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Abstract

We develop a constant amortized time (CAT) algorithm for generating permutations
with a given number of inversions. We also develop an algorithm for the generation
of permutations with given index.
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1 Introduction

Among all statistics of permutations, the number of inversions are of paramount
importance to computer scientists because of their connection with sorting and
searching algorithms. Furthermore, they have interesting combinatorial prop-
erties and are intensely studied in the mathematical literature (e.g., Margolis
[7], Clark [3]). Both the computational and mathematical properties of per-
mutations with a given number of inversions are nicely summarized by Knuth
[4].

However, we know of no published algorithms for generating all n-permutations
with a given number of inversions (or with given index). There are many pub-
lished algorithms for generating various types of permutations and many of
these run in constant time per permutation, in an amortized sense. For ex-
ample, there are algorithms for derangements [1], involutions [10], up-down
permutations [2], and linear extensions of posets [9],[5].
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An algorithm runs in constant amortized time (CAT) if the amount of compu-
tation, after a small amount of preprocessing, is proportional to the number
of objects that are generated [8].

An inversion of a permutation π is a pair (πi,πj) where i < j and πi > πj [4].

Let I(π) denote the number of inversions in π. Clearly, 0 ≤ I(π) ≤
(

n
2

)
,

with the extremes occurring for 12 · · ·n and n · · · 21. Following Knuth [4] we
use In(k) to denote the number of permutations of [n] with k inversions.
By [n] we denote the set {1, 2, . . . , n}. This paper presents a CAT algorithm
for generating permutations of [n] with a given number of inversions. The
algorithm is outlined in Section 2.

The index of a permutation π is the sum of indices j such that πj > πj+1,
denoted J(π) [4]. A theorem of MacMahon [8] establishes a bijection between
classes of permutations counted by the two statistics.

Theorem 1.1 The number of permutations of [n] with k inversions is the
same as the number of permutations of [n] with index k; i.e., both sets have
cardinality In(k).

Even though there is a bijection between two sets, a fast algorithm for gener-
ating one set will not necessarily imply the existence of a fast algorithm for
generating the other set. An algorithm for generating permutations with fixed
index k that experimentally appears to be CAT in the range 2 < k <

(
n
2

)
− 2

is given in Section 3.

2 Generating Permutations with a Given Number of Inversions

In this section, we develop a CAT algorithm for generating all permutations
π ∈ Sn where I(π) is equal to some given value k.

2.1 Algorithm

The algorithm works from right to left in the one line notation of the per-
mutation by placing elements one at a time. The key to the algorithm is the
following lemma.

Lemma 2.1 Given natural numbers n, k with 0 ≤ k ≤
(

n
2

)
, and x ∈ [n], there

is a permutation π ∈ Sn of the form π = π1π2 · · · πn−1x such that I(π) = k if
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gen( n, k )
(1) if n = 0 ∧ k = 0 then output π1π2 · · · πN

(2) for each x ∈ [N ] \ {πn+1, . . . , πN}
(a) if n− rank(x) ≤ k ≤

(
n−1

2

)
+ n− rank(x) then

(i) πn := x
(ii) gen( n− 1, k − n + rank(x) )

Fig. 1. Generating Permutations With Given Number of Inversions

and only if

n− x ≤ k ≤
(
n− 1

2

)
+ n− x. (1)

Proof. We must show both directions of the lemma.
⇒: Suppose π = π1 · · · πn−1x and I(π) = k. The number of inversions in

π1 · · · πn−1 satisfies 0 ≤ I(π1 · · · πn−1) ≤
(

n−1
2

)
. There are exactly n− x inver-

sions of the form (πi, x). Thus, we have n− x ≤ I(π) ≤
(

n−1
2

)
+ n− x.

⇐: Suppose the inequality in the lemma is satisfied for n, k, and x. There is
a permutation π1π2 · · · πn−1 of [n] \ {x} such that I(π1π2 · · · πn−1) = k−n + x

since 0 ≤ k − n + x ≤
(

n−1
2

)
by (1). But then π1π2 · · · πn−1x ∈ Sn and

I(π1π2 · · · πn−1x) = k. 2

We only recurse if it is possible to extend the partial permutation to a per-
mutation with the given number of inversions. That is to say, no branch in
the computation tree is a dead-end. Such algorithms are said [8] to be BEST
(backtracking ensuring success at terminals). BEST algorithms are often fast
in practice and are generally easier to analyze.

Our algorithm generates permutations of [N ]. Define rank(x) as the position
of x in the ordered list X = [N ]\{πn+1, . . . , πN} of remaining elements. Notice
that the n − rank(x) is the number of inversions created by placing element
x at the current position, n. The method is outlined in Figure 1.

Lemma 2.2 Given that πn+1 · · · πN is an (N−n)-permutation of {1, 2, . . . , N},
the call gen(n, k) generates all permutations π1π2 · · · πN of {1, 2, . . . , N} such
that I(π1 · · · πn) = k.

Proof. Our proof is by induction on n. Since the empty permutation has no
involutions, the lemma is true when n=0.
There are precisely n−rank(πn) inversions of the form (πi, πn). By Lemma 2.1

we know that πn can be any value such that n − rank(x) ≤ k ≤
(

n−1
2

)
+

n− rank(x). Inductively, for each possible value of x = πn, the recursive call
gen(n−1, k−n+rank(πn)) generates all permutations for which I(π1 · · · πn−1) =
k−n+rank(πn). Together with the n−rank(πn) inversions created by element
πn, we have generated all n-permutations with k inversions. 2
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Corollary 2.1 The call gen(N,K) generates all permutations π1π2 · · · πN of
{1, 2, . . . , N} such that I(π1π2 · · · πn) = K.

The following result is important in determining the order to traverse the list
X of remaining elements of the permutation.

Lemma 2.3 If a1 < a2 < · · · < an where {a1, a2, . . . , an} = [N ]\{πn+1, . . . , πN}
then those ai that satisfy the condition in lemma 2.1 form a contiguous sub-
sequence ai, ai+1, . . . , aj where i = 1 or j = n.

Proof. It is clear from (1) that the values occur in a contiguous subsequence.

We will show, under the assumption that 0 ≤ k ≤
(

n
2

)
, that (1) is satisfied for

x = 1 or x = n (or both), which will suffice to prove the lemma.

So suppose that (1) fails for x = n. Then either k < 0 or k >
(

n−1
2

)
. Since the

former cannot occur we have
(
n− 1

2

)
< k ≤

(
n

2

)
.

Hence

n− 1 ≤
(
n− 1

2

)
< k ≤

(
n

2

)
=

(
n− 1

2

)
+ n− 1,

which is (1) when x = 1. 2

If 0 < k ≤
(

n−1
2

)
then we traverse the list in reverse order from the largest to

the smallest element. Otherwise, we traverse the list in order from the smallest
to the largest element. In either case, if the test in step 2(a) of the algorithm
of Figure 1 fails, we stop traversing the list. Implemented in this way, the
algorithm has the crucial property that its running time is proportional to the
total number of nodes in its computation tree. In order to maintain the list
we use the technique dubbed “dancing links” by Knuth [6].

2.2 Example

As an example, consider generating all permutations of length 4 with 2 in-
versions. The five such permutations are {3124, 2314, 2143, 1423, 1342}. The
computation tree is given in Figure 2. The list of remaining permutation ele-
ments at each node is given in square brackets followed by the current values
of n and k, along with the current partial permutation.

Consider the leftmost child of the root as an example. We already know that
any child permutation ends in a 4 and has two inversions to the left of the
current position. The next step is to find a value for the third position. This
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[4,3,2,1] (k=2, n=4)
_,_,_,_

[3,1] (k=1, n=2)
_,_,2,4

[3,2] (k=0, n=2)
_,_,1,4

[2,1] (k=1, n=2)
_,_,4,3

[4,1] (k=1, n=2)
_,_,2,3

[3,1] (k=0, n=2)
_,_,4,2

[3,2,1] (k=2, n=3)
_,_,_,4

[4,2,1] (k=1, n=3)
_,_,_,3

[4,3,1] (k=0, n=3)
_,_,_,2

[3] (k=0, n=1)
_,1,2,4

[2] (k=0, n=1)
_,3,1,4

[2] (k=0, n=1)
_,1,4,3

[1] (k=0, n=1)
_,4,2,3

[1] (k=0, n=1)
_,3,4,2

[] (k=0, n=0)
3,1,2,4

[] (k=0, n=0)
2,3,1,4

[] (k=0, n=0)
2,1,4,3

[] (k=0, n=0)
1,4,2,3

[] (k=0, n=0)
1,3,4,2

Fig. 2. Example of the Algorithm of Figure 1

position cannot be 3 since this leaves only 1 and 2, which can only produce one
inversion. Therefore, this node has two children, as shown in the computation
tree. This process is continued recursively until all positions are filled in.

2.3 Path Elimination

We notice that there may be many successive nodes in the computation tree
with only one child. This leads to inefficiency since, for example, to generate
the one permutation with k = 0 takes time Θ(n), and to generate the n − 1
permutations with k = 1 takes time Θ(n2). To combat this problem, we will
apply a path elimination technique (PET) from [8] and stop the recursion
early. This will allow us to eliminate most, but not all of the nodes in the
recursive computation tree that have one child. Details of this process follow.

First, if k = 0, there is always just one valid permutation of X; the one with all
elements ascending. We do not eliminate such paths, unless they arise from
a k = 1 node higher in the tree. If k = 1, we can easily generate all valid
permutations of X in constant amortized time by starting with all elements in
ascending order and swapping one pair of adjacent elements at each step. For
example, if n = 4 and X = [4], the permutations are {2134, 1324, 1243}. So,
if k = 1, we stop the recursion and generate the n − 1 permutations directly
in time Θ(n).

Similarly, if k =
(

n
2

)
, then there is exactly one valid permutation; the the one

with all elements descending. To eliminate many of these 1-paths we notice
that if k =

(
n
2

)
− 1 we can easily generate all valid permutations in constant

amortized time by starting with all elements in descending order and swapping
one pair of adjacent elements at each step. So, if k =

(
n
2

)
− 1 we again stop

the recursion and generate the n− 1 permutations directly in time Θ(n).
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In Figure 2 the two nodes with darker borders are the roots of subtrees with
k = 1 and k =

(
n
2

)
(with n = 3). The subtrees at these nodes are replaced

with non-recursive calls. One 1-path remains and it is indicated by the nodes
with the black dots in their lower right corners. The cost of computing this
path is assigned to the subtree rooted at the highlighted k = 1 node.

Now, we state and prove the main theorem of this paper. The argument that
our algorithm runs in constant amortized time is dependent upon the list
traversal and path elimination techniques discussed earlier.

Theorem 2.1 The algorithm of Figure 1 with path elimination techniques
generates permutations with a given number of inversions in constant amor-
tized time.

Proof. By our earlier discussion the computation time of the algorithm is
proportional to the number of nodes in its recursive computation tree. If call
with k = 1 or k =

(
n
2

)
−1 occurs, then the n−1 permutations are generated in

Θ(n) time by a separate non-recursive routine and we regard the corresponding
subtrees as being replaced by a single node in the recursive computation tree.
Now every root of a 1-path in the computation tree has k = 0 or k =

(
n
2

)
. A

root r of a 1-path with k = 0 can occur only once amongst its siblings, and it
must have a sibling q with k = 1. The Θ(n) cost of generating the one path
is charged to the n − 1 leaves of the subtree represented by q. A root of a
1-path with k =

(
n
2

)
is handled in an analogous manner. A subtree can only

be charged once by this scheme (unless n = 3 in which case it can be charged

twice). If 1 < k <
(

n
2

)
− 1, then an internal node of the computation tree has

at least two children. Thus the total number of such internal nodes is less than
the number of leaves. 2

3 Generating Permutations with Given Index

In this section, we are concerned with the generation of all π such that J(π) is
equal to some given value. The algorithm for this problem has a similar flavor
to the algorithm of Figure 1 for generating permutations with a given number
of inversions, but there are significant and subtle differences. For fixed k in the
range 2 < k <

(
n
2

)
− 2 the algorithm appears to be CAT in the sense that the

amortized time per permutation is observed to be decreasing for large enough
n.
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gen(n, k)
(1) if n = 0 ∧ k = 0 then output π1π2 · · · πN

(2) for each x ∈ [N ] \ {πn+1, . . . , πN}
(a) if x > πn+1 then k′ := k − n else k′ := k;

(b) if n− rank(x) ≤ k′ ≤
(

n
2

)
− rank(x) + 1 then

(i) πn := x;
(ii) gen(n− 1, k′);

Fig. 3. Generating Permutations With Given Index (assumes πN+1 = N + 1).

3.1 Algorithm

As was the case for inversions, this algorithm works from right to left. We
assume that we are generating permutations of [N ]. In order to treat all po-
sitions in a uniform manner we will assume that πN+1 = N + 1. Some simple
results will help us construct an algorithm in much the same way as was done
for inversions.

Consider a permutation of [n] of the form π1π2 · · · πn−1x. For x fixed in position
n, the permutation of smallest index is

(x+1)(x+2) · · · (x + (n−x)) 12 · · · (x−1) x

and the permutation of greatest index is

(x−1) · · · 21 (x+(n−x)) · · · (x+2)(x+1) x.

The index of those permutations is n− x and
(

n
2

)
− x + 1, respectively. Based

on this observation and reasoning similar to that used to prove Lemma 1, we
are led to the following lemma.

Lemma 3.1 Given a triple (n, x, k) of integers, there is a permutation π of
the form π = π1 · · · πn−1x such that J(π) = k if and only if

n− x ≤ k ≤
(
n

2

)
− x + 1. (2)

The algorithm of Figure 3 generates all n-permutations with index k. It is
based on Lemma 3.1, except that we need to use rank(x) instead of x and if
x > πn+1 then the index target needs to be adjusted by n.

Lemma 3.2 Given that πn+1 · · · πN is an (N−n)-permutation of [N ], the call
gen(n, k) will generate all permutations π1π2 · · · πN of [N ] such that J(π1π2 · · · πn) =
k.
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Proof. We will prove this result by induction on n. Since the empty permuta-
tion has index 0. the lemma is true when n=0.

If n = N or πn < πn+1 then πn does not contribute to the index. By Lemma 3.1

we know that πn can be any value such that n−rank(x) ≤ k ≤
(

n
2

)
−rank(x)+

1. For each possible value of x = πn, we recurse with call gen(n − 1, k).
By our inductive assumption this call generates all permutations such that
J(π1 · · · πn−1) = k.

If πn > πn+1 then πn contributes n to the index. By Lemma 3.1 we know that

πn can be any value such that n − rank(x) ≤ k − n ≤
(

n
2

)
− rank(x) + 1.

For each possible value of x = πn, we recurse with call gen(n − 1, k − n).
By our inductive assumption this call generates all permutations such that
J(π1 · · · πn−1) = k−n. Together with the n added to the index by πn, we have
generated all n-permutations with index k. 2

Corollary 3.1 The call gen(N, K) will generate all permutations π1π2 · · · πN

of {1, 2, . . . , N} such that J(π1 · · · πn) = K.

A similar result to Lemma 2.3 is necessary to determine which order to traverse
the list X = [N ] \ {πn+1, . . . , πN} of remaining elements of the permutation.

Lemma 3.3 If a1 < · · · < ap−1 < πn+1 < ap < · · · < an where {a1, a2, . . . , an} =
[N ] \ {πn+1, . . . , πN} then,

• for 1 ≤ i < p, those ai that satisfy the condition in Lemma 3.1 for (n, ai, k)
form a contiguous subsequence ai, ai+1, . . . , aj where i = 1 or j = p− 1, and

• for p ≤ i < n, those ai that satisfy the condition in Lemma 3.1 for (n, ai, k−
n) form a contiguous subsequence ai, ai+1, . . . , aj where i = p or j = n.

Proof. It is clear from (2) that the values occur in a contiguous subsequence.

For 1 ≤ i < p, we will show that if (2) is satisfied for ai then it is satisfied
for ai+1, . . . , ap−1 or a1, . . . , ai−1 (or both), which will suffice to prove the first
half of the lemma. If (2) is satisfied for ai then we have

n− rank(ai) ≤ k ≤
(
n

2

)
− rank(ai) + 1.

If n − rank(ai) 6= k then x = rank(aj) satisfies (2) for 1 ≤ j < i. If
(

n
2

)
−

rank(ai) + 1 6= k then x = rank(aj) satisfies (2) for i < j < p.

For p ≤ i ≤ n, the argument is identical except k is replaced by k − n. 2

At Step (2) of the algorithm, we will traverse the list X up to four times. Once
from largest to smallest, once from smallest to largest and in both directions

8



starting from the largest element ap−1 less than πn+1. Our data structure allows
us to identify ap−1 in the list in constant time. In all of these cases, if the test
of step 2(b) of the algorithm of Figure 3 fails, we stop traversing the list. Also
note that we must keep track of where each traversal ends, making sure that
we do not recurse on the same element twice. Implemented in this way, the
algorithm has the crucial property that its running time is proportional to the
total number of nodes in its computation tree.

Similar improvements can be made to this algorithm as were made to the
inversion generation algorithm so as to produce a constant amortized time
algorithm, but only if 2 < k <

(
n
2

)
−2, and this has only been observed exper-

imentally. To be precise, for n > 4, the ratio of recursive calls to permutations
generated is strictly decreasing. To get this CAT behavior we must use the
path elimination techniques described in the following paragraphs.

Let {a1, a2, . . . , an} = [N ] \ {πn+1, . . . , πN} where a1 < a2 < · · · < an. If
k = 0 and an < πn+1 then there is only one valid permutation; the one
with all elements ascending. We do not eliminate such paths, unless they
arise from a k = 1 node, where an < πn+1, higher in the computation tree.
If k = 1 and an < πn+1, we can easily generate all valid permutations
in constant amortized time by starting with the identity and doing swaps
(π1, π2), (π1, π3), . . . , (π1, πn), printing each intermediate permutation.

Similarly, if k =
(

n
2

)
and an < πn+1, then there is exactly one valid per-

mutation; the one with all elements descending. To eliminate many of these
1-paths we notice that if k =

(
n
2

)
− 1 and an < πn+1 we can easily generate all

valid permutations in constant amortized time by starting with all elements
in descending order and swapping as done above for k = 1.

4 Final Remarks

The algorithms described in this paper are used in the second author’s “Combi-
natorial Object Server” at httpd://www.theory.csc.uvic.ca/~cos/ in the
permutations section. Java implementations of the algorithms can also be
downloaded there.
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