, C₂,..., C_n.
- Infinite intersection not allowed (usually, but not here!).
- Let X_i denote the interior or the exterior of the curve C_i and consider X₁ ∩ X₂ ∩ · · · ∩ X_n.
- *Euler diagram* if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.
- Independent family if no intersection is empty.

- ► Made from simple closed curves C₁, C₂,..., C_n.
- Infinite intersection not allowed (usually, but not here!).
- Let X_i denote the interior or the exterior of the curve C_i and consider X₁ ∩ X₂ ∩ · · · ∩ X_n.
- *Euler diagram* if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.
- Independent family if no intersection is empty.

- ► Made from simple closed curves C₁, C₂,..., C_n.
- Infinite intersection not allowed (usually, but not here!).
- Let X_i denote the interior or the exterior of the curve C_i and consider X₁ ∩ X₂ ∩ · · · ∩ X_n.
- *Euler diagram* if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.
- Independent family if no intersection is empty.

"polyVenn" diagrams

- Minimum area Venn diagrams.
- Curves are the boundaries of a polyomino.
- ► Each interior/exterior intersection is a square.
 - Total bounded area is $2^n 1$.
 - Each polyomino is a 2^{n-1} -omino.
- Introduced by Mark Thompson on a recreational math web page.

PolyVenn diagram with congruent curves

С

D

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

				D	C D		
Е	В _Е	A E	A C E ^D	ED	C E		
	B C	A C E	A C BE	C ED	B ED		
	в _Е D	$\begin{smallmatrix} A & C \\ B & E \\ \end{smallmatrix} D$	A B D	B D	A C B		
	вD	$\stackrel{A}{^{B}}{_{E}\!}^{D}$	A E ^D	A C B D	A C D	A D	
	в _Е	A B _E		A C	С	А	
	в	A B					

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Top figure colored by cardinality of the underlying set. Red = 1, yellow = 2, etc.

・ロト ・ 一下・ ・ 日 ・ ・ 日

F

G

In a minimum bounding box

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

A naïve way to construct a polyVenn diagram for any *n*.

_		В	С	D	Е	AB	AC	AD	AE	BC	BD	BE	CD	CE	DE	
	А	ABCDE														ABC
		BCDE	ACDE	ABDE	ABCE	ABCD	CDE	BDE	BCE	BCD	ADE	ACE	ACD	ABE	ABD	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

A 5-Venn diagram with curve A highlighted.

• Area in general is $\frac{3}{2}2^n$.

Symmetric chain decomposition of the Boolean lattice

.

 A partition of all 2ⁿ subsets into chains of the form

$$x_1 \subset x_2 \subset \cdots \subset x_t$$

where $|x_i| = n - |x_{t-i+1}|$ and $|x_i| = |x_{i-1} - 1|$.

- Various algorithms known:
 - De Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

► Aigner.

(b)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► Are there congruent *n*-polyVenns for *n* ≥ 6? We saw earlier that they exist for *n* = 2, 3, 4, 5.
- Is there a 5-polyVenn whose curves are convex polyominoes?
- ► Are there minimum bounding box *n*-polyVenns for *n* ≥ 6? We saw earlier that they exist for *n* = 2, 3, 4, 5.
- ► Are there minimum area *n*-polyVenns for *n* ≥ 8? We saw earlier examples for *n* = 6,7.
- One problem for which we have not attempted solutions is the construction of *n*-polyVenns that fill an *w* × *h* box, where *wh* = 2ⁿ − 1. Of course, a necessary condition is that 2ⁿ − 1 not be a Mersenne prime. For example, is there are 4-polyVenn that fits in a 3 × 5 rectangle or a 6-polyVenn that fits in a 7 × 9 or 3 × 27 rectangle?

Thanks for coming!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>