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Definition - polyomino

I Made from unit squares
joined along edges.

I No holes allowed.

I Must be connected.

I Translations allowed but
not flips or rotations.

(a)

(b)

(c)

(d)

(e)
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Definition - convexity conditions

I Column convex if intersections with vertical lines are
connected.

I Satisfy the recurrence: an = 5an−1 − 7an−2 + 4an−3

([Polya],nice proof:[Hickerson]).

I Convex if both row and column convex.

I Gray codes: column convex only.

I Further restriction: number of cells in each column is fixed.

(a) column−convex
not row−convex

(b) row−convex
not column−convex

(c) convex
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I Column counts: [a1, a2, . . . , ak ]; below is the set [1, 2, 2, 1].

I Shift limits: 〈A1,A2, . . . ,Ak−1〉, where Ai = ai + ai+1 − 1;
thus [1, 2, 2, 1] → 〈2, 3, 2〉.

I Not unique [1, 3, 1, 3] → 〈3, 3, 3〉 and [2, 2, 2, 2] → 〈3, 3, 3〉.
I No polyomino for 〈1, 2, 1〉.
I Encode individual polyominoes as

(p1, p2, . . . , pk−1) ∈ A1 × A2 × · · · × Ak−1

(1,2,1)(1,2,0)(1,1,1)(1,1,0)(1,0,1)(1,0,0)

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (0,2,0) (0,2,1)
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I The change pi := pi ± 1 corresponds to a small earthquake.
fault line earthquake begins two unit shift

(1,1,3,2,3,1) (1,1,3,2,3,1) (1,1,5,2,3,1)

I Can generate these using Gray codes for mixed-radix numbers
(H-path in k − 1 dimensional grid graph).

I A more interesting move is a single cell move within a column.

I Then pi := pi ± 1 and pi+1 := pi+1 ∓ 1 (except at
extremities).
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I Define two operations (and their inverses) on A-sequences:
τi : pi := pi + 1 (only at the endpoints)
σi : pi := pi − 1; pi+1 := pi+1 + 1;

I The “problem” of Ai = 1.
I Implies that ai , ai+1 = 1. (Since Ai = ai + ai+1 − 1)
I I.e., cells i and i + 1 are frozen in place.

I If two or more Ai = 1 then underlying graph is disconnected;
otherwise it is connected.

I The graph is denoted G ([a1, . . . , ak ]) or G (〈A1, . . . ,Ak−1〉).
I An interesting case occurs when Ak−1 = 1 and Ai > 1,

for i = 1, 2, . . . , k − 2: the right-frozen case.

I Free = neither side frozen.
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1,1,0

2,0,0 0,1,0

2,1,0

1,0,0

0,0,0

Lemma
If k is even, then G ([a1, . . . , ak ]) is
bipartite.

Proof.
Define partite sets according to the
parity of∑

j odd

pj (=
∑

j

jpj mod 2).

Example

G ([2, 2, 1, 1]) is bipartite.



2,1

0,0

1,1

2.0 0,1

1,0

Lemma
If k > 3 is odd, then G ([a1, . . . , ak ])
is bipartite iff A1 = 1 or Ak−1 = 1.

Proof.
Odd cycle: τ1, σ1, . . . , σk−2, τ

−1
k−1:

Example

G ([2, 2, 1]) is not bipartite.
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Lemma
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is bipartite iff A1 = 1 or Ak−1 = 1.

Proof.
Odd cycle: τ1, σ1, . . . , σk−2, τ

−1
k−1:

0000,
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G ([2, 2, 1]) is not bipartite.
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2.0 0,1

1,0

Lemma
If k > 3 is odd, then G ([a1, . . . , ak ])
is bipartite iff A1 = 1 or Ak−1 = 1.

Proof.
Odd cycle: τ1, σ1, . . . , σk−2, τ

−1
k−1:
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1000,

Example

G ([2, 2, 1]) is not bipartite.
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Lemma
If k > 3 is odd, then G ([a1, . . . , ak ])
is bipartite iff A1 = 1 or Ak−1 = 1.

Proof.
Odd cycle: τ1, σ1, . . . , σk−2, τ

−1
k−1:

0000,
1000,
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Example

G ([2, 2, 1]) is not bipartite.
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Lemma
If k > 3 is odd, then G ([a1, . . . , ak ])
is bipartite iff A1 = 1 or Ak−1 = 1.

Proof.
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Example

G ([2, 2, 1]) is not bipartite.



2,1

0,0

1,1

2.0 0,1

1,0

Lemma
If k > 3 is odd, then G ([a1, . . . , ak ])
is bipartite iff A1 = 1 or Ak−1 = 1.

Proof.
Odd cycle: τ1, σ1, . . . , σk−2, τ

−1
k−1:

0000,
1000,
0100,
0010,
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Example

G ([2, 2, 1]) is not bipartite.



2,1

0,0

1,1

2.0 0,1

1,0

Lemma
If k > 3 is odd, then G ([a1, . . . , ak ])
is bipartite iff A1 = 1 or Ak−1 = 1.

Proof.
Odd cycle: τ1, σ1, . . . , σk−2, τ

−1
k−1:

0000, 0000.
1000,
0100,
0010,
0001,

Example

G ([2, 2, 1]) is not bipartite.



Lemma
If k > 2 is even, then G (a) has no Hamilton path if A2i+1 is odd
for all i , unless a2 = a3 = · · · = ak−1 = 1.

Proof.
Define a sign-reversing involution... If all A2i+1 are odd, then
parity difference is

d(A) =
∏

j even

Aj .

Example

G (〈3, 2, 3, 2, 3〉) has no H-path.
G (〈3, 1, 1, 1, 3〉) is a 3 by 3 grid and has a H-path.
Conjecture: There is a H-path if k even and some A2i+1 is even.



Theorem
If G (〈A1,A2, . . . ,Ak−1〉) has a Hamilton path H and BC is even
and BC 6= 6, then G (〈B,A1,A2, . . . ,Ak−1,C 〉) has a Hamilton
path H ′.

Proof.
Convert each edge of H into a path of BC vertices in H ′. The
structure of B,C is a B by C grid graph. Need to be careful about
the τ moves in H.... Need to show the existence of particular types
of H-cycles in grid graphs....

Theorem
If A has the form (N>3)

0|1(O>3N>1)
∗(N)0|1E or it’s reverse, then

there is a 1-move Gray code for A

Proof.
Add pairs of columns on the left...



Theorem
If G (〈A1,A2, . . . ,Ak−1〉) has a Hamilton path H and BC is even
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path H ′.

Example

Converting G (2, 2) into G (2, 2, 2, 2).
0 0 1 1
0 1 0 1
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If A has the form (N>3)
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Right-frozen case – a poset

I Operations are τ1 and σ1, σ2, . . ..

I Underlying poset G (〈A1,A2, . . . ,Ak−1, 1〉) orders p-sequences:
(p1, p2, . . . , pk−1) ≤ (q1, q2, . . . , qk−1) iff

k−1∑
i=j

pi ≤
k−1∑
i=j

qi

I The operations are the cover relations.

I G (〈2, 2, . . . , 2︸ ︷︷ ︸
n

, 1〉) is M(n) (e.g., [Lindström][Stanley])

I Is a distributive lattice in general.

I Join irreducibles: A′
1A

′
2 · · ·A′

i0 · · · 0xA′
j+1 · · ·A′

k−1, where
0 ≤ x < A′

j := Aj − 1. There are
∑

j jA′
j of them.

I Is self-dual under the mapping
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Further properties

I The rank of a p-sequence is

r(p) =
k−1∑
j=1

jpj .

I Rank generating function is

k−1∏
j=1

1− z jAj

1− z j

I Since G is the cover graph of a distributive lattice, its prism is
Hamiltonian ([Pruesse & R]). Thus G 2 is Hamiltonian. Not
the same as moving two cells!
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Lemma
The graph G (〈2, . . . , 2, 1〉) has a Hamilton path if and only if(n+1

2

)
is even and n 6= 5.

Proof.
This follows from the results of Savage, Shields, and West.

Theorem
For all n > 0 the graph G (〈2, 2, . . . , 2︸ ︷︷ ︸

n

〉) is Hamiltonian.

Proof.
Induction on n with a suitably strengthened hypothesis...
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Lemma
There is no Hamilton path in G (〈A1,A2, . . . ,Ak , 1〉) if (1) has the
same parity as A1A2 · · ·Ak .

k∑
j=1

j(Aj − 1) =
k∑

j=1

jA′
j . (1)

Proof.
Note that 00 · · · 00 and A′

1A
′
2 · · ·A′

k0 are pendant vertices in a
A1A2 · · ·Ak vertex bipartite graph G and that their distance from
each other is precisely (1).
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More on unimodality

I Let c(S) be the smallest value of k for which P(S i ) is rank
unimodal for all i ≥ k.

I Example What is c(2, 3)? The rank gf is
(1 + z)(1 + z2 + z4) = 1 + z + z2 + z3 + z4 + z5.

I Ranks of 2, 3, 2:
1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 2 2 2 1 1 1

I Ranks of 2, 3, 2, 3 are
1 1 1 2 2 2 1 1 1

1 1 1 2 2 2 1 1 1
1 1 1 2 2 2 1 1 1

1 1 1 2 3 3 2 3 4 3 2 3 3 2 1 1 1
which is not unimodal.

I Continuing, P((2, 3)5) is not unimodal, but P((2, 3)k) appears
to be unimodal for k ≥ 6 (checked up to k = 200).
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c(n, m)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 6 1 7 1 5 1 7 1 5 1 5 1 5 1 5 1 5 1
3 7 6 8 8 8 a 8 a 9 a b a b a c c c c c
4 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 6 1 3 4 6 5 6 5 6 6 7 6 7 6 7 6 7 7 7
6 1 1 1 3 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1
7 3 1 1 2 4 4 4 4 4 4 5 5 5 6 5 6 5 6 5
8 3 1 1 3 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1
9 4 1 1 1 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5
10 3 1 1 1 1 1 1 3 1 1 1 3 1 1 1 3 1 3 1
11 3 1 3 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4
12 1 1 1 1 1 3 1 3 1 3 1 3 1 3 1 1 1 3 1
13 4 1 3 1 3 1 2 2 3 3 3 3 3 3 4 4 4 4 4
14 4 1 3 3 1 3 1 3 1 3 1 3 1 1 1 3 1 1 1
15 1 4 4 4 1 4 4 2 4 4 4 4 4 4 4 4 4 4 4
16 4 1 3 3 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1
17 4 1 3 3 1 1 3 1 3 2 3 3 3 3 3 3 3 3 3
18 4 1 1 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1
19 4 1 4 3 1 1 1 1 1 2 3 2 3 3 3 3 4 4 4
20 3 1 3 3 1 3 1 1 1 3 1 3 1 3 1 3 1 3 1



Remarks about c(m, n)

I Only the 2,2 entry is proven.

I Most entries are checked out to k = 30. The numbers are
huge; i.e., the underlying poset has (nm)30 elements.

I Some conjectures:
I For odd m, limn→∞ c(m, n) = cm. In particular, c3 = 16 (the

value 16 first occurs for k = 90).
I For even m with an odd factor, for large enough n, if n even

then c(m, n) = 1 and if n is odd then c(m, n) = 3.
I If m = 2d then c(m, n) = 1 for n ≥ 2d+1.
I For m ≥ 25, c(m, 3) = 1 if 5 | m; otherwise, c(m, 3) = 4.
I For m ≥ 15, c(m, 3) = 1, 3, 4 if

m = ({0}, {5, 10}, other) mod 15.
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Open Problems

I Is the Gray code necessary condition sufficient?

I Remove the BC 6= 6 from a previous theorem.

I Gray codes for general column-convex polyominoes?

I Gray codes for convex polyominoes?

I Hexominoes?

I Prove some of the unimodality results. Perhaps the numbers
are asymptotically normal?
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Thanks for still being here!

And please let me know if you have seen that poset before...

And on to the Venn diagrams.



Definition - Venn diagram

I Made from simple closed
curves C1,C2, . . . ,Cn.

I Infinite intersection not
allowed (usually, but not
here!).

I Let Xi denote the interior
or the exterior of the curve
Ci and consider
X1 ∩ X2 ∩ · · · ∩ Xn.

I Euler diagram if each such
intersection is connected.

I Venn diagram if Euler and
no intersection is empty.

I Independent family if no
intersection is empty.
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“polyVenn” diagrams

I Minimum area Venn diagrams.

I Curves are the boundaries of a polyomino.
I Each interior/exterior intersection is a square.

I Total bounded area is 2n − 1.
I Each polyomino is a 2n−1-omino.

I Introduced by Mark Thompson on a recreational math web
page.



PolyVenn diagram with congruent curves
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Top figure colored by
cardinality of the underlying
set. Red = 1, yellow = 2, etc.
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In a minimum bounding box
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A näıve way to construct a polyVenn diagram for any n.

DECECDBEBDBCAEADACABEDCB

ABC

BCDE ACDE ABDE ABCE ABCD CDE BDE BCE BCD ADE ACE ACD ABE ABD

A ABCDE

I A 5-Venn diagram with curve A highlighted.

I Area in general is 3
22n.



Symmetric chain decomposition of the Boolean lattice

.

ABC

BCACAB

CA

(a)

AD

ADACBCAB

CDBDABD

D
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C

BCD

B

ABC

A

$\emptyset$

ABCD

(b)
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ABCD

BCDACDABD

CD

D

AD

ABD

ABCD

A B

BCAB

ABC BCD

ACD

(c)

BD CD

C

AC

I A partition of all 2n

subsets into chains of the
form

x1 ⊂ x2 ⊂ · · · ⊂ xt

where |xi | = n − |xt−i+1|
and |xi | = |xi−1 − 1|.

I Various algorithms known:

I De Bruijn, van
Ebbenhorst
Tengbergen, and
Kruyswijk.

I Aigner.



.
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I Another 5-Venn diagram with
curve A highlighted.

I Based on symmetric chain
decomposition.

I Area is 2n +
( n
n/2

)
.



I Are there congruent n-polyVenns for n ≥ 6? We saw earlier
that they exist for n = 2, 3, 4, 5.

I Is there a 5-polyVenn whose curves are convex polyominoes?

I Are there minimum bounding box n-polyVenns for n ≥ 6? We
saw earlier that they exist for n = 2, 3, 4, 5.

I Are there minimum area n-polyVenns for n ≥ 8? We saw
earlier examples for n = 6, 7.

I One problem for which we have not attempted solutions is the
construction of n-polyVenns that fill an w × h box, where
wh = 2n − 1. Of course, a necessary condition is that 2n − 1
not be a Mersenne prime. For example, is there are
4-polyVenn that fits in a 3× 5 rectangle or a 6-polyVenn that
fits in a 7× 9 or 3× 27 rectangle?



Thanks for coming!
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