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Abstract

For any given k, the sequence of k-ary Catalan numbers, Ct,k = 1
kt+1

(
kt
t

)
,

enumerates a number of combinatorial objects, including k-ary Dyck words of
length n = kt and k-ary trees with t internal nodes. We show that these
objects can be efficiently ordered using the same variation of lexicographic order
known as cool-lex order. In particular, we provide loopless algorithms that
generate each successive object in O(1) time. The algorithms are also efficient
in terms of memory, with the k-ary Dyck word algorithm using O(1) additional
index variables, and the k-ary tree algorithm using O(t) additional pointers and
index variables. We also show how to efficiently rank and unrank k-ary Dyck
words in cool-lex order using O(kt) arithmetic operations, subject to an initial
precomputation. Our results are based on the cool-lex successor rule for sets of
binary strings that are bubble languages. However, we must complement and
reverse 1/k-ary Dyck words to obtain the stated efficiency.
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1. Background

An important problem in discrete mathematics and theoretical computer
science is the creation of efficient orders for combinatorial objects. The research
area that studies this problem is combinatorial generation, and it is overviewed
by Knuth in the most recent volume of The Art of Computer Programming
[12]. In this article we will show that cool-lex order is an efficient order for
k-ary Catalan objects. To frame our results, this section provides background
on combinatorial generation, k-ary Catalan objects, and cool-lex order.

1.1. Combinatorial Generation

To understand combinatorial generation, we explain each of the terms in
“efficient orders for combinatorial objects” and then provide several examples.
By ‘combinatorial objects’ we are referring to a set of objects of a particular size
and type, such as binary strings of length n, permutations of [n] = {1, 2, . . . , n}
in one-line notation, trees on n vertices, and so on. The size of the object is
usually denoted by n, and the number of objects by m. An ‘order’ is a list
in which each object in the set appears exactly once. Finally, we associate
three interrelated operations with each order, for which we evaluate ‘efficiency’
according to the worst-case time complexity:

• A successor algorithm returns the object that follows a given object.

• A ranking algorithm returns the position, or rank, of a given object.

• A generation algorithm successively creates every object in the order.

Informally, we say that an order is ‘optimal’ with respect to one of these three
algorithms if no other order of the same object has a known algorithm that is
more efficient. To expand this discussion and to give a flavour of existing results,
we consider three orders of permutations that each have one optimal algorithm.
The following diagrams contain the m = 120 permutations of n = 5, where ,

, , and represent 1, 2, 3, 4 and 5, respectively1.

lexicographic order — optimal successor

remainder order — optimal ranking

zig-zag order — optimal generation

The first order is lexicographic order. In this order, the permutations are or-
dered recursively, with lower values appearing first. For example, in the above
diagram the symbol in the top row ranges from to , and this pattern re-
peats for the second row subject to the first symbol, and so on. In this order,

1In these diagrams columns represent individual strings (i.e., permutations) when read from
top-to-bottom, and the columns read from left-to-right represent the order of the strings.
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the successor is found by identifying the shortest suffix whose first symbol is
smaller than its second symbol, then by swapping this suffix’s first symbol with
its next largest symbol, and finally by reversing the suffix without the new first
symbol. For example, in 13542 we swap 3 and 4, and then reverse the resulting
suffix without the new first symbol 532 to obtain the successor 14235. Thus,
in the diagram column is followed by . When the permutation
is stored in an array or doubly-linked list, this takes O(n) time and can easily
be implemented using two additional variables. In general, optimal successor
algorithms use Ω(n)-time, with more complicated objects requiring ω(n)-time.
This complexity depends on the data structure used to store the combinato-
rial object, and preference is given to algorithms that require less additional
memory. Additional memory refers to memory that is not used to store the
combinatorial object, which is a fixed expense. In particular, an index variable
can store integers up to O(n) and a pointer variable is a traditional pointer that
can store an index that refers to some portion of the combinatorial object.

The second order, which we call remainder order, was used by Myrvold and
Ruskey [15]. Informally, let (x, y) denote the swap of the xth and yth symbol
of a string. For example, applying (4, 2) to 456123 gives 416523. Swaps are also
called transpositions. In remainder order, the ith permutation is obtained from
the identity permutation by a series of n− 1 transpositions. The first indices of
the transpositions are n, n − 1, . . . , 2. The second indices are remainders when
i is successively divided by n, n− 1, . . . , 2, plus one. For example, here are the
calculations for i = 92 and n = 5

92÷ 5 = 18 18÷ 4 = 4 4÷ 3 = 1 1÷ 2 = 0

remainder 2 remainder 2 remainder 1 remainder 1.

In this calculation, each successive quotient is used in the next division, and
the divisors are in turn 5, 4, 3, 2. The underlined remainders (plus one) imply
that the 92nd permutation for n = 5 is obtained from 12345 by successively
applying the following transpositions: (5, 3), (4, 3), (3, 2), (2, 2). The resulting
permutation is 14253, and thus the 93rd column in the diagram is , since
the first object has rank 0. Although this description is somewhat unorthodox,
it directly translates into a simple unranking algorithm, which converts an inte-
ger i into the object of rank i. In remainder order, the unranking and ranking
algorithms use O(n) arithmetic operations on values that can be as large as n!.
These algorithms have interesting applications [15], but they do not provide an
O(n)-time successor algorithm. (Although the successor can be computed by
ranking, incrementing, and unranking, the arithmetic operations do not take
constant time due to the size of the values.) In general, optimal ranking al-
gorithms often use Ω(n) arithmetic operations on values as large as m, with
complicated objects requiring ω(n) operations. Informally, the complexity of
ranking and unranking is often stated in terms of time, with the issue of arith-
metic on large values being understood. For some objects it is common to allow
an initial pre-computation that is not counted against the ranking algorithm’s
complexity, although this is not necessary for remainder order.
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The third order is zig-zag order, published by Johnson [10], Steinhaus [24],
and Trotter [27] and known earlier to campanologists (see Knuth [12]). In this
order, the smallest symbol repeatedly ‘zigs’ and ‘zags’ between the two ends of
a permutation, pausing once at each end to allow the next smallest symbol that
is not paused to ‘zig’ or ‘zag’. For example, the diagram begins with columns

, , , , , , since sweeps through the
initial permutation of the remaining symbols before pausing to allow to begin
its sweep. Zig-zag order is a Gray code since successive objects differ by a
constant amount. In particular, zig-zag order is an adjacent-transposition Gray
code since successive objects differ by a transposition of adjacent symbols (i.e.,
(x, x+1)). Moreover, it is cyclic since the last permutation and first permutation
also differ by an adjacent-transposition. Zig-zag order can be generated by a
loopless algorithm, meaning that successive objects are created in worst-case
O(1) time (see Ehrlich’s seminal paper on loopless algorithms [6]). To clarify this
point, we note that successive objects do not have to be created from ‘scratch’
when they are generated. Instead, a single instance of the combinatorial object
is created, and this instance is repeatedly modified to create the remaining
instances in the order. Loopless generation algorithms require a Gray code
order, but this condition is not sufficient. In particular, loopless algorithms for
zig-zag order maintain extra information on the current permutation, including
a ‘zig-zag direction’ variable and an index variable for each symbol. However,
zig-zag order does not have an optimal successor algorithm since these additional
variables cannot be efficiently reconstructed for an individual permutation. In
general, loopless generation algorithms typically use ω(1) additional variables.
For complicated objects, optimal generation algorithms often create objects in
worst-case O(n) time. (Although we focus on worst-case analyses in this paper,
we also mention that a common measure of efficiency for generation algorithms
is amortized O(1) time, which is known as “CAT” for constant amortized time.)

Unfortunately, these three orders are each optimal for only one of the three
algorithms in practice2 and this type of trade-off is common in combinatorial
generation. However, in some cases it is possible for a single order to be optimal
for all three algorithms. An example is the eponymous binary reflected Gray
code (BRGC) for binary strings of length n (see Gray [7]). The BRGC is shown
below along with lexicographic order for n = 7 and m = 128, where and are
used for 0 and 1, respectively.

lexicographic order

binary reflected Gray code

2In theory, Mareš and Straka rank lexicographic order in O(n) time using O(1)-time bit
operations on words of size n! [14], and Williams gives a loopless algorithm by storing the
permutation in a doubly-linked list whose nodes can have their two pointers interchanged [29].
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Both orders are created from two copies of their order for n − 1 bits, with 0
prefixed to the first copy and 1 prefixed to the second copy. However, in the
BRGC the order of the strings in the second copy is reversed. The result is that
successive strings in the BRGC differ in only one bit, while the overall order has
a relatively simple structure.

1.2. k-ary Catalan Structures

The Catalan numbers Ct = 1
2t+1

(
2t
t

)
enumerate a wide variety of combina-

torial objects. Stanley updates a “Catalan Addendum” to Enumerative Combi-
natorics that lists 194 of these Catalan structures [23]. Some of these structures
have natural generalizations that are enumerated by the k-ary Catalan numbers
Ct,k = 1

kt+1

(
kt
t

)
, where Ct = Ct,2. Heubach, Li, and Mansour maintain a ‘gar-

den’ that currently includes 32 of these k-ary Catalan structures [8]. Two of the
most well-known members of this garden are k-ary Dyck words and k-ary trees.

Let B(n, t) denote the set of binary strings of length n with weight (number
of 1s) equal to t. A string B ∈ B(kt, t) is a k-ary Dyck word if the number of 0s
in each prefix is at most k−1 times the number of 1s. For example, the k-ary
Dyck words with k = t = 3 are given below in lexicographic order

D3(3) = {100100100, 100101000, 100110000, 101000100, 101001000, 101010000,

101100000, 110000100, 110001000, 110010000, 110100000, 111000000},

where Dk(t) denotes the set of k-ary Dyck words of length kt. It is custom-
ary to store a k-ary Dyck word on a computer by using an array of length
n. (Alternatively, a k-ary Dyck word can be stored in an array of length t
by using the positions of 1s.) The number of strings in Dk(t) is Ct,k. When
k = 2, the k-ary Dyck words are known as Dyck words or balanced parentheses
since replacing 1 and 0 by ‘(’ and ‘)’, respectively, result in the strings of well-
formed parentheses. For example, after this symbol substitution D2(3) equals
{()()(), ()(()), (())(), (()()), ((()))}.

A k-ary tree is a rooted ordered tree in which every internal node has k
children. The number of k-ary trees with t internal nodes is equal to Ct,k. For
example, the 3-ary trees with 3 internal nodes are given below.

It is customary to represent a k-ary tree in a computer by having each node
store an array of k pointers to its children. The trees above are ordered in lexi-
cographic order according to a bijection to k-ary Dyck words described below.

The study of (k-ary) Catalan structures is simplified from a computational
point of view by the existence of bijective correspondences between many of the
structures that can be computed for each specific object in linear time. For ex-
ample, a pre-order traversal of a k-ary tree with t nodes provides a k-ary Dyck
word of length kt by recording a 1 for each internal node and a 0 for each leaf
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k-121 k k-121

k

111 · · · 1100100001000 · · · 01000010000 (left) 101B1B2 · · ·Bk−1Bk00 · · · 0 (left)

1011 · · · 1101000010000 · · · 1000010000 (right) 110B1B2 · · ·Bk−1Bk00 · · · 0 (right)

(a) (b)

Figure 1: (a) The transposition (2, d t
2
e + 1) in the given 3-ary Dyck words of length 3t is

equivalent to d t
2
e modifications in the corresponding 3-ary trees with t internal nodes. In

particular, the children arrays for all of the nodes along the “upper path” of length d t
2
e are

changed. Similar examples exist for any k ≥ 3. (b) The adjacent-transposition (2, 3) in the
given k-ary Dyck word is equivalent to k modifications in the corresponding k-ary trees. In
particular, every entry in the child array is changed for the second node visited in pre-order.

except the last. For this reason, an order for one structure provides a ‘simultane-
ous’ order for another structure using corresponding objects. More importantly,
efficiently computable bijections allow efficient ranking and successor algorithms
for one order to be converted to the other order. In particular, ranking k-ary
Dyck words and ranking k-ary trees are essentially the same problem in terms
of computational complexity.

Efficient generation of different (k-ary) Catalan structures provides more
of a challenge than efficient ranking and successor. The main issue is that a
pair of objects may differ by a constant amount using one structure, but this
difference can become a non-constant amount after they are converted to another
structure. For example, Figure 1 (a) shows that changing a k-ary Dyck word
prefix from 111 · · · 10 to 1011 · · · 1 by a transposition can result in modifications
to O(t) of the children arrays in the corresponding k-ary tree when k ≥ 3.
Similarly, Figure 1 (b) shows that changing a k-ary Dyck word prefix from 101
to 110 by an adjacent-transposition can result in O(k) modifications to a single
children array in the corresponding k-ary tree. These examples illustrate that a
Gray code for one (k-ary) Catalan structure does not necessarily provide a Gray
code for another (k-ary) Catalan structure. Currently, the literature contains
no example of a ‘simultaneous’ Gray code for k-ary Dyck words and k-ary trees.
Furthermore, there is an even greater challenge in constructing ‘simultaneous’
loopless algorithms for k-ary Dyck words and k-ary trees.

In this article we also consider a lesser-known k-ary Catalan structure, which
is essentially an alternate presentation of the seventh structure in the Catalan
garden [8] involving “non-negative words”. A string B ∈ B(kt, (k − 1)t) is a
1/k-ary Dyck word if the number of 1s in each prefix is at least k− 1 times the
number of 0s. For example, the 1/k-ary Dyck words for k = 3 and t = 6 appear
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below

d3(3) = {110110110, 111010110, 111100110, 110111010, 111011010, 111101010,

111110010, 110111100, 111011100, 111101100, 111110100, 111111000}

where dk(t) denotes the 1/k-ary Dyck words of length kt. By comparing their
definitions, it is clear that k-ary Dyck words and 1/k-ary Dyck words are iden-
tical when k = 2. More generally, a string is in dk(t) if and only if its comple-
mented reverse is in Dk(t), where complemented reverse is the involution that
complements the value and reverses the order of the bits in a string. For exam-
ple, 111100110 ∈ d3(3) and 100110000 ∈ D3(3) are complemented reversals of
each other. This correspondence is stated in Remark 1, and the above 1/k-ary
Dyck words are in lexicographic order according to their Dyck words.

Remark 1. Dk(t) and dk(t) are in bijective correspondence by complementing
the bits and reversing their order in each string.

From an algorithmic point of view, Remark 1 provides the option of in-
directly generating k-ary Dyck words by implicitly generating 1/k-ary Dyck
words according to some efficient order. Gray codes and loopless algorithms for
k-ary and 1/k-ary Dyck words are interchangeable when the objects are stored
in an array, or any data structure where modification times are unchanged by
complemented reversal.

Historically, balanced parentheses are among the most studied objects in
combinatorial generation [12], but fewer results exist for k-ary Dyck words.
Generation and ranking of Dk(t) in lexicographic order was first discussed by
Zaks [34]. A general result by Pruesse and Ruskey implies that Dk(t) has a 2-
adjacent-transposition Gray code [16] and a result by Canfield and Williamson
[4] proves that Dk(t) can be generated by a loopless algorithm3. More recently,
Vajnovszki and Walsh [28] found a two-close-transposition Gray code and cre-
ated a loopless algorithm (see Section 2 for a definition of two-close).

Results on k-ary trees in lexicographic order date back to Ruskey [17] and
Trojanowski [26]. Trojanowski’s result generates k-ary trees in lexicographic
order of “stack permutations” giving an O(n2)-time ranking and unranking al-
gorithm. Baronaigien and Ruskey [3] showed how to generate k-ary trees using
“A-order”, achieving O(kn)-time and O(kn log n)-time algorithms for ranking
and unranking, respectively. Several algorithms have since been proposed with
the goal of achieving efficient running times for tree generation, ranking and
unranking simultaneously [1, 2, 17, 33]. Each of these algorithms uses a pre-
computed table for ranking and unranking that takes O(kn2)-time to construct.
We follow the same approach in this paper, although an optimization is pos-
sible when k = 2. As the following table shows, this article provides the first
linear-time ranking and unranking for k-ary trees (or equivalently k-ary Dyck

3Both results use that strings in Dk(t) correspond to linear-extensions of a poset with cover
relations a1 ≺ · · · ≺ at, b1 ≺ · · · ≺ b(k−1)t, and ai ≺ b(k−1)(i−1)+1 for 1 ≤ i ≤ t.
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words) for an order other than lexicographic order. To be clear, our ranking and
unranking algorithms are only “linear-time” in the sense that they use O(kt)
arithmetic operations on integers as large as Ct,k, and assuming O(1)-time ac-
cess to a table of values which itself requires O(tn) arithmetic operations to
precompute.

Order Generation Ranking Unranking References

Lexicographic order O(n) O(n2) O(n2) [25]

Reverse A-order O(1) O(kn)∗ O(kn log n)∗ [3]

Lexicographic order O(k) O(n)∗ O(n)∗ [17]

Gray code order O(1) O(kn2)∗ O(kn2)∗ [1, 33]

Reverse B-order O(1) O(kn)∗ O(kn)∗ [2]

Cool-lex order
reverse complemented O(1) O(n)∗ O(n)∗ this article

Related work on generating k-ary trees in chronological order.

[∗] denotes that the time complexity is achieved using a precomputed table.

Several important results do not appear in this table since their assumed
context is somewhat different. First, Kokosinski [13] gives a parallel algorithm
to unrank k-ary trees in O(n) time that relies on a parallel architecture with kn
processors and takes O(kn)-time to compute the auxiliary table. Second, Wu
[30] recently proposed a new representation for trees known as an RD-sequence
(for right-distance). Using this alternate representation, Wu gives a loopless
algorithm that can rank and unrank k-ary trees in O(kn)-time without using
any precomputed table. Finally, Wu, Chang, and Wang [32] and Wu, Chang,
and Chang [31] give loopless algorithms and efficient ranking and unranking for
non-regular trees with a prescribed branching sequence, respectively.

1.3. Cool-lex Order

An interesting development in combinatorial generation was the discovery of
the following successor algorithm for B(n, t) by Ruskey and Williams [19, 21].
The ith prefix-shift moves the first i bits of a string once to the right (circularly).

Cool-lex successor for B(n, t):
Let i be the index of the first 01 substring’s 1. Apply the (i+1)st prefix-shift.
(If there is no 010 or 011 substring, then perform the nth prefix-shift.)

For example, the algorithm applies the 7th prefix-shift to 110001010 since
its first 01 substring ends at index i = 6. Thus, 110001010 is succeeded by
011000110 since the first 7 bits (underlined) move one index to the right (cir-
cularly). Equivalently, this modification complements four bits, 110001010 =
011000110, and in general the algorithm changes either two or four bits. De-
spite its simplicity, this simple algorithm (or ‘rule’) cyclically generates B(n, t)
for all n and t. Furthermore, each application of the rule causes the first 01
substring to either move one index to the right, or to be ‘reset’ to the begin-
ning of the string. Therefore, successive applications do not need to ‘scan’ the
string to locate the first 01. These observations are the basis for an extremely
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simple loopless algorithm that generates the order using two additional index
variables, two if-statements and zero else-statements. Knuth included cool-lex
order as a last-minute addition to The Art of Computer Programming [12], and
also provides an “incredibly efficient” implementation using computer words in
his distribution of MMIX. By convention, 1t0n−t is treated as the last string in
cool-lex order, where exponentiation denotes symbol repetition.

Besides optimal successor and generation algorithms, cool-lex order also has
an optimal ranking algorithm. This result follows from the fact that cool-lex
order is very similar to the co-lex order of B(n, t), which is lexicographic order
with the order of the bits in each string reversed, and from where cool-lex order
gets its name. For example, the two orders appear below for n = 9 and t = 4.

co-lex order for B(9, 4)

cool-lex order for B(9, 4)

Observe that the bottom rows are identical, except that cool-lex’s row is shifted
by one position. More specifically, in cool-lex order the column
appears last instead of first. Similarly, in cool-lex order is the last
column with suffix instead of the first. In general this ∗ ∗ rearrangement
happens for every suffix that is empty or begins with , and this is the only
difference between co-lex and cool-lex for B(n, t). Co-lex has an optimal ranking
algorithm for B(n, t) using O(t) arithmetic operations on integers as large as
m =

(
n
t

)
, and this same complexity can be obtained by cool-lex order.

Ruskey and Williams found a similar successor rule for balanced parentheses
[20]. Since every (k-ary) Dyck word has 1 as its first symbol, in this context the
ith prefix-shift moves bits at indices 2, 3, . . . , i once to the right (circularly).

CoolCat successor for D2(t):
Let i be the index of the first 01 substring’s 1. If the (i+1)st prefix-
shift is valid then apply it, otherwise apply the ith prefix-shift.
(If there is no 01 substring, then perform the nth prefix-shift.)

For example, i = 5 in 11001010 ∈ D2(4), so the successor rule first at-
tempts the 6th prefix-shift. However, this prefix-shift is invalid since the result
is 10100110 /∈ D2(4). Therefore, the successor is obtained from the 5th prefix-
shift. Thus, 11001010 is succeeded by 11100010. The successor rule again com-
plements either two or four bits, and it creates a cyclic order of D2(t) whose last
string is 1t0n−t, by convention. It also leads to an optimal ranking algorithm
that uses O(t) arithmetic operations (on integers as large as Ct), as well as an
optimal loopless generation algorithm that uses two additional index variables,
two if-statements and one else-statement. In addition, the order also provides a
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Gray code and loopless generation algorithm for binary trees. This marked the
first ‘simultaneous’ Gray code and loopless generation algorithm for balanced
parentheses and binary trees. Due to the connections with cool-lex order and
the Catalan numbers, the resulting order was named ‘CoolCat’ order.

Cool-lex and CoolCat orders motivate the following question: What other
sets of strings have a similar successor algorithm? When considering this ques-
tion, it is important to note that CoolCat order for D2(t) is a suborder of cool-lex
order for B(2t, t). In other words, the CoolCat order of D2(t) can obtained by
removing the strings that are not balanced parentheses from the cool-lex order
of B(2t, t). For example, the cool-lex order of B(8, 4) appears below with 3 be-
neath each string that is in D2(4), and the resulting CoolCat order for D2(4). In
general, the suborder property can be verified by using the recursive definition
(2) found in Section 4.

cool-lex for B(8, 4)

333 33 3 33 33 3 3 3 3

CoolCat for D2(4)

For this reason, the CoolCat order D2(t) can instead be called the cool-lex order
for D2(t). Investigation into other cool-lex suborders resulted in a major gener-
alization by Ruskey, Sawada, and Williams [18]. Their result proves that similar
successor rules exist for any subset of B(n, t) that is a “bubble language” (see
Section 2.1). Bubble languages represent a wide variety of combinatorial ob-
jects including proper interval graphs, feasible solutions to knapsack problems,
binary necklaces (i.e., rotatable binary strings), binary neckties (i.e., reversible
binary strings), and k-ary Dyck words. Although the general result by Ruskey,
Sawada, and Williams provides a successor rule for a wide variety of combina-
torial objects, it does not ‘optimize’ the rule for any specific object, nor does it
address loopless generation or efficient ranking of the resulting order.

1.4. New Results

In this article we utilize the general theory on cool-lex order and bubble
language to k-ary Dyck words to obtain the following results.

• An O(n)-time successor algorithm.

• A loopless generation algorithm that uses two additional index variables,
two if-statements and one else-statement.

• A Gray code and loopless generation algorithm for k-ary trees.

• A ranking algorithm using O(n) arithmetic operations once a table of gen-
eralized k-ary Catalan numbers is pre-computed.

These results mark the first ‘simultaneous’ Gray codes and loopless algorithms
for k-ary Dyck words and k-ary trees, and the simplest known loopless algo-
rithm for generating k-ary Dyck words. Our article is also interesting for how
it uses the general theory on cool-lex order and bubble languages. Instead of
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conventional cool-lex order, we instead generate k-ary Dyck words and the cor-
responding k-ary trees in a complemented and revered version of cool-lex order.
In other words, we (implicitly) generate 1/k-ary Dyck words in cool-lex order,
and then complement and reverse these strings to obtain our order of k-ary
Dyck words. This crucial difference is illustrated below for k = 3 and t = 4.

complemented and reversed

cool-lex for D3(4) cool-lex for d3(4) cool-lex for D3(4)

When comparing the two orders of k-ary Dyck words above, observe that the
modified order’s Gray code is based on suffix-shifts instead of prefix-shifts. A
preliminary version of this article by Durocher, Li, Mondal, and Williams [5]
used the unaltered version of cool-lex order and obtained weaker results. In
particular, the preliminary loopless algorithm for Dk(t) required an additional
array of t index variables and two more if-statements. It also did not give a
‘simultaneous’ Gray code or loopless generation algorithm for k-ary trees, as
explained by Figure 1 (a).

Section 2 focuses on successor algorithms for generating strings in cool-lex
order, and Section 3 translates these results into generation algorithms for 1/k-
ary Dyck words, k-ary Dyck words ,and k-ary trees. Section 4 provides our
results on ranking and unranking. Section 5 concludes with final remarks.

2. Successor Algorithms

In this section we describe the general cool-lex successor algorithm for bubble
languages in Section 2.1. Then we specialize this result for the special cases of
k-ary and 1/k-ary Dyck words in Section 2.2. To state our successor algorithms
precisely, we present them in terms of a successor table. In a successor table,
each string is matched by one row of the table, and this row provides both the
successor and operations that create it. To illustrate this concept, we restate the
two successor algorithms from Section 1, starting with Table 0 for the cool-lex
successor of B(n, t).

String† Successor Shift Swap(s)
(0a) 1i0j11γ 1i+10j1γ (i+j+1, 2) (i+1, i+j+1)
(0c) 1i0j10γ 01i0j1γ (i+j+2, 1) (1, i+1) (i+j+1, i+j+2)
(0d) 1t0n−t 01t0n−t−1 (n, 1) (1, t+1)
(0e) 1t−10n−t1 1t0n−t (n, 1) (t, n)

Table 0: Cool-lex successor table for B(n, t) from [21]. †j > 0. See figure on page 1.3.

For example, the string 110001010 ∈ B(9, 4), matches row (0c) as 1i0j10γ for
i = 2, j = 3, and γ = 10. Therefore, the successor is 01i0j1γ = 011000110. As
noted by the table, the successor can be created by shifting the bit from position
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i+j+2 = 7 to position 1, or equivalently by the swapping the bits at positions
(1, i+1) = (1, 3) and (i+j+1, i+j+2) = (6, 7). Observe (0d) and (0e) handle the
special cases when there is no 010 or 011 substring. In particular, the successor
of 1t−10n−t1 is 1t0n−t by (0e), and the successor of 1t0n−t is 01t0n−t−1 by (0d).

String† Successor Shift Swap(s)
(1a) 1i0j11γ 1i+10j1 (i+j+1, 2) (i+1, i+j+1)
(1b) 1i0j10γ where i = j 1i+10j+1γ (i+j+1, 2) (i+1, i+j+1)
(1c) 1i0j10γ where i > j 101i−10j1γ (i+j+2, 2) (2, i+1) (i+j+1, i+j+2)
(1d) 1t0t 101t−10t−1 (n, 2) (2, t+1)

Table 1: CoolCat successor table for D2(t) from [20]. †j > 0. See figure on page 1.3.

Table 1 provides a successor table for the CoolCat successor of D2(t). In all
of our successor tables, any prefix written of the form 1i0j1 is assumed to have
j > 0 as noted by †. The rows in Tables 0 and 1 correspond to the general
cool-lex successor table in Section 2.1, and this explains why row (0b) and (1e)
are left blank. Before providing the table, we first formally define swaps and
shifts to avoid potential confusion.

Suppose B = B1B2 · · ·Bn is a binary string of length n and 1 ≤ i ≤ j ≤ n.
The swap and shift operations are formally defined as follows:

• swap(B, i, j) = B1 · · ·Bi−1BjBi+1 · · ·Bj−1BiBj+1 · · ·Bn, and

• shift(B, j, i) = B1 · · ·Bi−1BjBiBi+1 · · ·Bj−1Bj+1 · · ·Bn.

When appropriate we shorten swap(B, i, j) to swap(i, j), and shift(B, j, i) to
shift(j, i). Swaps are also known as transpositions and special cases include

• adjacent : swap(i, i+1),

• two-close: swap(i, i+1), or swap(i, i+2) when Bi+1 = 0, and

• homogeneous: swap(B, i, j) where Bi = Bi+1 = · · · = Bj−1.

A prefix-shift is an operation of the form shift(j, 1), although in the context of
Dyck words we consider shift(j, 2) to be a prefix-shift since the first bit must
be 1. Similarly, we consider shift(j, k) to be a prefix-shift 1/k-ary Dyck words
since the first k − 1 bits must be 1. A homogeneous shift is shift(B, j, i) when
Bi = Bi+1 = · · · = Bj−1.

2.1. Bubble Languages

A binary bubble language is a set of binary strings L with the following
property: If B ∈ L where B = 1i0j1γ for some suffix γ and j > 0, then
1i0j−110 ∈ L. In other words, the first 01 of any string in the set can be
replaced by 10 to give another string in the set. The following lemma proves
that k-ary and 1/k-ary Dyck words of length kt are binary bubble languages.

Lemma 1. The k-ary Dyck words in Dk(t) are a binary bubble language, as are
the 1/k-ary Dyck words in dk(t).

12



Proof. Let L = Dk(t) or L = dk(t). The set L has a stronger property: If
α01γ ∈ L, then α10γ ∈ L. This is because replacing any 01 by 10 does not
decrease the number of 1s in any prefix. �

We only consider binary bubble languages that are subsets of some B(n, t);
for brevity we refer to these languages simply as bubble languages. The main re-
sult of [18] is a general successor algorithm that cyclically generates any bubble
language. As with the cool-lex successor for B(n, t) and the CoolCat succes-
sor for D2(t), the general successor can be expressed as a single shift or as a
pair of swaps. More specifically, the general successor requires at most one
homogeneous-transposition and at most one adjacent-transposition. However,
the shift is not necessary a prefix-shift.

Theorem 1 ([18]). The strings in any bubble language are generated in cool-
lex order by the shift (or equivalent swap(s)) in Table 2.

String† Successor‡ Shift Swap(s)
(2a) 1i0j11γ 1i+10j1γ (i+j+1, 1) (i+1, i+j+1)

(2b) 1i0j10γ where
1i+10j+1γ (i+j+1, 1) (i+1, i+j+1)

1i0j+11γ /∈ L

(2c)
1i0j10γ where

1h01i−h0j1γ (i+j+2, h+1)
(h+1, i+1)

1i0j+11γ ∈ L (i+j+1, i+j+2)
(2d) 1t0n−t 1g01t−g0n−t−1 (n, g+1) (g+1, t+1)
(2e) 1t−10n−t1 1t0n−t (n, 1) (t, n)

Table 2: Cool-lex successor table for a bubble language L from [18]. †j > 0. ‡h is the minimum
value such that 1h01i−h0j1γ ∈ L and g is the minimum value such that 1g01t−g0n−t−1 ∈ L.

To familiarize ourselves with this general table, we consider (2c) in detail.

String Successor‡ Shift Swap(s)

(2c)
1i0j10γ where

1h01i−h0j1γ (i+j+2, h+1)
(h+1, i+1)

1i0j+11γ ∈ L (i+j+1, i+j+2)
‡ h is the minimum value such that 1h01i−h0j1γ ∈ L.

If a string matches this row, then the successor is obtained by shifting the
last bit of a 1i0j10 prefix. In particular, the definition of h implies that the
shift(i+j+2, h+1) operation moves this bit as far to the left as possible while
ensuring the result is in L. In this context, the condition 1i0j+11γ ∈ L ensures
that this bit can be shifted at least one position. Now consider how this general
rule translates into specific rules for B(n, t) and D2(t). When L = B(n, t), the
last bit of a 1i0j10 prefix can always be shifted all the way to the first position.
Thus, h = 0 in this case and so shift(i+j+2, h+1) = shift(i+j+2, 1) as illustrated
below.

String Successor Shift Swap(s)
(0c) 1i0j10γ 01i0j1γ (i+j+2, 1) (1, i+1) (i+j+1, i+j+2)
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On the other hand when L = D2(t), the last bit of a 1i0j10 prefix cannot
be shifted to the left at all when i = j. Furthermore, when i > j, this bit
can only be shifted as far as the second position. Thus, h = 1 in this case
and so shift(i+j+2, h+1) = shift(i+j+2, 2) as illustrated below, along with the
condition i > j.

String Successor Shift Swap(s)
(1c) 1i0j10γ for i > j 101i−10j1γ (i+j+2, 2) (2, i+1) (i+j+1, i+j+2)

In general, there is no guarantee that Theorem 1 will lead to an efficient
successor algorithm. For example, in the case of binary necklaces, the task of
computing h is non-trivial (see Sawada and Williams [22] a CAT generation
algorithm using this successor algorithm). In the next subsection we specialize
and optimize this general successor algorithm to the special cases of L = Dk(t)
and L = dk(t). This “specialization process” is somewhat tedious and technical,
but the resulting successor algorithms are very simple.

2.2. Successor Algorithms for Dyck Words

In Theorem 2 we prove that Tables 3 and 4 provide successor algorithms
for k-ary Dyck words and 1/k-ary Dyck words, respectively. For example, the
successor algorithm in Table 3 gives the following order for D3(3)

101100000, 110100000, 101010000, 100110000, 110010000, 101001000,

100101000, 110001000, 101000100, 100100100, 110000100, 111000000.

In particular, the above order is the result of applying (3a), (3c), (3c), (3a),
(3c), (3c), (3b), (3c), (3c), (3b), (3b), and finally (3d) to make the order cyclic.
Similarly, the successor algorithm in Table 4 gives the following order for d3(3)

110111100, 111011100, 111101100, 111110100, 110111010, 111011010,

111101010, 110110110, 111010110, 111100110, 111110010, 111111000.

In particular, the above order is the result of applying (4a), (4a), (4a), (4c),
(4a), (4a), (4c), (4a), (4b), (4a), (4b), and finally (4d) to make the order cyclic.

String† Successor Shift Swap(s)
(3a) 1i0j11γ 1i+10j1γ (i+j+1, 2) (i+1, i+j+1)

(3b) 1i0j10γ where 1i+10j+1γ (i+j+1, 2) (i+1, i+j+1)
(k−1)i = j

(3c) 1i0j10γ where 101i−10j1γ (i+j+2, 2)
(2, i+1)

(k−1)i > j (i+j+1, i+j+2)
(3d) 1t0(k−1)t 101t−10(k−1)t−1 (n, 2) (2, t+1)

Table 3: Cool-lex successor table for the k-ary Dyck words in Dk(t) of length n = kt. †j > 0.
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String† Successor Shift Swap(s)
(4a) 1i0j11γ 1i+10j1γ (i+j+1, k) (i+1, i+j+1)

(4b) 1i0j10γ where 1i+10j+1γ (i+j+1, k) (i+1, i+j+1)
i = (k−1)(j+1)−1

(4c) 1i0j10γ where 1k−101i−k+10j1γ (i+j+2, k)
(k, i+1)

i ≥ (k−1)(j+1) (i+j+1, i+j+2)
(4d) 1(k−1)t0t 1k−101(k−1)(t−1)0t−1 (n, k) (k, (k−1)t+1)

Table 4: Cool-lex successor table for the 1/k-ary Dyck words in dk(t) of length n = kt. †j > 0.

Theorem 2. The k-ary and 1/k-ary Dyck words of length kt are generated
in cool-lex order by the successor algorithms in Table 3 and 4, respectively.
Moreover, the successor algorithms take O(n) time and use a single prefix-shift.

Proof. The two cases have very similar proofs, and the proof for k-ary Dyck
words appeared in [5]; we prove the result only for 1/k-ary Dyck words.

L = dk(t) is a bubble language by Lemma 1 (and [18]); Theorem 1 implies
that it is generated in cool-lex order by the successor algorithm in Table 2. Now
compare each rule in Table 2 to its specialization for L = dk(t) in Table 4.

String Successor Shift Swap(s)
(2a) 1i0j11γ 1i+10j1γ (i+j+1, 1) (i+1, i+j+1)
(4a) 1i0j11γ 1i+10j1γ (i+j+1, k) (i+1, i+j+1)

If a 1/k-ary Dyck word has prefix 1i0j11 and j > 0, then it must be that
i ≥ k−1. Therefore, shift(i+j+1, k) is equivalent to shift(i+j+1, 1) in this
context. Therefore, (4a) specializes (2a).

String Successor Shift Swap(s)
(2b) 1i0j10γ where 1i0j+11γ /∈ L 1i+10j+1γ (i+j+1, 1) (i+1, i+j+1)
(4b) 1i0j10γ where i = (k−1)(j+1)−1 1i+10j+1γ (i+j+1, k) (i+1, i+j+1)

Suppose that 1i0j10γ is a 1/k-ary Dyck word. Observe that 1i0j+11γ is not
a 1/k-ary Dyck word if and only if i < (k − 1)(j + 1). On the other hand,
1i0j10γ is a 1/k-ary Dyck word. Thus, i+ 1 ≥ (k− 1)(j+ 1) which implies that
i ≥ (k− 1)(j+ 1)− 1. Therefore, the condition in (4b) specializes the condition
in (2b). Next observe that i ≥ k − 1 since 1/k-ary Dyck words begin with
1k−1. Therefore, shift(i+j+1, k) is equivalent to shift(i+j+1, 1) in this context.
Therefore, (4b) specializes (2b).

String Successor‡ Shift Swap(s)

(2c)
1i0j10γ where

1h01i−h0j1γ (i+j+2, h+1)
(h+1, i+1)

1i0j+11γ ∈ L (i+j+1, i+j+2)

(4c)
1i0j10γ where

1k−101i−k+10j1γ (i+j+2, k)
(k, i+1)

i ≥ (k − 1)(j + 1) (i+j+1, i+j+2)
‡h is the minimum value such that 1h01i−h0j1γ ∈ L.
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Suppose 1i0j10γ is a 1/k-ary Dyck word. Observe 1i0j+11γ is a 1/k-ary Dyck
word if and only if i ≥ (k−1)(j+1). Therefore, the condition in (4c) specializes
the condition in (2c). Given i ≥ (k − 1)(j + 1), next observe that h = k−1
since 1/k-ary Dyck words begin with 1k−1. Therefore, shift(i+j+2, k) is equiv-
alent to shift(i+j+2, h+1) in this context, and swap(k, i+1) is equivalent to
swap(h+1, i+1) in this context. Therefore, (4c) specializes (2c).

String Successor‡ Shift Swap(s)
(2d) 1t0n−t 1g01t−g0n−t−1 (n, g+1) (g+1, t+1)
(4d) 1(k−1)t0t 1k−101(k−1)(t−1)0t−1 (n, k) (k, (k−1)t+1)

‡g is the minimum value such that 1g01t−g0n−t−1 ∈ L.

Since L = dk(t) the value of n is kt. Furthermore, if g is the minimum value
such that 1g01t−g0n−t−1 ∈ dk(t), then g = k−1. Therefore, shift(n, k) is equiv-
alent to shift(n, g+1) in this context, and swap(k, (k−1)t+1) is equivalent to
swap(g+1, t+1) in this context. Furthermore, the stated strings and successors
are also equivalent. Therefore, (4d) specializes (2d).

String Successor Shift Swap(s)
(2e) 1t−10n−t1 1t0n−t (n, 1) (t, n)

This general rule for bubble languages does not apply to 1/k-ary Dyck words
because 1/k-ary Dyck words cannot have 1 as the last symbol.

Therefore, the successor algorithm in Table 4 specializes that successor algo-
rithm in Table 2 when L = dk(t). The ‘Shift’ column implies that the algorithm
applies a prefix-shift, and the ‘Swap’ column provides O(n)-time complexity. �

3. Generation Algorithms

In this section we use the successor algorithms from Section 2 to develop
loopless algorithms for generating k-ary and 1/k-ary Dyck words in an array.
Recall from Section 1.2 that algorithms for generating these two objects are
interchangeable. For this reason we ask the following question: Which of the
two successor algorithms in Section 2 will lead to a more efficient algorithm?

To answer this question, we begin with a simple observation. To apply
the successor algorithm in Tables 3 and 4 to a given string, we need to first
identify its prefix of the form 1i0j1. In the case of a loopless algorithm, we
will need to continually update these i and j values in worst-case O(1) time for
each successive string. This becomes an issue when we apply (3c) or (4c). For
example, consider the following two strings and their successors for k = 6.

string: 11000000000010γ ∈ D6(t) string: 111111111111110010γ ∈ d6(t)

successor: 11100000000000γ ∈ D6(t) successor: 111111111111111000γ ∈ d6(t).

In both cases the successor’s prefix of the form 1i0j1 extends into γ. Therefore,
before we can generate the successor’s successor, we need to determine how many
leading 0s there are in γ. We consider this problem for the 6-ary Dyck word
example (above left) and 1/6-ary Dyck word example (above right).
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• In the 6-ary Dyck word, the first three 1s can ‘support’ at most 5 · 3 = 15
copies of 0. Thus, γ contains at most four leading 0s.

• In the 1/6-ary Dyck word, the first fifteen 1s can ‘support’ at most 15
5 = 3

copies of 0. Thus, γ contains no leading 0s.

To resolve the uncertainty in the 6-ary Dyck word, we either need to scan the first
four bits of γ or use additional memory to store this information. Both of these
options are explored in [5]. The scanning option leads to a “fixed-parameter
loopless algorithm” that takes O(k)-time per iteration, and the storage option
leads to a loopless algorithm requiring O(t) additional index variables. On the
other hand, neither of these expenses will be required for 1/k-ary Dyck words.

3.1. Generating 1/k-ary Dyck Words

Our algorithm for generating the 1/k-ary Dyck words of length n = kt is
named Cool 1K (k, t) and it appears in Algorithms 1. It stores the current 1/k-ary
Dyck word in an array of length n (with 1-based indices) and uses two additional
variables x and y. The algorithm follows the swap rules of successor table for
dk(t) found in Table 4. We restate these swaps in Table 5 with one important
change. In (4c) the stated swaps are (k, i+1) and (i+j+1, i+j+2), while in (5c)
they are (i+1, i+j+1) and (k, i+j+2). These pairs of swaps are equivalent since
the binary string to which they are applied must contain 1s in position k and
i+j+1, and 0s in position i+1 and i+j+2. The reason for adjusting these swap
indices is the following: swap(i+1, i+j+1) is now performed when creating the
successor of every string (except 1t0(k−1)t) and so it can be applied at the start
of each iteration.

String† Successor Swap(s)
(5a) 1i0j11γ 1i+10j1γ (i+1, i+j+1)
(5b) 1i0j10γ where i = (k−1)(j+1)−1 1i+10j+1γ (i+1, i+j+1)

(5c) 1i0j10γ where i ≥ (k−1)(j+1) 1k−101i−k+10j1γ
(i+1, i+j+1)
(k, i+j+2)

(5d) 1(k−1)t0t 1k−101(k−1)(t−1)0t−1 (k, (k−1)t+1)

Table 5: Cool-lex successor table for the 1/k-ary Dyck words in dk(t) of length n = kt with
modified swaps. This table is the basis of the Cool 1

K
algorithm. †j > 0.

As is customary, Cool 1K calls a ‘visit’ statement every time the next string has

been created. It is slightly more convenient for us to visit the string 1(k−1)t0t ∈
dk(t) first instead of last. The following theorem presents a formal proof of
correctness for the Cool 1K algorithm.

Theorem 3. Cool 1K (k, t) is a loopless algorithm that uses two additional vari-
ables and cyclically generates the 1/k-ary Dyck words of length kt in cool-lex
order.

Proof. The algorithm initializes the B array to 1(k−1)t0t and then visits this
string. The first iteration of the while loop completes by visiting the string
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B = 1k−101(k−1)(t−1)0t−1, which is the correct successor by (5d), and with
values x = k+ 1 and y = k. Now we state a simple loop invariant that holds at
the start of the while loop for each iteration starting with the second:

B = 1y−10x−y1zγ ∈ dk(t) for a bit z ∈ {0, 1}, a suffix γ, and x− y > 0. (1)

In other words, each loop begins with a 1/k-ary Dyck word in which B[y] stores
the first 0, and B[x] stores the first 1 that occurs after a 0, and z is the value of
the bit following the first 01. Given this loop invariant and its correctness at the
first iteration, we prove the theorem by induction on the number of iterations.
In this inductive proof we also assume that γ 6= ε (the empty string) for reasons
discussed at the end of the proof.

Suppose α = 1i0j1zγ ∈ dk(t) is visited at the end of the pth iteration, where
z ∈ {0, 1} is a single bit and j > 0. By induction, B = 1y−10x−y1zγ at the start
of the (p+1)st iteration. That is, y = i+1 and x = i+ j+1. The result of lines
7–10 is that x and y are incremented so that y = i + 2 and x = i + j + 2 and
the array holds B = 1y−10x−yzγ. Observe z = B[x]. Now consider the possible
paths through the algorithm.

• If B[x] = 1, then α = 1i0j11γ. In this case the if-statement on line 11 is
not entered and the iteration ends by visiting

B = 1y−10x−y1γ = 1i+10j1γ.

This is the correct successor to α by (5a). Furthermore, the loop-invariant
(1) holds by appropriately defining new values for z and γ.

• If B[x] = 0, then α = 1i0j10γ and the array holds B = 1y−10x−y0γ =
1i+10j0γ since y = i+ 2 and x = i+ j + 2. In this case the if-statement on
line 11 is entered.

. If (k−1)(x− y+ 1) = y−1, then (k−1)(j+ 1) = i+ 1. Therefore, the
prefix 1i0j10 in α is ‘tight’ in the sense that its next symbol cannot be 0.
Thus, α = 1i0j101γ′ where γ = 1γ′. Given the (k−1)(x−y+1) = y−1
condition, the if-statement on line 12 is entered. The result is that x
is incremented to x = i+ j + 3 and the iteration ends by visiting

B = 1y−10x−yγ = 1y−10x−y1γ′ = 1i+10j+11γ′.

This is the correct successor to α by (5b) and the fact that i = (k −
1)(j+1)−1. Furthermore, the loop-invariant (1) holds by appropriately
defining new values for z and γ.

. If (k − 1)(x − y + 1) 6= y − 1, then the else-statement on line 14 is
entered. The result of lines 15–18 is that the iteration ends by visiting

B = 1k−101i−k+10j1γ = 1y−10x−y1i−k+10jγ = 1y−10x−yγ′.

with x = k+ 1 and y = k and γ′ = 1i−k+10jγ. This is the correct suc-
cessor to α by (5c), Furthermore, we can prove that the loop-invariant
(1) holds so long as the first symbol of γ is 1. In other words, we
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need to prove that i − k + 1 > 0. This follows from the fact that
(k − 1)(x− y + 1) 6= y − 1 implies that i ≥ (k − 1)(j + 1) (see the dis-
cussion from the previous case) and so j > 0 implies that i−k ≥ k−2,
which is sufficient since k ≥ 2.

Therefore, by induction each iteration of the algorithm correctly performs
the successor algorithm, so long as γ 6= ε by our earlier assumption. Observe
that γ = ε is only possible for the string α = 1(k−1)t−10t−110 ∈ dk(t). Therefore,
the algorithm will eventually visit this string stored in B = 1y−10x−y1zγ where
z = 0 and γ = ε. In this case the algorithm terminates by line 6 since x = n−1.
To see why this is the correct behaviour, observe that (5b) transforms α into
1(k−1)t0t which is the string we started the algorithm by visiting. Therefore
every string in dk(t) is visited by Theorem 2 and the restatement of Table 4 in
Table 5. �

Procedure Cool 1K (k, t)

1: B ← array(1(k−1)t0t)
2: n← k · t
3: x← (k−1) · t
4: y ← (k−1) · t
5: visit()
6: while x < n− 1
7: B[x]← 0
8: B[y]← 1
9: x← x+1

10: y ← y+1
11: if B[x] = 0 then
12: if (k−1)(x−y+1) = y−1 then
13: x← x+1
14: else
15: B[x]← 1
16: B[k]← 0
17: x← k+1
18: y ← k
19: end
20: end
21: visit()
22: end

Procedure CoolK(k, t)
1: B ← array(1t0(k−1)t)
2: n← k · t
3: x← (k−1) · t
4: y ← (k−1) · t
5: visit()
6: while x < n− 1
7: B[n−x+1]← 1
8: B[n−y+1]← 0
9: x← x+1

10: y ← y+1
11: if B[n−x+1] = 1 then
12: if (k−1)(x−y+1) = y−1 then
13: x← x+1
14: else
15: B[n−x+1]← 0
16: B[n−k+1]← 1
17: x← k+1
18: y ← k
19: end
20: end
21: visit()
22: end

Algorithms 1: Cool 1K (k, t) and CoolK(k, t) generate 1/k-ary and k-ary Dyck
words of length kt in cool-lex order, respectively. The algorithms are both
loopless and use two additional index variables.

3.2. Generating k-ary Dyck Words

To generate k-ary Dyck words in Dk(t), we simply modify the Cool 1K for

generating dk(t). More specifically, we initialize the array B to 1t0(k−1)t instead
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of 1(k−1)t0t (see line 1), then we reverse indices by replacing each array access
of the form B[i] by B[n− i+ 1], and finally we complement each value that we
get from the array and set in the array (see lines 7, 8, 11, 15, and 16). The
resulting CoolK algorithm appears on the right side of Algorithm 1.

Theorem 4. CoolK(k, t) is a loopless algorithm that uses two additional index
variables, and cyclically generates k-ary Dyck words of length kt in comple-
mented and reversed cool-lex order.

Proof. This follows from Theorem 3 and Remark 1. �

Although the correctness of CoolK is established by Theorem 4, its precise
successor algorithm is somewhat obfuscated by string transformations being
applied. For this reason, we translate the successor algorithm from Table 5 into
Table 6. We will use Table 6 when generating k-ary trees.

String† Successor Swap(s)
(6a) γ001j0i γ01j0i+1 (n−i, n−i−j)
(6b) γ101j0i where i = (k−1)(j+1)−1 γ1j+10i+1 (n−i−j, n−i)

(6c) γ101j0i where i ≥ (k−1)(j+1) γ01j0i−k+110k−1
(n−i−j, n−i)
(n−i−j−1, n−k+1)

(6d) 1t0(k−1)t 1t−10(k−1)(t−1)10k−1 (t, n−k+1)

Table 6: Successor table for the k-ary Dyck words in Dk(t) of length n = kt in reverse
complemented cool-lex order. This table is implicitly used by the Cool 1

K
algorithm. †j > 0.

3.3. Generating k-ary Trees

Now we provide a loopless algorithm for generating k-ary trees with t internal
nodes. By k-ary tree we mean a rooted tree, where each non-leaf node has k
children ordered from 1 to k. Visually we present the parent of each node above
its children, and the children ordered from left-to-right. Internal nodes and
leaves are denoted by and , respectively. We assume that an individual k-
ary tree is stored in a typical “computer representation”, where each internal
node has an array of pointers to its children, as well as a pointer to its parent.

To create our loopless algorithm we first need a Gray code order. As dis-
cussed in Section 1.2, k-ary trees are ‘sensitive’ to changes in the prefix of
their corresponding Dyck word. In particular, Figure 1 (a) provides an example
where a homogeneous prefix-shift in a k-ary Dyck word results in a non-constant
amount of change to the corresponding k-ary tree. However, we will see that
the suffix-shifts from the successor algorithm for Dk(t) in Table 6 does result
in a ‘simultaneous’ Gray code for k-ary trees. More specifically, our successor
algorithm moves at most two internal nodes.

20



3.3.1. Additional Memory

Besides the basic representation of a k-ary tree and a pointer to its root, we
need t + 1 additional pointers and t index variables to implement our loopless
algorithm. We now describe this additional memory, with Figure 2 providing
an example for a 5-ary tree. The additional index variables provide the child
number of each internal non-root node. In other words, an internal node has
the value ` associated with it when it is the `th child of its parent. We refer to
this value as the label of the internal node, and note that its value is ` ∈ [k].

4

4

5

5

1

5

4

1

1

5

5

51

1

1

5

1

3

2

a

Figure 2: The above tree illustrates (i) child number ‘labels’ for each non-root node, (ii)
k-pointers between the ends of every k-path, and (iii) the a pointer.

To describe the additional pointers we need to introduce a small amount
of terminology. An edge is a k-edge if the child is labeled ` = k. A k-path is
a maximal path of k-edges that contains at least one edge. This maximality
condition ensures that each node is on at most one k-path. Each k-path has
two extreme nodes known as its ends. We associate an additional pointer with
each node as follows: If a node is the end of a k-path, then its k-pointer points
to the other end of the k-path; otherwise, its k-pointer points to itself. Observe
the k-pointer points ‘up’ the tree for nodes that are labeled k and do not have
a child labeled k, and points ‘down’ for nodes that have a child labeled k but
are not labeled k themselves. We maintain one additional pointer a, which is
discussed in the following paragraph.

When discussing the algorithm, we refer to three specific nodes: an internal
node a , a leaf b , and an internal node c . These nodes can be defined in terms
of which bit they represent in the tree’s corresponding k-ary Dyck word:

• a represents the first 1 of a 01j0i suffix, and

• b represents the first 0 of a 01j0i suffix, and

• c represents the first 1 of a 101j0i suffix,

where j > 0. Observe that a and b are well-defined for all k-ary trees, except
when the corresponding k-ary Dyck word is 1t0(k−1)t. On the other hand, c is
only defined when the corresponding k-ary Dyck word has the specified suffix.
In terms of additional memory, we maintain a pointer to a , and references to
b and c can be computed from a “on-the-fly” in O(1) time when necessary.
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Besides these nodes, we will also refer to the “next youngest sibling” of a .
That is, if a has label `, then we will refer to the (`−1)st child of a ’s parent.
Since there is no word for “next youngest sibling” in English, we borrow the
Japanese term otōto for this concept4. Observe that a ’s otōto is always well-
defined since a has label ` for ` > 1. In general, a ’s otōto can be a leaf or an
internal node, and in either case it can be easily obtained from a in O(1) time.
Two small examples of a , b , c , and a ’s otōto appear below.

b

aototo

ototo
ab

c

3.3.2. Successor Translation: k-ary Dyck Words to k-ary Trees

Now we translate each row of Table 6 into corresponding O(1)-time opera-
tions on k-ary trees. We will see that each row is the result of moving a and
sometimes c . We also translate the conditions of each row into O(1)-time tests,
so that the resulting algorithm can determine which case to apply. In each case,
we omit the details on updating every additional variables in O(1) time. For
the moment, we assume that a is well-defined and then we discuss (6d) as a
special case. First we consider (6a) below.

String Successor
(6a) γ001j0i γ01j0i+1

This case applies when the corresponding k-ary Dyck word has a suffix of
the form 001j0i where j > 0. This arises in two distinct scenarios:

1. a ’s label is ` ≥ 3 and a ’s otōto is a leaf, or

2. a ’s otōto is an internal node.

Observe that both scenarios can be tested for in O(1) time. In the first scenario,
b is simply a ’s otōto. In the second scenario, b is the kth child of the otōto’s k-
pointer. In both scenarios, we simply swap a and b to change the suffix 001j0i

into 01j00i = 01j0i+1. This can be done in O(1) time, and the two scenarios
are illustrated by Figure 3 (i) and (ii), respectively.

The next two cases are (6b) and (6c). In these cases the corresponding k-ary
Dyck word has suffix 101j0i and the following two points hold:

• a ’s label is ` = 2, and

• a ’s otōto is a leaf.

These two points imply that c is a ’s parent.
We consider (6b) below.

4Otōto literally translates to “younger brother” but we use it as “next youngest sibling”.
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b a a b

(i)
100101100001110000000 (left)
100101100011100000000 (right)

b

ba

a

(ii)
110000101110000100011100000000 (left)
110000101110000100111000000000 (right)

Figure 3: Examples of translating (6a) when a’s otōto is (i) a leaf, and (ii) a non-leaf. In both
cases the successor is applied to the tree on the left, and the result is on the right.

ab a

cc

b

(i)
100100110000101110000000 (left)
100100110000111100000000 (right)

a

c

b

c

a

b

(ii)
100110000101010010010110000000 (left)
100110000101010010001100000100 (right)

Figure 4: Examples of (i) translating (6b), and (ii) translating (6c). In both cases the successor
is applied to the tree on the left, and the result is on the right.
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String Successor
(6b) γ101j0i where i = (k−1)(j+1)−1 γ1j+10i+1

When i = (k−1)(j+1)−1, the root and c are on the same k-path. The root
is one end of this k-path, and the other end of the k-path is either c (when
k > 2) or a (when k = 2). Observe that both situations can be tested for in
O(1) time. To change the suffix 101j0i into 11j00i = 1j+10i+1 we again simply
swap a and b . This can be done in O(1) time, as illustrated by Figure 4 (i).

We consider (6c) below.

String Successor
(6c) γ101j0i where i ≥ (k−1)(j+1) γ01j0i−k+110k−1

When i ≥ (k−1)(j+1), the root and c are not on the same k-path. More
specifically, the root’s k-pointer is not equal to c (when k > 2) and is not equal
to a (when k = 2). Observe that both situations can be tested for in O(1)
time. In this case we need to move both a and c . Figure 4 (ii) provides an
illustration. Before describing the movements, it is helpful to point out that the
subtree rooted at a represents the substring 1i0(k−1)i+1 in the corresponding
k-ary Dyck word since the final 0 is not omitted. Also, if a was replaced by a
leaf, then the subtree rooted at c would represent the substring 10k.

We conceptualize a ’s movement in two steps. First we move a so that
it becomes the kth child of c instead of its 2nd child. This has the effect of
replacing the corresponding k-ary Dyck word suffix 101j0i by 10k−11j0i−k+2.
In other words, we have moved a ’s substring 1i0(k−1)i+1 to the right k − 2
positions. To complete the movement of a we move its substring one more
position to the right. We do this by swapping a with a leaf that is obtained
as follows: Take c ’s k-pointer to a node which must be labeled i for i < k,
then travel up one parent, and finally down to the i + 1st child to obtain the
desired leaf. This second swap changes the corresponding k-ary Dyck word
suffix from 10k−11j0i−k+2 to 10k1j0i−k+1. Conceptually we have described this
movement of a in two steps, but the intermediate step is unnecessary in practice.
Regardless of the implementation, a ’s movement this can be done in O(1) time.

Next we move c so that it extends the root’s k-path. More specifically, we
swap c with the leaf that is the kth child of the node pointed to by the root’s
k-pointer. This swap has the result of swapping c ’s 10k substring with the last
0 in the corresponding k-ary Dyck word suffix. Thus, the suffix is changed from
10k1j0i−k+1 to 01j0i−k+110k−1. Again c ’s movement can be done in O(1) time.

Together, the movement of a and c cause the suffix of the corresponding
k-ary Dyck word to be changed from 101j0i to 01j0i−k+110k−1, as desired.

Finally, we consider (6d) below.

String Successor
(6d) 1t0(k−1)t 1t−10(k−1)(t−1)10k−1

Our algorithm begins by creating the k-ary tree corresponding to 1(k−1)t0t;
we do not need to test for this case. This initial tree is the only tree where the
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value a is undefined. To apply (6d) we move the last internal node in pre-order
so that it becomes the kth child of the root. The reinserted node then becomes
the first value for a . This can be done in O(1) time.

Overall, the discussion in this subsection has proved the following theorem.

Theorem 5. The k-ary trees with t internal nodes can be generated in reverse
complemented cool-lex order by a loopless algorithm which uses O(t) additional
variables.

Implementations of Cool 1K , CoolK, and the k-ary tree algorithm are available
from the authors. Our implementation of the k-ary tree algorithm terminates
when the a pointer is set to the root, and the root pointer is never changed
throughout the algorithm. We also mention that the additional memory used
by the algorithm can be created “from scratch” for any tree in linear time.
Thus, the successor algorithm from Table 6 takes O(n) time (without needing
to translate it back and forth to k-ary Dyck words) and moreover, the loopless
algorithm could be started from any tree given O(n)-time initialization. Each
iteration of our k-ary tree implementation requires at most 20 variable updates
(including child pointers, parent pointers, k-pointers, node labels, and the a
pointer) for each k ≥ 3. Given its increased generality, this compares favourably
to the 16 pointer updates required by the loopless algorithm for generating
binary trees in cool-lex order from [20]. (In this case, the successor algorithm
found in Table 1 provides a Gray code since the issue found in Figure 1 (a) does
not apply.)

4. Ranking and Unranking

In this section we generalize k-ary Dyck words, discuss cool-lex order re-
cursively, and then efficiently rank and unrank k-ary Dyck words in cool-lex
order.

A string B ∈ B(s+t, t) is a k-ary Dyck prefix if the number of 0s in each
prefix is at most k−1 times the number of 1s. Notice that k-ary Dyck prefixes
with t 1s can have s ≤ (k−1)t 0s, whereas k-ary Dyck words with t 1s must
have s = (k−1)t 0s. Let Dk(t, s) be the k-ary Dyck prefixes in B(s+t, t). Thus,

Dk(t, s) = {B ∈ B(s+ t, t) | B0(k−1)t−s ∈ Dk(t)}.

Let Nk(t, s) be the cardinality of Dk(t, s). Also let v = (k−1)(t−1) in this
section. The significance of this value is that every B ∈ Dk(t, s) has suffix 0s−v

if s > v.

Lemma 2. Nk(t, s) = 0 if t = 0, Nk(t, s) = 1 if t > 0 and s = 0, and otherwise

Nk(t, s) =

{
Nk(t−1, s) + Nk(t, s−1) if 1 ≤ s ≤ v;

1
kt+1

(
kt+1

t

)
if v < s ≤ (k − 1)t.
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Proof. Dk(0, s) = ∅ and Dk(t, 0) = {1t} if t > 0. If 1 ≤ s ≤ v, then B1 ∈
Dk(t, s) if and only if B ∈ Dk(t−1, s) and B0 ∈ Dk(t, s) if and only if B ∈
Dk(t, s−1). Thus, Nk(t, s) = Nk(t−1, s)+Nk(t, s−1). If v < s ≤ (k−1)t, then
all strings in Dk(t, s) end in 0 and B ∈ Dk(t, s) if and only if B0(k−1)t−s ∈ Dk(t).
Thus, Nk(t, s) = 1

kt+1

(
kt+1

t

)
by the bijection between Dk(t) and k-ary trees with

t internal nodes [11, 34]. �

Ruskey, Sawada, Williams [18] prove that the following recursive formula
gives the cool-lex order of any bubble language L. The formula is explained
below.

C(t, s, γ) =

{
C(t−1, 1, 10s−1γ), . . . , C(t−1, s−j, 10jγ), 1t0sγ if t > 0;

0sγ if t = 0.

(2a)

(2b)

If 1t0sγ ∈ L and γ doesn’t begin with 0, then C(t, s, γ) is the cool-lex order for
the strings in L with suffix γ. The “fixed-suffix” γ is extended in turn in (2a)
to 10s−1γ, 10s−2γ, . . . , 10jγ where j is the minimum value such that 10jγ is the
suffix of a string in L. Notice that γ is extended by 10i for decreasing i with one
exception: The single string resulting from i = s (namely, 1t0sγ = 1t−110sγ =
C(t−1, 0, 10sγ)) is last instead of first. In fact, this is the only difference between
cool-lex order and conventional “co-lex order” (see the comparison on page
9). The entire cool-lex order for some L with 1t0s ∈ L is C(t, s, ε). Now we
specialize cool-lex order to k-ary Dyck prefixes. Let the coolKat order for L =
Dk(t, s) be denoted Dk(t, s, ε) = C(t, s, ε), where ‘coolKat’ is the k-ary Catalan
generalization of ‘coolCat’.

Lemma 3. CoolKat order is Dk(t, s, γ) = ε if t = 0, and otherwise

Dk(t, s, γ) =

{
Dk(t−1, 1, 10s−1γ), . . . ,Dk(t−1, s, 1γ), 1t0sγ if s ≤ v;
Dk(t−1, 1, 10s−1γ), . . . ,Dk(t−1, v, 10s−vγ), 1t0sγ if v < s ≤ (k−1)t.

Proof. L = Dk(t, s) is a bubble language, therefore Dk(t, s, γ) follows from
(2) by giving the minimum j such that 10j is the suffix of a string in L. If
s ≤ v, then j = 0 by 1t−10s1 ∈ L. If v < s ≤ (k − 1)t, then j = s − v by
1t−10s10s−v ∈ L. �

Now we efficiently rank and unrank k-ary Dyck prefixes — with examples
provided after Theorems 8 and 7. With respect to an ordered set of strings L =
B1, B2, . . . , Bm, the rank of Bi is rank(Bi,L) = i−1, and unrank(i−1,L) = Bi

for 1 ≤ i ≤ m. For convenience define R(B,L) = rank(B,L) + 1. Also let
Dk(t, s) denote Dk(t, s, ε).

Theorem 6. If B = α10m ∈ Dk(t, s) for a (possibly empty) binary string α
and m ≥ 0, then R(B,Dk(t, s)) is equal to

Nk(t, s) if B = 1t0s;

R(α,Dk(t−1, s−m))+
s−m−1∑

i=1

Nk(t−1, i) if B 6=1t0s and s≤v;

R(β,Dk(t, v)) otherwise,

where β is the first t+ v bits of B.

26



Proof. If B = 1t0s, then R(B,Dk(t, s)) = Nk(t, s) since B is last in Dk(t, s)
by Lemma 3.

If B 6= 1t0s and 0 ≤ s ≤ v, then Dk(t−1, i) appears before B in Dk(t, s) for
1 ≤ i ≤ s−m−1 by Lemma 3.

If s > v, then by Lemma 3 each string of Dk(t, v) appears as a prefix of
the corresponding string in Dk(t, s), i.e., Dk(t, s) = Dk(t, v, 0s−v). Therefore,
R(B,Dk(t, s)) = R(β,Dk(t, v)). �

With respect to an ordered set of strings L, let U(x,L) = unrank(x−1).

Theorem 7. The value of U(x,Dk(t, s)) is
1t0s if x = Nk(t, s);

U(x−
y∑

i=1

Nk(t−1, i),Dk(t−1, y+1))10s−y−1 if x<Nk(t, s) and s≤v;

U(x,Dk(t, v))0s−v otherwise,

where y is the largest integer such that x >
∑y

i=1 Nk(t−1, i).

Proof. If x = Nk(t, s), then U(x,Dk(t, s)) is the last string in Dk(t, s) and by
Lemma 3, U(x,Dk(t, s)) = 1t0s.

We now consider the case when x < Nk(t, s) and 0 ≤ s ≤ v. Let p be
an integer such that U(x,Dk(t, s)) is in Dk(t, p, 10s−p). By Lemma 3, x >∑p−1

i=1 Nk(t−1, i). It is now straightforward to observe that y = p−1. Therefore,
U(x,Dk(t, s)) = U(x−

∑y
i=1 Nk(t− 1, i),Dk(t−1, y + 1))10s−y−1.

The remaining case is x < Nk(t, s) and s > v. By Lemma 3, each string of
Dk(t, v) appears as a prefix of the corresponding string inDk(t, s), i.e., Dk(t, s) =
Dk(t, v, 0s−v). Therefore, U(x,Dk(t, s)) = U(x,Dk(t, v))0s−v. �

It is straightforward to prove by induction that
s∑

i=1

Nk(t−1, i) = Nk(t, s)−1.

Therefore, we can achieve faster ranking and unranking by modifying the ex-
pressions for R(B,Dk(t, s)) and U(x,Dk(t, s)) as follows:

Corollary 1. Assume that B,m,α, x and y have the same meaning as in The-
orems 8 and 7. Then the value of R(B,Dk(t, s)) is Nk(t, s) if B = 1t0s;

R(α,Dk(t−1, s−m))+Nk(t, s−m−1)−1 if B 6=1t0s and s≤v;
R(β,Dk(t, v)) otherwise.

The value of U(x,Dk(t, s)) is 1t0s if x = Nk(t, s);
U(x−Nk(t, y)+1,Dk(t−1, y+1))10s−y−1 if x<Nk(t, s) and s≤v;
U(x,Dk(t, v))0s−v otherwise.
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N5(t, s) s=0 s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 s=11 s=12

t = 1 1 1 1 1 1
t = 2 1 2 3 4 5 5 5 5 5
t = 3 1 3 6 10 15 20 25 30 35 35 35 35 35

Table 7: The numbers N5(t, s).

We precompute and store the values of Nk(t, s) in a table so that for any
value of k, t, s, we can obtain Nk(t, s) with a constant time table look-up. For
example, Table 7 illustrates the first few values of N5(t, s). In the ranking and
unranking processes we assume that such a table is computed in advance. The
computation of the table Nk(t, s) takes O(tn) operations since the size of the
table is O(tn) and each entry can be computed with one addition by Lemma 2.
Using this table we obtain O(t+s)-operation ranking and unranking algorithms
for k-ary Dyck words using Corollary 1. Although our discussion has been in
terms of cool-lex order and k-ary Dyck words, the same results hold for k-ary
trees and complemented and reversed cool-lex order since converting between
k-ary trees and k-ary Dyck words takes O(n) time, as does complementing and
reversing a binary string. Our result is summarized in Theorem 8.

Theorem 8. The k-ary Dyck words of length n = kt (and k-ary trees with t
internal nodes) can be ranked and unranked using O(kt) arithmetic operations
on integers as large as the k-ary Catalan number Ct,k in cool-lex order (and
reverse complemented cool-lex order), so long as the table of Nk(t, s) values is
precomputed, which itself takes O(tn) arithmetic operations.

For example, to compute the rank of the string 100100010 ∈ D5(3, 6), we
first compute R(100100010,D5(3, 6)) as follows:

R(100100010,D5(3, 6)) = R(1001000,D5(2, 5)) + N5(3, 6−1−1)− 1

= R(100,D5(1, 2)) + N5(2, 5−3−1)− 1 + N5(3, 4)− 1

= N5(1, 2) + N5(2, 1)− 1 + N5(3, 4)− 1

= 16.

Since R(100100010,D5(3, 6)) = rank(100100010,D5(3, 6))+1, therefore the rank
of the string 100100010 in D5(3, 6) is 15.

We now compute the string of D5(3, 6) that has rank 15. Since unrank(15) =
U(16,D5(3, 6)), we compute U(16,D5(3, 6)) as follows:

U(16,D5(3, 6)) = U(16− N5(3, 4) + 1,D5(2, 5)) 106−4−1

= U(2,D5(2, 5)) 10

= U(2,D5(2, 4)) 05−(2−1)(5−1)10

= U(2− N5(2, 1) + 1,D5(1, 2)) 104−1−1010

= U(1,D5(1, 2)) 100010

= 100100010.
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t � s 0 1 2 3 4 5 6 7 8

0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132
7 1 7 27 75 165 297 429 429
8 1 8 35 110 275 572 1001 1430 1430

N2(t, s)

13

8

27

0

34

164

274

89

571

296

1000

266 74

1

0

13

41

131

428

4

1429

19 475

7

3

0

2

0

0

0

0 109

40

Figure 5: Ranking 11100110101100.

Note that R(B,Dk(t, s)) ignores trailing 0s; the rank therefore depends only
on the positions of the 1s. If B = 1t0s, then the rank of B is Nk(t, s) − 1.
Otherwise, if c1, c2, . . . , ct are the positions occupied by the 1s and q is the
minimum value for which cq > q, then R(B,Dk(t, s)), as expressed in Corollary
1, can be iterated to obtain

R(B,Dk(t, s)) = Nk(q, cq−q)− 1 +

t∑
j=q+1

(Nk(j, cj−j−1)− 1).

Consequently, there is a nice way to view the ranking process as a walk
on a certain integer lattice as illustrated in Figure 5, where k = 2. The walk
starts at the upper left; each 1 is a vertical step down and each 0 is a horizontal
step to the right. The vertical edges are labeled, where the t-th row of vertical
edges (counting from 1) gets labeled as follows from left-to-right: (no label),
Nk(t, 0) − 1,Nk(t, 1) − 1, . . . ,Nk(t, v) − 1. The label furthest to the right in
each row is not on an edge. Figure 5 illustrates the path for the bitstring
11100110101100. The square marks the endpoint of the part of the path that
ends at the leftmost 01; i.e, the string 111001 in the example bitstring. The rank
of the bitstring is obtained by summing the edge labels on the path after the
square, adding the edge label on the edge to the right of the one that precedes
the square (the circled label in the figure), and then subtracting 1. Thus the
rank of 11100110101100 is 4 + 19 + 74 + 109 + 8− 1 = 213.

To unrank we reverse the process. Suppose, for example, that we want to
compute the string of D2(8, 6) that has rank 212. We start where the example
path ends. We move to the left so long as the edge labels exceed the remaining
rank, then move up and repeat. Arriving at the old square, we are at an impasse;
the remaining rank is 7, so we have yet to encounter the square. So we move up
and the rank becomes 4, which is what remains if we make the current location
(one move above the old square) the new square. Thus the string of D2(8, 6)
that has rank 212 is 11001110101100. We leave it to the reader to turn this
description into an algorithm.

Observe that we can avoid computing the entire table for ranking and un-
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ranking if we can compute the values needed along the path by O(1) arithmetic
operations per move. This is possible for the case when k = 2, as proved in [20],
using the property that for all 0 ≤ s ≤ t, N2(t, s) = t−s+1

t+1

(
t+s
t

)
=
(
t+s
t

)
−
(
t+s
t+1

)
.

First compute N2(t, s), which takes O(n) arithmetic operations. Then make
use of the following relations which can be checked using the closed form of
N2(t, s).

N2(t− 1, s) =
(t+ 1)(t− s)

(t− s+ 1)(t+ s)
N2(t, s) and

N2(t, s− 1) =
s(t− s+ 2)

(t− s+ 1)(t+ s)
N2(t, s).

On the other hand, no nice closed form is currently known for Nk(t, s), where
k > 2. Therefore, it would be interesting to examine whether the values needed
along the path can be computed using O(1) arithmetic operations per move
even when k > 2. However, still we can avoid computing the entire table for
ranking and unranking using Corollary 1 along with the following equation, as
proved in [9].

Nk(t, s+ 1) =
∑

b t+s
k c+1≤j≤t

1

j

(
kj

j − 1

)(
t+ s− kj
t− j

)

where 0 ≤ s ≤ v and
(
m
n

)
= (−1)n

(
n−m−1

n

)
.

Of course, if many ranking/unranking operations are being performed then
it will be better to pre-compute the Nk(t, s) table.

5. Final Remarks

In this article we have considered cool-lex order and two of the most promi-
nent k-ary Catalan structures — k-ary Dyck words and k-ary trees — in the con-
text of combinatorial generation. Our results include algorithms for O(n)-time
successors, loopless generation, and O(t) arithmetic operation ranking (subject
to the standard table precomputation) for the reverse complemented variation
of cool-lex. Furthermore, the loopless generation algorithm of k-ary Dyck words
(and 1/k-ary Dyck words) is very simple, and requires only two index variables
of additional memory. As discussed in Section 1, one reason cool-lex order is
able to obtain these results is because it is a Gray code that is remarkably simi-
lar to the lexicographic order known as co-lex order. In other words, it is follows
a simple pattern both locally and globally.

Several natural questions arise from this work:

1. Which other (k-ary) Catalan structures can be generated by a loopless
algorithm in cool-lex order or one of its variants? Certain structures seem
like natural candidates, such as the seventh structure in the “Catalan
garden” [8] known as k-ary good paths.
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2. As mentioned in Section 1, efficiently computable bijections between two
structures allow for efficient successor and ranking algorithms to be trans-
lated between them. Which pairs of (k-ary) Catalan structures have bi-
jections that can be computed in linear time?

3. Section 2.1 describes the general cool-lex successor algorithm for (fixed-
weight binary) bubble languages, and Section 1.3 mentions that many
combinatorial objects can be represented by bubble languages. Which of
these combinatorial objects can be generated by a loopless algorithm in
cool-lex order? Which of these objects can be efficiently ranked in cool-lex
order?

Finally, we thank the anonymous referees who carefully corrected a number
of errors and omissions.
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