
NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE
SOLUTIONS

ALEJANDRO ERICKSON, ABRAHAM ISGUR, BRADLEY W. JACKSON, FRANK RUSKEY*,
AND STEPHEN M. TANNY

Abstract. A non-decreasing sequence of positive integers is (α, β)-Conolly, or Conolly-
like for short, if for every positive integer m the number of times that m occurs in the
sequence is α + βrm, where rm is 1 plus the 2-adic valuation of m. A recurrence relation is
(α, β)-Conolly if it has an (α, β)-Conolly solution sequence. We discover that Conolly-like
sequences often appear as solutions to nested (or meta-Fibonacci) recurrence relations of
the form A(n) =

∑k
i=1 A(n− si−

∑pi

j=1 A(n− aij)) with appropriate initial conditions. For
any fixed integers k and p1, p2, . . . , pk we prove that there are only finitely many pairs (α, β)
for which A(n) can be (α, β)-Conolly. For the case where α = 0 and β = 1, we provide a
bijective proof using labelled infinite trees to show that, in addition to the original Conolly
recurrence, the recurrence H(n) = H(n − H(n − 2)) + H(n − 3 − H(n − 5)) also has the
Conolly sequence as a solution. When k = 2 and p1 = p2, we construct an example of an
(α, β)-Conolly recursion for every possible (α, β) pair, thereby providing the first examples
of nested recursions with pi > 1 whose solutions are completely understood. Finally, in the
case where k = 2 and p1 = p2, we provide an if and only if condition for a given nested
recurrence A(n) to be (α, 0)-Conolly by proving a very general ceiling function identity.

1. Introduction

In this paper we analyze recurrence relations of the form

R(n) =
k∑

i=1

R

(
n− si −

pi∑
j=1

R(n− aij)

)
(1.1)

where the parameters k, si, pi and aij are positive integer constants (with the exception of si,
which can be equal to 0). We assume c initial conditions R(1) = ξ1, R(2) = ξ2, . . . , R(c) = ξc,
where unless otherwise indicated, ξi > 0. Equation (1.1) has a well-defined solution sequence
as long as for each i in {1, 2, . . . , k}, the argument n− si −

∑pi

j=1 R(n− aij) is positive.

We use the following notation for Equation (1.1) and optionally its initial conditions,

〈s1; a11, a12, . . . , a1p1 : s2; a21, a22, . . . , a2p2 : · · · : sk; ak1, ak2, . . . , akpk
〉[ξ1, ξ2, . . . , ξc].(1.2)

For convenience we use this notation to refer to both the recursion and its solution sequence
even in the situation where we are uncertain that a solution exists. For example Hofstadter’s
Q-sequence ([9]), defined by Q(1) = Q(2) = 1 and Q(n) = Q(n−Q(n−1))+Q(n−Q(n−2))
for n > 2 is written Q = 〈0; 1 : 0; 2〉[1, 1]; Q is a famous example where it is not known
whether or not a solution exists.

We classify recurrences of the form (1.1) according to the values of the parameters pi and
k. We say the above recursion has order p = (p1, p2, ..., pk), and for convenience we say it

Key words and phrases. Self-referencing recursion, nested recursion, slowly growing sequence, Conolly-
like, ruler function, meta-Fibonacci, bijective proof, infinite trees, ceiling function identity.

*Research supported in part by NSERC.
1

2 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

has order p if p1 = p2 = · · · = pk = p. We refer to k as the arity of a recursion. The case
k = 1 is uninteresting and yields only easily-understood periodic sequences (see [7] for an
outline of the required argument in a special case), so we only consider recursions of arity
at least 2.

To date, recursions of the form (1.1) have been examined only for p = 1 (see, for example,
[1, 5, 8, 11, 14, 15]). As with nested recursions of order 1, no general solution methodology
is available for general order p. Therefore a natural starting point for our analysis is the
gathering and organization of experimental data in a variety of situations.

Our empirical investigations focused on k = 2 and p > 1, ie, recursions of the form

R(n) = R(n− s−R(n− a1) · · · − R(n− ap)) + R(n− t−R(n− b1) · · · −R(n− bp)).
(1.3)

When it is convenient, we assume without loss of generality that 0 ≤ s ≤ t and 1 ≤
a1 ≤ · · · ≤ ap, and 1 ≤ b1 ≤ · · · ≤ bp. Using the notation introduced in (1.2), we write
R = 〈s; a1, . . . , ap : t; b1, . . . , bp〉.

Our empirical work indicated that many combinations of parameters and initial conditions
yield a solution sequence reminiscent of the well-known Conolly sequence [6]. This sequence is
the solution to the nested (also called self-referencing or meta-Fibonacci) recurrence relation
C(n) = 〈0; 1 : 1; 2〉[1, 2]. We say it is slowly growing or slow because it has the property that
successive differences are either 0 or 1. Any slowly growing sequence can be described by
its frequency sequence, φC(m), that counts the number of times that m occurs in C(n). It is
shown in [11] that φC(m) equals rm, the so-called “ruler function”. The ruler function rm is
defined as one plus the 2-adic valuation of m (the exponent of 2 in the prime factorization
of m). Thus rm = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5,

We observed that the aforementioned solution sequences related to the Conolly sequence
have frequency sequences of the form α + βrm, for integers α and β; we call such sequences
Conolly-like. When we want to specify α and β, we say the sequence is the (α, β)-Conolly
sequence. Correspondingly, we say that a recurrence relation is Conolly-like if it has a
Conolly-like solution sequence and is (α, β)-Conolly when the solution is (α, β)-Conolly.1

Because of their close connection to the ruler function, Conolly-like sequences have many
useful properties. In particular, following the approach in [11, 12] it is straightforward to

show that z
1−z

∏
n≥0

(
1 + z2nα+(2n+1−1)β

)
is the generating function for the general (α, β)-

Conolly sequence2. Thus, proving that a given recursion is (α, β)-Conolly also determines
the generating function for its Conolly-like solution.

In the balance of this paper we focus on proving the recurrences of the form (1.3) that
we have identified experimentally are indeed Conolly-like. To do so we develop a proof
technique for general p that adapts the tree-based combinatorial interpretations invented in
[11, 10, 12] for the case p = 1. Our idea is to build upon these combinatorial interpreta-
tions, which identify an infinite tree associated with the Conolly recursion and the recursion

1Note that a recurrence is Conolly-like if there is at least one set of initial conditions for which its solution
is Conolly-like; in general, for an arbitrary set of initial conditions, the solution, if it exists, will not be
Conolly-like.

2The central idea of this technique is to find a recursive description of the successive differences of the
(α, β)-Conolly sequence (these differences are either 0 or 1 because it is slowly growing), and then find the
generating function of these differences.

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 3

〈0; 1 : 2; 3〉[1, 1, 2], respectively. These order 1 recursions have solutions with frequency se-
quences rm and 2, respectively. For higher order Conolly-like recurrences our rough idea is
to create new trees as “linear combinations” of the original two trees.

Before we can apply the above approach effectively we must narrow the range of possible
recursions of the form (1.3) that are candidates for having Conolly-like solutions. We do so
in Section 2 where we derive asymptotic properties of any solution to (1.1). We compare
these properties with the known asymptotic properties of an (α, β)-Conolly sequence in order
to identify, for any given order p, necessary restrictions on the parameters α and β. These
findings provide important guidance for the empirical search procedures that we adopt and
motivate many of the results in the remainder of the paper.

Since our primary focus is on Conolly-like sequences, it is natural to ask if the Conolly
recursion 〈0; 1 : 1; 2〉[1, 2] is the only recursion of the form (1.3) whose solution is the Conolly
sequence. From the results in Section 2 we know that any such recursion must be order 1.
In Section 3 we use the tree technique outlined above to prove that 〈0; 2 : 3; 5〉[1, 2, 2, 3, 4] is
another order 1 recursion whose solution is the Conolly sequence. Based on our experimental
results we conjecture that there are no other 2-ary order 1 (0, 1)-Conolly recursions. Further,
we completely describe all 2-ary order 1 (2, 0)-Conolly recursions. From Section 2 we know
that all Conolly-like solutions to 2-ary recursions of order 1 are either (2, 0)-Conolly or
(0, 1)-Conolly, giving us a near-complete description.

In Section 4, we apply a similar tree technique, given any p, α, β satisfying the necessary
condition in Section 2, to construct an order p (α, β)-Conolly recursion of the form (1.3).
This proves that these conditions are also sufficient. We conclude this section by constructing
explicitly, given any m > 0 and an (α, β)-Conolly recursion with order p, a related (mα, mβ)-
Conolly recursion with order mp.

Up to this point we have focused on finding examples of (α, β)-Conolly recursions. In
Section 5 we turn to the following question: for a given (α, β), what is the complete list of
(α, β)-Conolly recursions of the form (1.3)? For β = 0 and arbitrary order p we provide a
complete answer. Further, for p = 2 we conjecture a complete list of Conolly-like recursions.
We conclude in Section 6 with a discussion of future directions for further work.

2. Narrowing the Search for Conolly-Like Recursions

Equation (1.3) describes a very large class of recursions. Furthermore, it is not clear for
which, if any, of the infinitely many pairs (α, β) a given recursion might be (α, β)-Conolly.
However, specifying that a sequence is (α, β)-Conolly implies very strong conditions on its
asymptotic behavior determined by α and β. At the same time any sequence that solves (1.3)
must have asymptotic properties that depend upon the value of p. Therefore a Conolly-like
solution to (1.3) must satisfy both sets of requirements, necessitating a relationship between
p and (α, β). In what follows we derive this relationship; in doing so, because it is no more
difficult, we establish a more general result that applies to all recursions (1.1).

The first step is to determine, given a limit L, what parameters for (1.1) can lead to a
solution A(n) such that the ratio A(n)/n converges to L.

Theorem 2.1. Let A(n) be the solution sequence of a meta-Fibonacci recursion of the form
(1.1). Suppose that the ratio A(n)/n has a nonzero limit L. Then L = k−1∑k

i=1 pi
. If pi = p for

all i and k = 2, which is the focus of our attention in this paper, then L = 1
2p

.

Note that the hypothesis L > 0 in Theorem 2.1 rules out the trivial zero sequence solution.

4 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

Proof. Let A(n) satisfy the recursion A(n) =
∑k

i=1 A
(
n− si −

∑pi

j=1 A(n− aij)
)
. As a first

step, we will show that we cannot have piL > 1 for any i. Assume to the contrary that
for some h, phL > 1. Then for sufficiently large n,

∑ph

j=1 A(n − ahj) > n − sh. But then

the argument of the hth summand is negative, which is impossible since A(n) is a solution.
Thus, for all i, piL ≤ 1. We will later be able to show that, in fact, piL < 1 for all i.

Suppose there exists at least one value of i for which piL = 1. Without loss of generality

let p1L = 1. Since p1 ≥ 1, we have A(n)
n

→ L ≤ 1, so there exists some positive constant
λ such that for all n, A(n) ≤ λn. Then for all n, A(n − s1 −

∑p1

j=1 A(n − a1j)) ≤ λ(n −
s1 −

∑p1

j=1 A(n − a1j)). It follows that
A(n−s1−

∑p1
j=1 A(n−a1j))

n
≤ λ − s1/n − λ

∑p1

j=1
A(n−a1j)

n
.

But n
n−a1j

→ 1, so
A(n−a1j)

n
→ L, from which we deduce that limn→∞

A(n−s1−
∑p1

j=1 A(n−a1j))

n
≤

λ− λ
∑p1

j=1 L = λ− λp1L = 0.
Now, write

A(n)

n
=

A(n− s1 −
∑p1

j=1 A(n− a1j))

n
+

∑k
i=2 A

(
n− si −

∑pi

j=1 A(n− aij)
)

n
and take the limit as n → ∞ on both sides. The first term on the right vanishes. This
argument shows that in evaluating L we can ignore any summands with index i such that
piL = 1. Further, it confirms that we cannot have piL = 1 for all i, since then L = 0, which
contradicts our assumption.

Combining the above results we may safely assume that piL < 1 for all i. For each i

define κi(n) := n − si −
∑pi

j=1 A(n − aij). Then limn→∞
κi(n)

n
= 1 − piL > 0, and thus

limn→∞ κi(n) = ∞. But since limn→∞
A(n)

n
= L it follows that for all i,

A
(
n− si −

∑pi

j=1 A(n− aij)
)

n− si −
∑pi

j=1 A(n− aij)

converges to L as n →∞.
We can write

A(n)

n
=

k∑
i=1

A
(
n− si −

∑pi

j=1 A(n− aij)
)

n

=
k∑

i=1

(
n− si −

∑pi

j=1 A(n− aij)

n

)
A

(
n− si −

∑pi

j=1 A(n− aij)
)

n− si −
∑pi

j=1 A(n− aij)

 .

Taking the limit on both sides as n → ∞ we get L =
∑k

i=1(1 − piL)(L), from which we

conclude (since L > 0) that 1 = k − L
∑k

i=1 pi, or L = k−1∑k
i=1 pi

.

¤
In Theorem 2.1 we assume a priori the existence of the limit L. This assumption is needed,

a fact we explain further at the end of this section.
We now apply Theorem 2.1 to Conolly-like meta-Fibonacci sequences.

Corollary 2.1. Let A(n) be an (α, β)-Conolly sequence satisfying a recursion of the form
(1.3). Then α + 2β = 2p, α + β > 0, and β ≥ 0.

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 5

Proof. Any slow sequence A(n) has a positive frequency sequence, φA(m). But rm = 1
whenever m is odd, so to have φA(m) = α + βrm > 0, we must have α + β > 0 (the converse
obviously also holds). Because rm is unbounded and α is fixed, we must have β ≥ 0 to ensure
that φA(m) = α + βrm > 0.

Using the well-known fact that limn→∞(1/n)
∑n

m=1 rm = 2 (see [2], Section 3.2, p. 74), we
have that limn→∞ 1

n

∑n
m=1(α + βrm) = α + 2β.

The sequence A(n) is (α, β)-Conolly so has frequency sequence α + βrm. Consider the

subsequence nh where nh is the largest integer with A(nh) = h. Then nh =
∑h

m=1(α+βrm).

So it follows that limh→∞
A(nh)

nh
= limh→∞ h∑h

m=1 α+βrm
= 1

(α+2β)
. But it can be readily shown

that A(n)
n

and A(nh)
nh

are close as n → ∞ so that both sequences converge to the same limit.

Hence limn→∞
A(n)

n
= 1

α+2β
. Thus by Theorem 2.1, α + 2β = 2p. ¤

From Corollary 2.1 it follows that for given order p there are 2p possible pairs (α, β), one
for each of β = 0, 1, . . . , 2p− 1. For p = 1, 2, 3, 4 these are given in Table 1; recall that every
(α, β)-pair uniquely defines the corresponding Conolly-like sequence.

Table 1. Possible (α, β)-pairs for orders 1 to 4

Order Possible Pairs (α, β)
1 (2, 0), (0, 1)
2 (4, 0), (2, 1), (0, 2), (−2, 3)
3 (6, 0), (4, 1), (2, 2), (0, 3), (−2, 4), (−4, 5)
4 (8, 0), (6, 1), (4, 2), (2, 3), (0, 4), (−2, 5), (−4, 6), (−6, 7)

For any fixed p we now have a list of the finitely many (α, β)-Conolly sequences that could
solve an order p recurrence. However, so far we have only necessary conditions: for p > 1
we haven’t yet shown how to characterize which of the recursions (1.3) are (α, β)-Conolly.

Toward this end we wrote a program (in C) to systematically and efficiently test restricted
parts of the parameter space. Our search process is best described in the context of order 2,
where there are only 4 possible (α, β) pairs, namely (4, 0), (2, 1), (0, 2), and (−2, 3), and 6
parameters: 〈s; a, b : t; c, d〉.

First we fixed an (α, β) pair. Then we explored parameter sets that satisfied 0 = s ≤ t ≤
10, 1 ≤ a ≤ b ≤ 12, and 1 ≤ c ≤ d ≤ 30.3 When s = t we only examined those with pairs
(a, b) that are lexicographically less than or equal to (c, d), so as to avoid duplication.

With each parameter set we supplied a sufficient number of initial conditions in order to
seed the recurrence. These values were the first 20 terms of the (α, β)-Conolly sequence.
We generated the first 1000 values for each sequence that was well-defined to that point and
compared the result to the intended (α, β)-Conolly sequence.

From our experimental data we discovered that for each of the four 2-ary order 2 (α, β)-
pairs indicated in Table 1 there appear to be multiple Conolly-like recursions, including the
recursion 〈0; 1, 3 : γ; γ + 1, γ + 3〉 where γ = α + β. Based on this experimental evidence
we conjectured that an analogous result is true for 2-ary recursions of any order. This
is the content of Theorem 4.1 below. Together with Corollary 2.1 above this establishes
necessary and sufficient conditions on α and β for the existence of at least one 2-ary order p
(α, β)-Conolly recursion.

3Earlier experimental probing suggested that s > 0 yielded no Conolly-like recursions.

6 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

Based on our experimental evidence, we conjectured that only finitely many k-ary order
p (α, β)-Conolly recursions exist for fixed k and p, and β > 0. For β = 0 we show in Section
5 that there are infinitely many recursions of the form (1.3); in fact, we demonstrate that
for fixed α, k, pi there are either no (α, 0)-Conolly recursions of the form (1.1) or infinitely
many.

We close this section by addressing the issue we raised following Theorem 2.1, namely,
that there exist meta-Fibonacci sequences A(n) that solve recursion (1.1) for which A(n)/n
does not approach a limit. This demonstrates the necessity of the strict conditions on
Theorem 2.1. One known example is Hofstadter’s recursion Q = 〈0; 1 : 0; 2〉 with alternate
initial conditions 3, 2, 1 [7], the solution to which is the quasi-periodic sequence Q(3w +1) =
3, Q(3w+2) = 3w+2 and Q(3w) = 3w−2. The following result illustrates how to construct
such sequences for any values of k and pi. In our approach we “weave” together two different
solutions to the same recursion.4

Theorem 2.2. (Fixed Order Interleaving Theorem) Let A(n) and B(n) both satisfy the
same recursion of the form (1.1) with initial conditions A(1), . . . , A(r) and B(1), . . . , B(r)
respectively, so for n > r,

A(n) =
k∑

i=1

A

(
n− si −

pi∑
j=1

A(n− aij)

)
and B(n) =

k∑
i=1

B

(
n− si −

pi∑
j=1

B(n− aij)

)
.

Define a sequence C(n) as follows: C(1), . . . , C(2r) = A(1), B(1), A(2), B(2), . . . , A(r), B(r)
and for n > r, C(2n − 1) = 2A(n) and C(2n) = 2B(n). Then C(n) is a solution of the
“doubled” recursion

〈2s1; 2a11, 2a12, . . . , 2a1p1 : 2s2; 2a21, 2a22, . . . , 2a2p2 : · · · : 2sk; 2ak1, 2ak2, . . . , 2akpk
〉

of the form (1.1) with initial conditions C(1), C(2), . . . , C(2r).

Proof. We show that for any n > 2r, C(n) =
∑k

i=1 C
(
n− 2si −

∑pi

j=1 C(n− 2aij)
)
. We

proceed by induction for the case n odd. The case n even is entirely analogous so we omit
the details.

It is straightforward to verify that the result holds for n = 2r + 1. Assume that it holds
for all odd n up to n = 2m− 3 > 2r. We show it holds for n = 2m− 1, where m > r.

Applying the definition of C(n) and simple algebra yields

k∑
i=1

C

(
2m− 1− 2si −

pi∑
j=1

C(2m− 1− 2aij)

)
=

k∑
i=1

C

(
2m− 1− 2si −

pi∑
j=1

C(2(m− aij)− 1)

)

=
k∑

i=1

C

(
2m− 1− 2si −

pi∑
j=1

2A(m− aij)

)
=

k∑
i=1

C

(
2(m− si −

pi∑
j=1

A(m− aij))− 1

)

=
k∑

i=1

2A

(
m− si −

pi∑
j=1

A(m− aij)

)
= 2

k∑
i=1

A

(
m− si −

pi∑
j=1

A(m− aij)

)
= 2A(m).

Note that we make use of the fact that m − aij < m on several occasions in the above
induction argument.

4Compare this result with Theorem 4.2 in Section 4, where the resulting recursion has different order from
the original one.

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 7

¤
It is evident that an analogous result can be proved in a similar way for three or more

solutions and sets of initial conditions.
Using this result we construct a solution C(n) to a 2-ary order 1 recursion with the property

that C(n)
n

does not have a limit; note that this technique generalizes to provide counterexam-
ples of arbitrary order and arity. Let A(n) satisfy the recursion 〈1; 1 : 3; 3〉[0, 0, 0, 0], which

generates a sequence of all zeroes, so A(n)
n

converges to 0. Let B(n) satisfy the recursion
〈1; 1 : 3; 3〉[1, 1, 1, 2], that is, the same recursion but with different initial conditions. The
solution B(n) is the slow sequence in which all numbers that are not powers of two appear

twice, and all numbers that are powers of two appear three times, so B(n)
n

converges to 1
2

(for a proof of these facts about B(n) see [4]). Applying Theorem 2.2 with the solutions
A(n) and B(n) to the recursion 〈1; 1 : 3; 3〉 results in the solution C(n) to the recursion

〈2; 2 : 6; 6〉. The even subsequence gives lim sup C(n)
n

= 1
2

and the odd subsequence yields

lim inf C(n)
n

= 0. Therefore the sequence C(n)
n

has no limit.

3. Order 1 Conolly-Like Recursions

Recall from Table 1 that the only Conolly-like sequences that might solve a 2-ary, order
1 recursion of the form (1.3) are (0, 1)-Conolly and (2, 0)-Conolly. We begin by examining
which order 1 recursions are (0, 1)-Conolly.

Aside from the original Conolly recursion 〈0; 1 : 1; 2〉[1, 2] our detailed computer search
identified only one candidate, namely, 〈0; 2 : 3; 5〉[1, 2, 2, 3, 4]. We now prove that the Conolly
sequence satisfies this recursion. We conjecture that this is the only other order 1 (0, 1)-
Conolly recursion.

Theorem 3.1. Both of the order 1 recurrences

C(n) = C(n− C(n− 1)) + C(n− 1− C(n− 2))

with C(1) = 1, C(2) = 2 and

H(n) = H(n−H(n− 2)) + H(n− 3−H(n− 5))

with H(1) = 1, H(2) = H(3) = 2, H(4) = 3, H(5) = 4 have the Conolly sequence as their
solution.

As we pointed out in the Introduction, it is proved combinatorially in [11] that the ruler
function rm is the frequency sequence of the Conolly sequence by exhibiting an explicit
bijection between the Conolly sequence and the number of leaves of a labeled infinite binary
tree. We elaborate on this methodology to show that the ruler function is also the frequency
sequence of H(n).

We begin by defining the following infinite binary tree T . We start with a sequence of
nodes called s-nodes so that for each m > 0, the mth s-node is the root of a complete binary
tree of height m+1, with the (m−1)st s-node as its left child. Call the nodes on the bottom
level leaves. Each leaf contains two cells, cell 1 cell 2 . The nodes which are neither leaves
nor s-nodes are called regular nodes.

Define T (n) to be T with the n labels 1, 2, . . . , n inserted in T in the following way: label
the nodes of T in pre-order, beginning with the leftmost leaf. Regular nodes receive one label,
s-nodes receive no labels, and leaves receive three consecutive labels, the left cell receiving

8 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

last label in T (20)

1 16 192, 3 4 5, 6 8 9, 10 11 2012, 13 17, 18

first, second and third s-nodes

7 15

14

Figure 1. The infinite binary tree T (20).

the first label and the right cell receiving the following two labels. For example, if a left
leaf child has labels a + 1 a + 2, a + 3 , then its parent (at the penultimate level) must

be labeled with a while its right sibling has labels a + 4 a + 5, a + 6 so long as there are
sufficient labels (it may occur that there are insufficient labels to fully label the final leaf).
See Figure 1. A cell is considered non-empty if it contains at least one label.

Table 2. The sequence L(n) for n = 1, 2, . . . , 20

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
L(n) 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11 12

Let L(n) be the number of non-empty cells in T (n). See Table 2 for the first twenty terms
of the sequence L(n), which can readily be computed from T (20) in Figure 1.5 Our strategy
is to show that for all n, L(n) = H(n) and that L(n) is the Conolly sequence. Note that
L(n) has the same 5 initial values as H(n), namely, 1, 2, 2, 3, 4. For n > 5 we show that L(n)
satisfies the same recursion as H(n), namely, L(n) = L(n−L(n− 2)) + L(n− 3−L(n− 5)).

To do so we extend the general technique described in [10]. We define a pruning operation
that transforms the tree T (n) with n labels and L(n) cells into the tree T (n − L(n − 2))
with n− L(n− 2) labels and L(n− L(n− 2)) cells. Before doing so we digress to establish
a required technical result relating L(n), the number of cells in T (n), and L(n − 2). Our
strategy is to use the fact that the tree T (n− 2) is obtained from T (n) by removing the last
two labels, n− 1 and n.

5It is evident that for m ≤ n T (m) is a sub-tree of T (n).

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 9

19

5, 6 8 9, 10 11 12, 13 16 17, 18 19 20

added label
after mapping

0 3, 6 7 10, 13 15 18,

1 42, 3

new first and second s-nodes

14

labeled 0
by the initial step

Figure 2. The pruning of T (20) before the final relabeling. After relabeling
this tree will be T (10).

Lemma 3.1. For all n ≥ 3,

L(n− 2) =

L(n) if n is on a regular node,

L(n)− 1 if n is the first label on a leaf,

L(n)− 2 if n is the second label on a leaf,

L(n)− 1 if n is the third label on a leaf.

Proof. If n is on a regular node, then n− 1 is either on a regular node or is the third label
on a leaf (equivalently, the second label in the second cell of the leaf). Therefore, removing
n and n− 1 cannot empty any cells so L(n− 2) = L(n). If n is the first label on a leaf, then
again n− 1 is either on a regular node or is the third label on a leaf. Thus removing n and
n − 1 empties the cell containing n but no others. Hence L(n − 2) = L(n) − 1. If n is the
second label on a leaf, so is the first label in the second cell of the leaf, then n− 1 is the first
label on that leaf and the only label in the first cell. Removing n and n − 1 empties both
the cells in which they are contained, so L(n− 2) = L(n)− 2. Finally, if n is the third label
on a leaf, then n − 1 and n are the two labels on that leaf’s second cell, so removing these
labels results in emptying only that cell. In this final case L(n− 2) = L(n)− 1. ¤

The use of the above lemma is as follows. We want to turn T (n) into T (n − L(n − 2)).
The naive way to do this would be to simply remove the last L(n−2) labels in preorder, but
we cannot prove anything useful about the resulting tree with this pruning method. Rather,
we exploit the fact that since L(n) is the number of nonempty cells of T (n), it follows that
T (n−L(n)) is just T (n) with one label deleted from every non-empty cell. We then use the
above lemma to adjust T (n− L(n)) into T (n− L(n− 2)), which together with other small
changes preserves the original cell structure of T . In what follows we explain the precise
details of this process.

10 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

We break down our pruning operation into several discrete steps that, when combined,
transform T (n) to get to T (n − L(n − 2)). See Figure 2 for an illustration with n = 20.
Begin by labeling the first s-node with the label 0, thereby making it a regular node at the
penultimate level (the initial step). Next, delete L(n) labels from T (n), one label from every
non-empty cell (the deletion step). In each of the penultimate level nodes of the resulting
tree, create two cells, inserting the existing label from that node in the first of these cells (the
cell creation step). Empty all the leaves by moving any remaining leaf labels (these labels
must be in the second cell) to the second cell in their respective parent at the penultimate
level, and then delete all the (empty) leaves (the lifting step). Finally, following from Lemma
3.1, in some cases we need to add or subtract one label to be sure we end up with exactly
n − L(n − 2) labels (recall that we have already added one label in the initial step). If n
was on a regular node in T (n), we remove the final label. If n was the first or third label on
a leaf in T (n) we make no further changes. If n was the second label on a leaf in T (n), we
add one label in the next available position in preorder (the correction step).

We now check that the tree resulting from the pruning operation is T (n − L(n − 2)). It
is clear that the tree has the correct structure so we need only confirm that it contains the
correct number of labels. Before the pruning operation T (n) contained n labels. After the
initial step there are n + 1 labels. Following the deletion step there are n + 1− L(n) labels.
By Lemma 3.1 the labels, if any, introduced or deleted in the correction step result in a
total of n−L(n− 2) labels. Notice that we could renumber the labels of this tree from 1 to
n− L(n− 2) but since only the number of labels matters we omit this step.

Theorem 3.2. If n ≥ 6 then the number of nonempty cells in the left leaves of T (n) is
L(n− L(n− 2)) and the number of nonempty cells in the right leaves of T (n) is L(n− 3−
L(n− 5)). Hence L(n) = L(n− L(n− 2)) + L(n− 3− L(n− 5)).

Proof. We first show that the number of non-empty cells in the left leaves of T (n) is L(n−
L(n− 2)). Consider an arbitrary nonempty penultimate level node X of T (n) with the label
a. We show that after the pruning process is complete, X will have the same number of
nonempty cells as its left child had before the pruning process. We consider 5 cases.

Case 1: n = a. In this case after the cell creation step in the pruning process X will be
labeled a . Since X has empty children, after the lifting step, the new labeling on X
will remain unchanged. Since X is the last non-empty node in preorder for the correction
step, and since initially n was on the regular node X, the correction step deletes the label
a, leaving X empty. Thus, after the pruning process X has no non-empty cells, as required.

Case 2: n = a + 1. Here the left child of X is labeled a + 1 ; the right child is empty.

After the lifting step, X will be labeled a , and the correction step does nothing because
n was the first label on a leaf. Thus, after the pruning process X has one nonempty cell,
corresponding to the one non-empty cell that its left child had before the pruning process.

Case 3: n = a + 2. In this case the left child of X is labeled a + 1 a + 2 and the right

child is empty. So, after the lifting step, X will be labeled a . Since X is now last in
preorder, and n was the second entry in a leaf, the correction step adds one label to X,
causing it to have an entry in its second cell after the pruning process. Thus X has two
non-empty cells, corresponding to the two non-empty cells that its left child had before the
pruning process.

Case 4: n = a + 3, a + 4 or a + 5. In all of these cases, the left child of X is full, with
labels a + 1 a + 2, a + 3 while the right child of X has at most two labels so at most one

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 11

label per cell. After the lifting step, X is labeled a a + 3 . Since the correction step will
either do nothing or add a second label to the already nonempty second cell of X, X ends
the pruning process with two nonempty cells, as required.

Case 5: n ≥ a + 6. In this final case, the left and right children of X are fully labeled
as a + 1 a + 2, a + 3 and a + 4 a + 5, a + 6 , respectively. Thus, after the lifting step,

X is labeled a a + 3, a + 6 . The correction step may remove at most one label from X,
namely, the label a + 6. But doing so does not empty the second cell of X, so X ends the
pruning process with two nonempty cells.

We next show that the number of nonempty cells in the right leaves of T (n) is L(n− 3−
L(n − 5)). First note that by substituting n − 3 for n in the above discussion we conclude
that L(n− 3−L(n− 5)) counts the number of nonempty cells in the left leaves of T (n− 3).
Since leaves of T can hold up to three labels, if we have a sibling pair consisting of a left
and right leaf, then a cell in the left leaf will be nonempty in T (n − 3) if and only if the
corresponding cell in the right leaf is nonempty in T (n). Thus, the number of nonempty
cells in the left leaves of T (n− 3) is the same as the number of nonempty cells in the right
leaves of in T (n). This completes the proof. ¤

We now show that L(n) is the Conolly sequence, from which it follows that the frequency
sequence for L(n) is the ruler function.

Theorem 3.3. The solution sequence L(n) of the recursion

H(n) = H(n−H(n− 2)) + H(n− 3−H(n− 5))

with initial conditions H(1) = 1, H(2) = H(3) = 2, H(4) = 3, H(5) = 4 is the Conolly
sequence.

Proof. We prove that L(n) is the Conolly sequence by showing that both L(n) and the
Conolly sequence have the same first difference sequences. Define the finite binary string
Dn recursively by the rules D0 = 1 and Dn+1 = 0DnDn whenever n ≥ 0. Then the infinite
sequence of successive first differences C(n+1)−C(n) of the Conolly sequence C(n) is given
by

D = D0D0D1D2D3 · · · ,

with the convention that C(0) = 0 so the difference sequence starts with C(1) − C(0) = 1
(see [11]).

Let d(n) = L(n)− L(n− 1). Then d(n) is the increase in the number of non-empty cells
when applying an nth label to T (n−1), where we take T (0) to be the unlabeled tree T , that
is, T (0) = T and L(0) = 0. Define the binary string Fn by the rules F1 = 110110, F2 = 0F1

and Fn+1 = 0FnFn whenever n ≥ 2. We show by induction that the infinite binary sequence

F = F1F2F3 · · ·
gives the sequence d(1)d(2)d(3) . . .

To do this, we introduce a new symbol. For all m > 0, let Tm be the subtree of T consisting
of the right child of the mth s-node and all the descendants of that right child.

We first show that F1F2 = d(1)d(2) · · · d(13). The string F1 gives the subsequence of d(n)
corresponding to any pair of leaf siblings in T (n) (and hence d(1)d(2) · · · d(6) = F1). The
right child of the second s-node of T is the root of T2, a 3-node complete binary tree and
clearly d(7)d(8) · · · d(13) = 0F1 = F2, so F2 is the subsequence of d(n) corresponding to T2.

12 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

We now show inductively that for m ≥ 2, Fm is the subsequence of d(n) corresponding to
Tm. We already have the base case, since F2 is the subsequence of d(n) corresponding to T2.
Assume that Fm−1 is the subsequence of d(n) corresponding to Tm−1. The key observation is
that for m ≥ 3, Tm consists of a single regular node from which descend two copies of Tm−1.
The preorder traversal of Tm begins with the regular node at its root (corresponding to a 0
in the difference sequence) followed by the left copy of Tm−1 (corresponding to one repetition
of Fm−1 in the difference sequence by the induction hypothesis) followed by the right copy
of Tm−1 (hence another repetition of Fm−1 in the difference sequence). Therefore the part
of the difference sequence corresponding to Tm is Fm = 0Fm−1Fm−1. Since the sequence
of subtrees Tm are labeled successively, and the s-nodes that join them in pairs are empty,
d(1)d(2) · · · = F .

Finally, we show that F = D, from which we conclude that L(n) matches the Conolly
sequence. In what follows, by the notation 0−1 we mean the inverse of 0 in the free group
on the symbols 0, 1 which make up these binary strings. Similarly, 12 means the string
11, and so on. Observe that F1 = D0D0D10. For n > 1, we show by induction that
Fn = 0−1Dn0, from which we get that F = D. For n = 2 this can be verified directly:
F2 = 0120120 = 0−102120120 = 0−10D1D10 = 0−1D20.

For n ≥ 2 assume Fn = 0−1Dn0. Then Fn+1 = 0FnFn = 00−1Dn00−1Dn0 = DnDn0 =
0−10DnDn0 = 0−1Dn+10 as required. This completes the induction. ¤

Recall from Table 1 that there are only two possibilities for the values of the (α, β) pairs
for Conolly-like solutions of 2-ary, order 1 meta-Fibonacci recursions, namely, (α, β) = (0, 1)
or (2, 0). We conclude our discussion of such recursions by identifying all the (2, 0)-Conolly
2-ary, order 1 meta-Fibonacci recursions. Note that the (2, 0)-Conolly solution to these
recursions is by definition the ceiling sequence

⌈
n
2

⌉
(see [4] for a special case). Our charac-

terization of these recursions follows immediately from a more general result (see Theorem
5.2 below).

Corollary 3.1. The function
⌈

n
2

⌉
is the unique solution that satisfies the 2-ary, order 1

recursion R = 〈s; a : t; b〉, given sufficiently many initial conditions R(z) =
⌈

z
2

⌉
, if and only

if a and b are both odd, and 2(s + t) = a + b.

For any given set of parameters {s, a, t, b} with a and b both odd and 2(s + t) = a + b, it
is easy to show that

m = max

{
a, b, s +

a + 1

2
, t +

b + 1

2

}

initial conditions are sufficient. This upper bound is not tight, however. For example, if the
parameters are 1,3,3,5 then the initial conditions 1,1,2,2,3 are sufficient, but m = 6 in this
case.

4. Conolly-Like Recursions of Higher Order

From Sections 2 and 3 we have necessary and sufficient conditions for the existence of a
2-ary, order 1 (α, β)-Conolly recursion. In this section we extend this result to recursions of
all orders using a proof strategy similar to that of Theorem 3.2. For this purpose we invent
a new labeling of the same tree T defined in Section 3.

First, we state our key result:

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 13

first, second and third s-nodes

16, 17

15

14

1, 2, 3

last label

4, 5, 6 8, 9, 10 11, 12, 13

7

U(17) for β = 1, α = 2

α + β labels

labels

leaves with

regular nodes with β

empty

nodes

Figure 3. The labeled tree U(17) with α = 2 and β = 1. We see that
M(17) = 5.

Theorem 4.1. There exists a 2-ary (α, β)-Conolly meta-Fibonacci recursion if and only if
β ≥ 0, α + β > 0, and α is even.

Observe that the “only if” part of Theorem 4.1 follows directly from Corollary 2.1. To
prove sufficiency we claim that the recursion

〈0; 1, 3, 5, . . . , 2p− 1 : γ; γ + 1, γ + 3, γ + 5, . . . , γ + 2p− 1〉(4.1)

has an (α, β)-Conolly solution, where γ = α + β, and where it follows from Corollary 2.1
that p must be α/2 + β.

To establish our claim we first describe the infinite binary tree U that provides the required
combinatorial interpretation for the solution to the above recursion, as well as the pruning
process that we apply to U . The tree U has the same general structure as the tree T used in
Theorem 3.2, that is, U has s-nodes, regular nodes, and leaves in the same locations as T . As
with T , the s-nodes of U are always empty. However, there are some important differences
from T in the way that we label the remaining nodes of U . The regular nodes of U contain
up to β labels (rather than 1 label, as in T). The leaves of U do not have multiple cells;
each leaf of U can contain a total of α + β labels (rather than a maximum of 3 labels in T).

Define U(n) to be U with the n labels 1 through n assigned in preorder. As was the
case with T (n), we refer to nodes of U(n) that have no labels as “empty,” and nodes in
U(n) containing their maximum number of labels as “full.” Only the last nonempty node in
U(n), the one containing the label n, can be partly filled. Analogous to the function L(n)
in Theorem 3.2, define M(n) to be the number of nonempty leaf nodes on U(n). Unlike L,
since the leaves of U(n) do not have multiple cells, M counts leaves, not cells. See U(17) in
Figure 3 where α = 2 and β = 1.

14 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

first and second s-nodes of pruned tree

β labels

15, 17///

pruned U(17) for β = 1, α = 2

7, 10, 13

14

1, 2////, 3 4, 5////, 6 8, 9////, 10 11, 12////////, 13 16///, 17

correction step
delete last

18, 3, 6

initial step

new leaves

new regular node

deletion step

Figure 4. The pruning of U(17) with α = 2 and β = 1 before the final
relabeling. After relabeling this tree will be U(8).

We define a pruning operation on the tree U(n) which transforms U(n) into the tree

U(n −∑j=p
j=0 M(n − 2j + 1)). Because of the much greater generality of the result that we

seek to prove here this pruning operation is considerably more complex than the one we
described above for T (n). We proceed with the explanation in stages, beginning with α ≥ 0.

The initial step is as follows: take U(n) and add β labels to the first s-node, thereby
making this node identical to the other full regular nodes at the penultimate level (now the
tree has n+β total labels). Next, the deletion step: for each leaf Y of U(n), remove one label
from Y for each of the trees U(n−1), U(n−3), . . . , U(n−2p+1) in which Y is not an empty
node. For example, if the first label on Y is a, and n ≥ a + 2p − 1, then Y is necessarily
full in U(n) and nonempty in all p of the trees U(n− 1), U(n− 3), . . . , U(n− 2p + 1). Thus,
in this case the deletion step removes p labels from Y . More generally, if Y is any full leaf,
there are certainly at least p labels available to remove since α ≥ 0 and p = α/2+β ≤ α+β;
if Y is not full then by Lemma 4.1 below we will not delete all the labels of Y . Our tree now
has n + β −∑j=p

j=1 M(n− 2j + 1) labels.
Notice that after the above deletion step, some of the leaves may still have labels in them

(at most α/2 labels). We deal with these leftover labels in the lifting step: we take any such
labels and lift them into the parent of their leaf node in U . Complete the lifting step by
deleting all of the (now empty) leaves.

We complete the pruning process with the correction step: delete the last β labels (by
preorder) in the tree. It is clear from the construction that our final pruned tree has n −∑j=p

j=1 M(n− 2j + 1) labels and is U(n−∑j=p
j=1 M(n− 2j + 1)), up to renumbering of labels.

See Figure 4.
We now describe how to prune U(n) when α < 0. In this case the leaves contain fewer

than p labels. We follow the same pruning process as above, except when it would require

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 15

first, second and third s-nodes

last label

3, 4, 5

U(12) for β = 3, α = −2 8, 9, 10

11, 12

1 2 6 7

Figure 5. The labeled tree U(12) with α = −2 and β = 3.

first and second s-nodes of pruned tree

2/ 7/

11, 12////////

1/ 6/

8, 9, 10///pruned U(12) for β = 3, α = −2

3, 4////, 5

initial step

deletion step
correction step
delete last

β labels

13,14/////////,15

Figure 6. The pruning of U(12) with α = −2 and β = 3 before the final
relabeling. After relabeling this tree will be U(4).

that we delete more labels from a leaf node than that node contains. If the leaf Y has a
deficit δ in the number of available labels to delete, then we delete all the labels from Y and
δ labels from the parent of Y . Note that since δ ≤ −α/2, we delete at most −α labels from
the parent of each leaf. Since α + β > 0, we always have enough labels in the penultimate
level nodes for this to be possible. See Figures 5 and 6.

16 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

Analogous to Lemma 3.1, we count the number of labels that are deleted from any given
leaf in the following lemma.

Lemma 4.1. Let Y be a leaf node of U(n). Suppose there are d labels on or after Y in
preorder (that is, labels either on Y or on nodes which are further along in preorder than Y).
Then during the deletion step of the pruning process, min{bd/2c, p} labels are deleted from
Y .

Proof. Clearly, if bd/2c > p, then p labels are deleted from Y since Y is nonempty on
U(n− 2i + 1) for i ≤ p. Otherwise, since 2i− 1 < d if and only if i ≤ bd/2c, we will have at
least one label on or after Y for all the trees U(n− 2i + 1) for i ≤ bd/2c. Thus bd/2c labels
will be deleted from Y . ¤

We are now prepared to prove Theorem 4.1.

Proof. As discussed above, it suffices to show that (4.1) has an (α, β)-Conolly solution.
First, we show that M(n) is an (α, β)-Conolly sequence. If α = 0, β = 1, then U is

identical to the tree studied in [11], where it is shown that M(n) is the Conolly sequence.
For α = 0 and β > 1, then every node holds β times as many labels as in the tree in [11],
which multiplies the number of times each integer appears in the sequence M(n) by β; the
result is a (0, β)-Conolly sequence. Increasing or decreasing α changes only the number of
labels per leaf. This means that every integer will appear an additional α times (or −α fewer
times), giving an (α, β)-Conolly sequence.

Next, we show that

〈0; 1, 3, 5, . . . , 2p− 1 : γ; γ + 1, γ + 3, γ + 5, . . . , γ + 2p− 1〉,
with initial conditions M(1), . . . , M(4α + 5β), is M(n). This will establish the theorem.
Note that 4α + 5β is the last label on the 4th leaf of U .

First we prove that for all n > 4α + 5β, M(n−∑p
j=1 M(n− 2j + 1)) counts the number

of left leaves of U(n). Recall that the above definition of pruning transforms the tree U(n)

into the tree U(n −∑j=p
j=1 M(n − 2j + 1)) (up to renumbering of the labels). Thus, M(n −∑p

j=1 M(n− 2j + 1)) counts the number of nonempty leaves of U(n−∑j=p
j=1 M(n− 2j + 1)).

We exhibit a bijection between the nonempty leaves of U(n − ∑j=p
j=1 M(n − 2j + 1)) and

the nonempty left leaves of U(n); equivalently, we show that in the pruning process that

transforms U(n) into U(n−∑j=p
j=1 M(n− 2j +1)), a given penultimate level node X of U(n)

will be nonempty in U(n −∑j=p
j=1 M(n − 2j + 1)) if and only if X has a nonempty left leaf

child in U(n). To do so we consider 4 cases corresponding to the position of the last label n
on U(n). For any penultimate node X we write Y (respectively, Z) for the left (respectively,
right) leaf child of X.

Case 1: The label n is the dth label on the left leaf child Y of X. In this case, we need to
prove that X ends the pruning process with at least one label. By Lemma 4.1, the deletion
step will remove at most bd/2c < d labels from Y , so Y will end the deletion step with at
least one label. Thus, in the lifting step at least one label shifts up from Y to X, causing X
to have more than β labels after the lifting step. The correction step of the pruning process
deletes the last β labels in preorder, and these labels will be on X. Since X now has more
than β labels, it will end the pruning process with at least one label.

Case 2: The label n is the dth label on the right leaf child Z of X. Again, we need to prove
that X ends the pruning process with at least one label. Note that Y must be full since Z is

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 17

nonempty. As in Case 1, by Lemma 4.1 the deletion step removes at most bd/2c < d labels
from Z, so we do not delete every label of Z. Furthermore, since there are α + β + d labels
on or after Y and d ≤ α + β labels on Z, there are at most b(α + β + d)/2c ≤ α + β labels
deleted from Y during the deletion step. Since there is no label deficit on Y , no labels need
to be deleted from X. Therefore, before the lifting step, X will have β labels and Z will
have at least one label. Thus, after the lifting step, X will have more than β labels. The
correction step of the pruning process deletes the last β labels in preorder, and these labels
will be on X. Since X now has more than β labels, it will end the pruning process with at
least one label.

Case 3: The label n is on X. Since X has an empty left child, we want to show that X
ends the pruning process without any labels. But n is the last label in preorder, and since X
has no children it will not have any labels removed during the deletion step or added during
the lifting step. Thus, the β labels that are removed from the tree in the correction step of
the pruning process will come out of X first. But X has at most β labels. Therefore, after
the pruning process, X will have no labels.

Case 4: The label n is after Z in preorder. We show that after the pruning process X
retains at least one label. To do so we must consider 3 subcases.

Subcase 4.1: There are d labels on U(n) after the last label of Z, where 1 ≤ d < β. Since a
regular node contains up to β labels, it follows that these d labels must all be on the regular
node, call it X ′, that follows Z in preorder; note that X ′ has no non-empty children.

In this case, there are exactly α + β + d labels in preorder that are on or after Z and
2(α + β) + d labels in preorder that are on or after Y . By Lemma 4.1, the number of labels
deleted during the deletion step from Z (resp. Y) is b(α + β + d)/2c = α/2 + b(β + d)/2c
(resp. b(2(α + β) + d)/2c = α + β + bd/2c). Further, since X ′ has no children, X ′ will have
no labels added or deleted during the deletion step and the lifting step. In the correction
step, we remove the last β labels from X ′ and X in our transformed tree. We now count
labels carefully: when the pruning process began U(n) had 2α + 3β + d labels on or after X
(including the β labels on X).

From the calculations in the above paragraph, during the the deletion and correction steps
we deleted (α/2+ b(β +d)/2c)+ (α+β + bd/2c)+β = 3

2
α+2β + b(β +d)/2c+ bd/2c, labels

in total, leaving us with α/2+β +d−b(β +d)/2c−bd/2c ≥ α/2+β +d−β/2−d/2−d/2 =
α/2+β/2 > 0, where in the last step we use that α+β > 0 by assumption. Therefore, after
the pruning process X has at least one label.

Subcase 4.2: There are d labels on U(n) after the last label of Z, where d ≥ β, and the
next regular node X ′ in preorder after Z is not a penultimate level node. In the deletion
step we remove at most p = α/2 + β labels from Y and from Z (by Lemma 4.1). If α ≥ 0
then either at least α/2 labels are left on each of the leaves Y and Z; these labels are lifted
up to X in the lifting step. If α < 0 then at most −2α/2 = −α < β labels are removed from
X. Either way, immediately prior to the correction step that removes β labels from the tree,
X is nonempty.

By assumption, at the start of the pruning process there are β labels on X ′. Since X ′ is
neither a leaf node nor a penultimate level node, X ′ still has β labels immediately before the
correction step. Since X ′ is after X in preorder, the β labels on X ′ are in line to be removed
in the correction step before any of the labels in X. But only β labels are removed in the
correction step, hence none of these labels come from X. Thus at the end of the pruning
process X has at least one label.

18 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

Subcase 4.3: there are d labels on U(n) after the last label of Z, where d ≥ β and the
next regular node X ′ in preorder after Z is a penultimate level node. As in Subcase 4.2,
immediately before the correction step, X will be nonempty. Observe that since the next
regular node after the penultimate level node X is another penultimate level node X ′, the
next regular node after X ′ in preorder cannot be a third penultimate level node. Therefore,
the penultimate level node X ′ must meet the requirements of one of Case 1, 2, 4.1 or 4.2.
By the arguments of those cases, the correction step will not remove every label from X ′.
Therefore, the correction step cannot remove any labels from X, so after the pruning process
X is nonempty.

We conclude that for all n > 4α + 5β, M(n −∑p
j=1 M(n − 2j + 1)) counts the number

of left leaves of U(n). Since the leaves of U(n), other than possibly the last, have exactly
γ = α+β labels, it follows that we can replace n by n−γ in the above argument to conclude
that n is on or after a right leaf in U(n) if and only if n−γ is on or after the sibling left leaf.
This immediately implies that M(n − γ −∑p

j=1 M(n − 2j + 1 − γ)) counts the number of

right leaves of U(n). Thus, M(n−∑p
j=1 M(n−2j +1))+M(n−γ−∑p

j=1 M(n−2j +1−γ))

counts the total number of leaves of U(n), which equals M(n). ¤

This section concludes with two results that relate the solutions to low-order recursions
to those of higher order. Let b be an integer sequence. Define the m-interleaving of b to
be the sequence where each term of b is repeated m times. For example, if b = 1, 2, 2, 3, . . .
then the 3-interleaving of b is 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, We have new notation for this
notion: if b = b1, b2, b3, . . . then let bm

1 denote b1 repeated m times. The m-interleaving
of b is thus written as bm

1 , bm
2 , bm

3 Theorem 4.2 says that for any order 1 recurrence B,
there is an order m recursion such that the m-interleavings of any solution to B solves A.
These m-interleavings are useful, since the m-interleaving of the (α, β)-Conolly sequence is
the (mα,mβ)-Conolly sequence.

Theorem 4.2. (Order Multiplying Interleaving Theorem) Let B = 〈s; a : t; b〉[ξ1, ξ2, . . . , ξc]
be a recurrence relation with a well defined solution sequence. Then for any integer m > 1
the recurrence

A = 〈ms; (ma)m : mt; (mb)m〉[ξm
1 , ξm

2 , . . . , ξm
c]

also has a unique solution which is the m-interleaving of B, where superscript m denotes
multiplicity.

Proof. We prove by induction on n that A(mn − j) = B(n) for 0 ≤ j < m. Observe that
for B to have a unique solution it must have at least one initial value ξ1. Thus for n = 1 we
have the base case, A(m − j) = ξ1 = B(1) and similarly for all ξi. Assume the theorem is
true for values less than n. We show it holds for n:

A (mn− j)

= A (mn−ms− j −mA (mn−ma− j)) + A (mn−mt− j −mA (mn−mb− j))

= A (m (n− s− A (m (n− a)− j))− j) + A (m (n− t− A (m (n− b)− j))− j)

= A (m (n− s−B (n− a))− j) + A (m (n− t−B (n− b))− j)

= B (n− s−B (n− a)) + B (n− t−B (n− b))

= B (n)

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 19

Note that for the induction to be valid we must have s+B(n− a) > 0 and t+B(n− b) > 0.
This is guaranteed because we require that B(n) > 0 for all n > 0, and s, t ≥ 0. ¤

If B is a slowly growing sequence and A is the sequence resulting from an application of
Theorem 4.2, then certain perturbations of the parameters of A leave the solution unchanged.
By taking B to be a (0, 1)-Conolly recursion, we can produce a variety of (0,m)-Conolly
recursions by applying Theorem 4.2 to B and then perturbing the resulting recursion with
Theorem 4.3. We could do the same with (2, 0)-Conolly recursions, but in fact Theorem 5.2
provides a much stronger result in this case.

Theorem 4.3. Let B = 〈s; a : t; b〉[ξ1, ξ2, . . . , ξc] be a slowly growing sequence. Let α1, . . . , αm

and β1, . . . , βm be integer constants that satisfy for all 1 ≤ i ≤ m

i−m ≤ αi < i and

i−m ≤ βi < i.
(4.2)

If the sequence

C = 〈ms; ma− α1, . . . , ma− αm : mt; mb− β1, . . . , mb− βm〉[ξm
1 , ξm

2 , . . . , ξm
c](4.3)

is well defined, then it is an m-interleaving of B.

Proof. Let A be the m-interleaving of B. We prove that

A

(
n−ms−

m∑
i=1

A(n−ma + αi)

)
= A(n−ms−mA(n−ma)).(4.4)

and note that a similar argument works for

A

(
n−mt−

m∑
i=1

A(n−mb + βi)

)
= A(n−mt−mA(n−mb)).

This will prove that A = 〈ms; ma− α1, . . . , ma− αm : mt; mb− β1, . . . ,mb− βm〉[ξm
1 , ξm

2 , . . . , ξm
c],

by Theorem 4.2. Note that insisting C be well defined is simply a requirement that c is large
enough so that n−ma + αi > 0 whenever n > mc.

The intuition behind this proof is that for each term referenced by B, the corresponding
terms referenced by C lie in some m-interval, that is, they belong to [km + 1, (k + 1)m] for
some positive integer k. This provides flexibility in the parameters of C.

Let n > mc be given, and set j such that 1 ≤ j ≤ m and j = n mod m. Now, observe
that as A is an m-interleaving, its values can only change at multiples of m, that is, if
A(n) 6= A(n + 1), then n = mz for some integer z. This means that in order to show
(4.4), it suffices to show that n−ms−∑m

i=1 A(n−ma + αi) lies in the same m-interval as
n−ms−m(A(n−ma)). Observe that since j, n and n−ms−m(A(n−ma)) are all equal mod
m, the left and right endpoints of the m-interval containing n−ms−∑m

i=1 A(n−ma + αi)
must be n−ms−m(A(n−ma))− (j − 1) and n−ms−m(A(n−ma))− j + m. Thus we
infer the following inequalities:

−mA(n−ma)− (j − 1) ≤ −
m∑

i=1

A(n−ma + αi) ≤ −mA(n−ma) + (m− j)(4.5)

To do so, we first observe that since i−m ≤ αi < i, adding αi can only either move back
one m-interval, not change the m-interval, or move forward one m-interval. Since B(n) is

20 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

slowly growing, this means that Ai := A(n −ma + αi) − A(n −ma) = 0,1, or -1. We will
show that Ai is 1 at most j− 1 times and -1 at most m− j times, thereby establishing (4.5).

In order to show this, first observe that if n is in the interval [km+1, km+m], then Ai = 1
only if n + αi is in the following interval [km + m + 1, km + 2m], and Ai = −1 only if n + αi

is in the preceding interval [km−m + 1, km]. By the definition of j, n = km + j so n + αi is
in the interval [km + m + 1, km + 2m] if and only if j + αi > m, and n + αi is in the interval
[km−m + 1, km] if and only if j + αi ≤ 0.

Thus, the number of i with Ai = 1 is at most the number of i with j + αi > m, and the
number of i with Ai = −1 is at most the number of i with j + αi ≤ 0. So it suffices to show
that at most j−1 of the αi satisfy j +αi > m, and at most m− j of the αi satisfy j +αi ≤ 0.

If j + αi > m, then αi > m − j, so since αi < i, this can only be true for at most the
j − 1 indices m− j + 2,m− j + 3, . . . , m. Similarly, if j + αi ≤ 0, then since αi ≥ i−m, it
follows that i −m ≤ αi ≤ −j so i ≤ m − j, which means i = 1, 2, . . . ,m − j, for a total of
only m− j values. This gives us the desired bound on the number of indices i with Ai = 1
or −1, completing the proof.

¤

5. Enumerating Conolly-Like Recursions

Up to this point we have focused on showing that specific recursions are (α, β)-Conolly.
Here we turn to the following question: for a given (α, β), what is the complete list of
(α, β)-Conolly recursions of the form (1.3)?

Based on our experimental evidence described in Section 2, we believe that for each possible
(α, β) pair with β > 0 there are finitely many (and at least 1) 2-ary (α, β)-Conolly recursions.
Below we illustrate this hypothesis in the case p = 2 (see Conjecture 5.1), where we list what
we believe are all the 2-ary recursions. Note that the (α, β) pairs we list in Conjecture 5.1
appear in Table 1; in the tables in Conjecture 1 the set notation denotes that parameters
can be chosen from the Cartesian product of the sets, while the right hand column in the
tables is simply the size of that product.

Conjecture 5.1. For β > 0, the only 2-ary, order 2 (α, β)-Conolly recurrences are:
For (α, β) = (−2, 3):

Recurrence number
〈0; 1, 3 : 1; 2, 4〉 1
〈0; 2, 3 : 3; 4, {7, 8, 9}〉 3
〈0; {2, 3, 4}, {4, 5, 6} : 3; {2, 3}, 9〉 18
〈0; {2, 3, 4}, {4, 5, 6} : 5; {7, 8, 9}, {9, 10, 11}〉 81

For (α, β) = (0, 2):

Recurrence number
〈0; {1, 2}, {2, 3} : 1; 1, 4〉 4
〈0; {1, 2}, {2, 3} : 2; {3, 4}, {4, 5}〉 16
〈0; {3, 4}, {4, 5} : 4; 3, 10〉 4
〈0; {3, 4}, {4, 5} : 6; {9, 10}, {10, 11}〉 16

For (α, β) = (2, 1):

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 21

Recurrence number
〈0; 1, 1 : 1; 2, 2〉 1
〈0; {1, 2}, {2, 3} : 1; 1, 2〉 4
〈0; {1, 2}, {2, 3} : 2; 1, {5, 6}〉 8
〈0; {1, 2}, {2, 3} : 2; 2, {4, 5}〉 8
〈0; {1, 2}, {2, 3} : 3; {4, 5}, {5, 6}〉 16

When β = 0, the situation is very different. We have the following result that holds for
recursions of the form (1.1) with arbitrary arity k and any values of the parameters pi:

Theorem 5.1. For all α > 0, there are either no (α, 0)-Conolly meta-Fibonacci recursions
of the form (1.1), or there are infinitely many.

Proof. Suppose that for some given α and set of parameters the recursion

R(n) =
k∑

i=1

R

(
n− si −

pi∑
j=1

R(n− aij)

)
(5.1)

together with c initial values has an (α, 0)-Conolly solution. Since the (α, 0)-Conolly solution
sequence assumes the value of each positive integer α times in order, it must be the sequence
dn/αe. Thus, R(n) = dn/αe satisfies (5.1), the c initial values must be the first c values
of the sequence dn/αe, and for n > c we know that the arguments n − aij > 0 and n >

n− si −
∑pi

j=1dn−aij

α
e > 0.

Now we define a new, related recurrence with an (α, 0)-Conolly solution as follows: Set

P (n) =
k∑

i=1

P

(
n− si − pi −

pi∑
j=1

P (n− aij − α)

)
,(5.2)

with c + α initial values which we take to be the first c + α values of the sequence dn/αe.
Observe that from the discussion in the paragraph above P (n− aij − α) is well-defined. We
show below that in fact for n > c + α all the arguments of P on the right hand side of (5.2)
are positive so the terms are well-defined.

We now show by induction that for all n, P (n) = dn/αe. By our assumption for the initial
conditions we have the base case. Assume that our hypothesis is true up to n− 1. Then

k∑
i=1

P

(
n− si − pi −

pi∑
j=1

P (n− aij − α)

)
=

k∑
i=1

P

(
n− si − pi −

pi∑
j=1

(P (n− aij)− 1)

)

=
k∑

i=1

P

(
n− si − pi + pi −

pi∑
j=1

P (n− aij)

)
=

k∑
i=1

P

(
n− si −

pi∑
j=1

P (n− aij)

)
=

⌈n

α

⌉
.

The last equality holds by our assumption that (5.1) has solution sequence dn/αe and by
the fact that n > n− si −

∑pi

j=1 P (n− aij) > 0 since P (n− aij) = dn−aij

α
e. This shows that

dn/αe solves (5.2).
This proves that P (n) has an (α, 0)-Conolly solution. We could repeat this process,

replacing R(n) with P (n), and hence construct infinitely many different recursions with
an (α, 0)-Conolly solution, thereby proving the desired result.

¤

22 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

For example, in [4] it is shown that 〈0; 1 : 2; 3〉 is (2, 0)-Conolly; by the above theorem we
deduce that so too are 〈1; 3 : 3; 5〉, 〈2; 5 : 4; 7〉 and in general, 〈x; 2x + 1 : x + 2; 2x + 3〉 for
any x ≥ 0.

We are now better equipped to return to the case (α, β) = (4, 0), the only (α, β) pair not
yet covered in our discussion of 2-ary recursions with p = 2. Applying Theorems 4.1 and 5.1
we conclude that there are an infinite number of (4, 0)-Conolly recursions.

It is evident that we can use the same reasoning as above for p = 2 to show that there are
an infinite number of (2p, 0)-Conolly 2-ary recursions for any p. In Theorem 5.2 following,
we substantially improve this result by providing a complete list of all such recursions.

Central to Theorem 5.2 is the observation that since the (α, 0)-Conolly sequences have (by
definition) constant frequency sequences with value α, they are equal to

⌈
n
α

⌉
. By Corollary

2.1, if H is of the form (1.3) with an (α, 0)-Conolly solution, then α = 2p. In what follows

we provide necessary and sufficient conditions for the sequence
⌈

n
2p

⌉
to be the solution of H.

For technical reasons, we need to distinguish between the property that a meta-Fibonacci
recursion A(n) with given initial conditions generates B(n) as its (unique) solution sequence
via a recursive calculation, and the property that the sequence B(n) formally satisfies the
recursion A(n), by which we mean that for all n, B(n) satisfies the equation that defines
A(n). An example makes this distinction clearer: consider the recursion R = 〈−1;−1 : 2; 3〉.
R is formally satisfied by the sequence

⌈
n
2

⌉
, but

⌈
n
2

⌉
is not the solution sequence to R (for any

set of initial conditions) because the recursion R(n) = R(n+1−R(n+1))−R(n−2−R(n−3))
will always require that we know the term R(n + 1) to calculate R(n).

Note that in the example above the recursion R has some negative parameters, a situation
that we don’t normally permit. As we will see in Corollary 5.1 no such example is possible
without negative parameters.

Our strategy for classifying (α, 0)-Conolly sequences takes advantage of this distinction.
We first show that the (α, 0)-Conolly sequence formally satisfies a 2-ary recursion if and
only if that recursion’s parameters meet a certain set of conditions described in Theorem 5.2
below. Then we show that formal satisfaction is equivalent to generating the sequence as
the solution to the recurrence so long as we provide sufficiently many initial conditions that
match the ceiling function.

For any integer z, let z(q) and z(r) be the quotient and remainder mod 2p, so that z =
2pz(q) + z(r) with 0 ≤ z(r) < 2p.

Theorem 5.2. The 2-ary, order p meta-Fibonacci recurrence relation

H(n) = H

(
n− s−

p∑
i=1

H(n− ai)

)
+ H

(
n− t−

p∑
i=1

H(n− bi)

)

is formally satisfied by the sequence
⌈

n
2p

⌉
for all integers n if and only if the parameters

satisfy

(1) For each integer j in {0, 1, . . . , p − 1}, at most j of the a
(r)
i s satisfy a

(r)
i ≤ j and at

most j of them satisfy a
(r)
i ≥ 2p− j.

(2) For each integer j in {0, 1, . . . , p − 1}, at most j of the b
(r)
i s satisfy b

(r)
i ≤ j and at

most j of them satisfy b
(r)
i ≥ 2p− j.

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 23

(3) There exists an integer d such that either −s+
∑p

i=1 a
(q)
i = 2pd and −t+

∑p
i=1 b

(q)
i =

−2pd− p, or −s +
∑p

i=1 a
(q)
i = −2pd− p and −t +

∑p
i=1 b

(q)
i = 2pd.

Note that conditions (1), (2) and (3) are invariant under the transformation from R to P
presented in Theorem 5.1 above, as well as under related transformations.

Proof. Clearly H(n) is formally satisfied by
⌈

n
2p

⌉
if and only if

⌈
n

2p

⌉
=

n− s−∑p
i=1

⌈
n−ai

2p

⌉

2p

+

n− t−∑p
i=1

⌈
n−bi

2p

⌉

2p

.

Let h(n) = h1(n) + h2(n) where

h1(n) =

n− s−∑p
i=1

⌈
n−ai

2p

⌉

2p

,

and h2(n) =

n− t−∑p
i=1

⌈
n−bi

2p

⌉

2p

.

Our strategy is to show that if h(n) =
⌈

n
2p

⌉
, then, up to interchanging h1 and h2, h1(n) =⌈

n
4p

⌉
+d and h2(n) =

⌈
n−2p

4p

⌉
−d which forces the stated conditions on the parameters. This

is done in several steps, outlined as follows.
Lemma 5.1 shows that the successive differences of both h1(n) and h2(n) are always

either -1, 0 or 1, regardless of the values of the parameters s, t, ai and bi. We assume

that h(n) =
⌈

n
2p

⌉
, which is slowly growing, and in particular, h(n + 1) − h(n) = 1 if and

only if n = 2pµ for some integer µ. This, together with Lemma 5.1 implies that for a given
integer µ, exactly one of h1 or h2 satisfies hi(2pµ + 1)− hi(2pµ) = 1.

Lemma 5.2 and Lemma 5.3 impose conditions on h1(n) for certain intervals, while Lemmas
5.4 and 5.5 do the same for h2(n) in complementary intervals (see Figure 7). We prove that

h1(n) =
⌈

n
4p

⌉
+ d in the intervals where the remainder of n modulo 4p lies in the range

(p, 3p], which for convenience we write as p < n (mod 4p) ≤ 3p. We will show that in
these intervals h1(n) is constant but h(n) is not. Similarly, Lemmas 5.4 and 5.5 prove that

h2(n) =
⌈

n−2p
4p

⌉
− d for the complementary intervals, −p < n (mod 4p) ≤ p, in which h2(n)

is constant but h(n) is not.
Thus for each interval, we know the values of h(n) and exactly one of h1(n) or h2(n). Using

h(n) = h1(n)+h2(n) we are able to determine that h1(n) =
⌈

n
4p

⌉
+d and h2(n) =

⌈
n−2p

4p

⌉
−d,

for all n. This imposes the stated conditions on the parameters s, t, ai and bi. The converse
will also become evident. That is, if we assume the parameters s, t, ai and bi satisfy conditions

(1), (2) and (3), then H(n) is satisfied by
⌈

n
2p

⌉
.

Lemma 5.1. For all n, |hi(n + 1)− hi(n)| ≤ 1.

Proof. We show that the numerator in h1 does not change too quickly, which ensures that
h1 has successive differences that are small in magnitude.

24 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

Lemmas 4 and 5

Lemmas 6 and 7

2p 16p 18p 20p 22p 24p

Assume h(n) =
⌈

n
2p

⌉

4p

0

6p 8p

14p

h1(n)

d

h2(n)

Figure 7. A visual representation of the proof of Theorem 5.2

Observe that −1 ≤
⌈

n−ai

2p

⌉
−

⌈
n+1−ai

2p

⌉
≤ 0, so that

−p ≤
p∑

i=1

(⌈
n− ai

2p

⌉
−

⌈
n + 1− ai

2p

⌉)
≤ 0.

Subtracting the numerators for successive arguments of h1 we get

∣∣∣∣∣n + 1− s−
p∑

i=1

⌈
n + 1− ai

2p

⌉
− n + s +

p∑
i=1

⌈
n− ai

2p

⌉∣∣∣∣∣

=

∣∣∣∣∣1 +

p∑
i=1

(⌈
n− ai

2p

⌉
−

⌈
n + 1− ai

2p

⌉)∣∣∣∣∣ < p < 2p.

Thus |h1(n + 1)− h1(n)| ≤ 1. The proof for h2 is similar, just replace s with t and ai with
bi. ¤

If h(n+1)−h(n) = 1, then necessarily h1(n+1)−h1(n) > 0 or h2(n+1)−h2(n) > 0. By
Lemma 5.1 either h1(n + 1) − h1(n) = 1 and h2(n + 1) − h2(n) = 0 or vice versa. Without
loss of generality, since we can interchange h1 and h2, we assume that

h1(1)− h1(0) = 1 and h2(1)− h2(0) = 0.(5.3)

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 25

It is helpful to expand the numerator of h1(n) using the notation z(q) and z(r) for the
quotient and remainder modulo 2p introduced above:

h1(n) =

2pn(q) + n(r) − s−∑p
i=1

⌈
2pn(q)+n(r)−2pa

(q)
i −a

(r)
i

2p

⌉

2p

=

2pn(q) + n(r) − s−∑p
i=1

(
n(q) − a

(q)
i +

⌈
n(r)−a

(r)
i

2p

⌉)

2p

=

pn(q) + n(r) − s +
∑p

i=1 a
(q)
i −∑p

i=1

⌈
n(r)−a

(r)
i

2p

⌉

2p

.(5.4)

A similar expression holds for h2, where we replace s with t and ai with bi.

Observe that the sum
∑p

i=1

⌈
n(r)−a

(r)
i

2p

⌉
in (5.4) is quite tame. In particular, 0 ≤ n(r) < 2p

and 0 ≤ a
(r)
i < 2p so that

⌈
n(r)−a

(r)
i

2p

⌉
is either 0 or 1, and is equal to 1 if and only if n(r) is

strictly greater than a
(r)
i . Using the standard Iversonian notation, we write

⌈
n(r) − a

(r)
i

2p

⌉
= [[n(r) > a

(r)
i]].

Using this notation we have the inequality 0 ≤ ∑p
i=1 [[n(r) > a

(r)
i]] ≤ p, which is used ex-

tensively in the lemmas below to describe the behavior of hi for certain intervals. We can
combine the Iversonian notation with (5.4) to rewrite:

h1(n) =

⌈
pn(q) + n(r) − s +

∑p
i=1 a

(q)
i −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉
.(5.5)

Let d = h1(0), so that h2(0) = h(0)−h1(0) = −d. By (5.3) h1(1) = d+1 while h2(1) = −d.

Lemma 5.2. For each i in {1, 2, . . . , p}, a
(r)
i 6= 0. Further, −s +

∑p
i=1 a

(q)
i = 2pd.

Proof. We compare numerators in h1(0) and h1(1) using the form derived in (5.5). Notice

that [[0 > a
(r)
i]] = 0 for every i, so that

h1(0) =

⌈
−s +

∑p
i=1 a

(q)
i

2p

⌉
.

Since h1(1)− h1(0) = 1 and

h1(1) =

⌈
1− s +

∑p
i=1 a

(q)
i −∑p

i=1 [[1 > a
(r)
i]]

2p

⌉
,

26 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

the numerator of h1(1) must be greater than the numerator of h1(0), that is,

−s +

p∑
i=1

a
(q)
i < 1− s +

p∑
i=1

a
(q)
i −

p∑
i=1

[[1 > a
(r)
i]],

which simplifies to

1−
p∑

i=1

[[1 > a
(r)
i]] > 0.

It follows that for each 1 ≤ i ≤ p we have [[1 > a
(r)
i]] = 0 so a

(r)
i ≥ 1. Thus, h1(1) =⌈

1−s+
∑p

i=1 a
(q)
i

2p

⌉
= d + 1 and h1(0) =

⌈
−s+

∑p
i=1 a

(q)
i

2p

⌉
= d which implies that −s +

∑p
i=1 a

(q)
i =

2pd, as required. ¤
We can now characterize the behavior of h1(n) whenever p < n (mod 4p) ≤ 3p.

Lemma 5.3. With d defined above,

h1(n) =

⌈
n

4p

⌉
+ d

whenever p < n (mod 4p) ≤ 3p.

Proof. We rewrite (5.5) using −s +
∑p

i=1 a
(q)
i = 2pd from Lemma 5.2:

h1(n) =

⌈
pn(q) + n(r) + 2pd−∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉

= d +

⌈
pn(q) + n(r) −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉
.

To complete the proof of the lemma, we check that the ceiling function above is in fact
⌈

n
4p

⌉

as desired. We separate into three cases:
Case 1: p < n (mod 4p) < 2p. Observe that in this case, n(q) is even, so⌈

pn(q) + n(r) −∑p
i=1 [[n(r) > a

(r)
i]]

2p

⌉
=

n(q)

2
+

⌈
n(r) −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉

=
n− n(r)

4p
+

⌈
n(r) −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉
.

Since 2p > n(r) > p, we have that n−n(r)

4p
=

⌈
n
4p

⌉
− 1, so we simply need to note that⌈

n(r)−∑p
i=1 [[n(r)>a

(r)
i]]

2p

⌉
= 1 because 2p > n(r) > p and

∑p
i=1 [[n(r) > a

(r)
i]] ≤ p.

Case 2: n (mod 4p) = 2p. This means n(r) = 0, so⌈
pn(q) + n(r) −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉
=

⌈
pn(q)

2p

⌉
=

⌈
2pn(q)

4p

⌉
=

⌈
n

4p

⌉
.

Case 3: 2p < n (mod 4p) ≤ 3p. Observe that in this case n(q) is odd. Hence

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 27

⌈
pn(q) + n(r) −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉
=

⌈
pn(q) + p− p + n(r) −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉

=
n(q) + 1

2
+

⌈
−p + n(r) −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉
.

Since 0 < n(r) ≤ p, we have −2p < −p + n(r) −∑p
i=1 [[n(r) > a

(r)
i]] ≤ 0, so that

⌈
−p + n(r) −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉
= 0.

Lastly, since p ≥ n(r) > 0, it is immediate that n(q)+1
2

=
⌈

n
4p

⌉
. ¤

By Lemma 5.3 we know that h1(2p + 1) − h1(2p) = 0. Since h(2p + 1) − h(2p) = 1, we
have that h2(2p+1)−h2(2p) = 1. Just as we used our assumption that h1(1)−h1(0) = 1 in
the above two lemmas, we apply this crucial fact to prove the corresponding two lemmas for
h2 that follow. The technical details of the proofs are similar to those of the two preceding
lemmas.

Lemma 5.4. For each i in {1, 2, . . . , p}, b
(r)
i 6= 0. Further, with d as defined above, −t +∑p

i=1 b
(q)
i = −2pd− p.

Proof. Recall that if n = 2p, then n(q) = 1 and n(r) = 0. Following the proof of Lemma 5.2

we compare the numerators of h2(2p) and h2(2p + 1). Using (5.5) and [[0 > b
(r)
i]] = 0, we

have

h2(2p) =

⌈
p− t +

∑p
i=1 b

(q)
i

2p

⌉
.

Since h2(2p + 1)− h2(2p) = 1 and

h2(2p + 1) =

⌈
p + 1− t +

∑p
i=1 b

(q)
i −∑p

i=1 [[1 > b
(r)
i]]

2p

⌉
,

the numerator of h2(2p + 1) must be greater than that of h2(2p). This inequality,

p− t +

p∑
i=1

b
(q)
i < p + 1− t +

p∑
i=1

b
(q)
i −

p∑
i=1

[[1 > b
(r)
i]]

simplifies to

1−
p∑

i=1

[[1 > b
(r)
i]] > 0,

implying that [[1 > b
(r)
i]] = 0, so b

(r)
i ≥ 1 for each 1 ≤ i ≤ p. for each 1 ≤ i ≤ p. Thus,

h2(2p + 1) =

⌈
p+1−t+

∑p
i=1 b

(q)
i

2p

⌉
= −d + 1 and h2(2p) =

⌈
p−t+

∑p
i=1 b

(q)
i

2p

⌉
= −d which implies

that p− t +
∑p

i=1 b
(q)
i = −2pd. ¤

28 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

Note that Lemmas 5.4 and 5.2 establish condition (3).
We now prove the analogue to Lemma 5.3 for h2 that we promised above.

Lemma 5.5. Whenever −p < n (mod 4p) ≤ p, then h2(n) =
⌈

n−2p
4p

⌉
− d.

Proof. Let g(n) = h2(n+2p). We prove that g(n) =
⌈

n
4p

⌉
−d whenever p < n (mod 4p) ≤ 3p.

Using the analogue to (5.5) for h2 and simplifying we get

h2(n + 2p) =

2p(n(q) + 1) + n(r) − t−∑p
i=1

⌈
2p(n(q)+1)+n(r)−2pb

(q)
i −b

(r)
i

2p

⌉

2p

h2(n + 2p) =

⌈
pn(q) + p + n(r) − t +

∑p
i=1 b

(q)
i −∑p

i=1 [[n(r) > b
(r)
i]]

2p

⌉

.

Recall from Lemma 5.4 that p − t +
∑p

i=1 b
(q)
i = −2pd. Thus, the remainder of the proof

follows closely that for h1(n) in Lemma 5.3. Therefore g(n) = h2(n + 2p) =
⌈

n
4p

⌉
− d so that

h2(n) =
⌈

n−2p
4p

⌉
− d for −p < n (mod 4p) ≤ p. ¤

Using the fact that h1 and h2 are constant for complementary ranges of n and that they
are related by h(n) = h1(n) + h2(n) we are able to characterize their behavior for all n.

Lemma 5.6. For all n, h1(n) =
⌈

n
4p

⌉
+ d and h2(n) =

⌈
n−2p

4p

⌉
− d.

Proof. It is easy to see that for all n the ceiling function satisfies

h(n) =

⌈
n

2p

⌉
=

(⌈
n

4p

⌉
+ d

)
+

(⌈
n− 2p

4p

⌉
− d

)
.

When p < n (mod 4p) ≤ 3p we have h1(n) =
⌈

n
4p

⌉
+ d by Lemma 5.3; this implies that

h2(n) =
⌈

n−2p
4p

⌉
− d in this range. When −p < n (mod 4p) ≤ p we have h2(n) =

⌈
n−2p

4p

⌉
− d

by Lemma 5.5; this implies that h1(n) =
⌈

n
4p

⌉
+ d in this range. ¤

Now that we have proven that for all n, h1(n) =
⌈

n
4p

⌉
+ d, we can show that condition

(1) on the a
(r)
i is necessary. Recall that in the proof of Lemma 5.3, we showed for all n,

h1(n) = d +

⌈
pn(q)+n(r)−∑p

i=1 [[n(r)>a
(r)
i]]

2p

⌉
. Therefore we have that for all n,

⌈
n

4p

⌉
=

⌈
pn(q) + n(r) −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉
.(5.6)

Our proof is driven by this ceiling equality. In fact, we only need to use n in the range
0 < n < 4p to get the desired results; the two segments 0 < n < 2p and 2p < n < 4p will
force the two different parts of condition (1).

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 29

First, consider n in the range 0 < n < 2p. In this case n(r) = n and n(q) = 0. So (5.6)

implies

⌈
n−∑p

i=1 [[n(r)>a
(r)
i]]

2p

⌉
= 1, so 0 < n−∑p

i=1 [[n(r) > a
(r)
i]] ≤ 2p. From the left inequality

we get
∑p

i=1 [[n > a
(r)
i]] < n. It is easy to see how this implies the first part of condition

(1): for each integer j in {0, 1, . . . , p − 1}, let j + 1 = n. Then by the preceding inequality∑p
i=1 [[j ≥ a

(r)
i]] ≤ j. That is, for each integer j in {0, 1, . . . , p − 1}, at most j of the a

(r)
i s

satisfy a
(r)
i ≤ j. Therefore this condition is necessary for Equation (5.6) to be satisfied for n

in the range 0 < n (mod 4p) < 2p.
Next, consider 2p < n < 4p. Here, n(r) = n−2p and n(q) = 1. Substituting these into (5.6)

we get

⌈
p+n−2p−∑p

i=1 [[n(r)>a
(r)
i]]

2p

⌉
= 1, which is equivalent to 0 < n−p−∑p

i=1 [[n(r) > a
(r)
i]] ≤ 2p.

The right inequality implies n − 3p ≤ ∑p
i=1 [[n− 2p > a

(r)
i]] so when j = 4p − n, we have

p − j ≤ ∑p
i=1 [[2p− j > a

(r)
i]]. That is, for each integer j in {1, 2, . . . , p − 1}, at most j of

the a
(r)
i s satisfy a

(r)
i ≥ 2p− j. Therefore, this condition is necessary for Equation (5.6) to be

satisfied for n in the range 2p < n (mod 4p) < 4p. This completes the proof of the second
part of condition (1) of the theorem.

If we substitute m = n − 2p into h2(n) =
⌈

n−2p
4p

⌉
− d we can utilize the above argument

to prove condition (2) of Theorem 5.2.
We have established the necessity of (1), (2) and (3). We now show sufficiency. Our

strategy is simple: we will reverse our arguments to show that conditions (1),(2), and (3)

imply that h1(n) and h2(n) are
⌈

n
4p

⌉
+ d and

⌈
n−2p

4p

⌉
− d. Assume that all three conditions

hold. Without loss of generality, assume that −s +
∑p

i=1 a
(q)
i = 2pd. If not, switch the first

and second summands in the recursion.
As shown previously, expanding the definition of h1(n) gives Equation (5.5), which for

convenience we rewrite below:

h1(n) =

⌈
pn(q) + n(r) − s +

∑p
i=1 a

(q)
i −∑p

i=1 [[n(r) > a
(r)
i]]

2p

⌉
.

Substituting 2pd for −s +
∑p

i=1 a
(q)
i , then factoring out d and bringing d out of the ceiling

function we get h1(n) = d +

⌈
pn(q)+n(r)−∑p

i=1 [[n(r)>a
(r)
i]]

2p

⌉
. A similar equation holds for h2(n).

Thus, if we can show that

⌈
pn(q)+n(r)−∑p

i=1 [[n(r)>a
(r)
i]]

2p

⌉
=

⌈
n
4p

⌉
, with a corresponding equality

for h2, we will be done. We show the details only for the required equality above for h1; the
approach in the second case is entirely similar.

First, note that if the desired equality above for h1 holds for n, it also holds for n +

4p. This is because

⌈
p(n+4p)(q)+n(r)−∑p

i=1 [[n(r)>a
(r)
i]]

2p

⌉
=

⌈
pn(q)+2p+n(r)−∑p

i=1 [[n(r)>a
(r)
i]]

2p

⌉
= 1 +

⌈
pn(q)+n(r)−∑p

i=1 [[n(r)>a
(r)
i]]

2p

⌉
= 1+

⌈
n
4p

⌉
=

⌈
n+4p

4p

⌉
. Thus, without loss of generality we consider

only n with 1 ≤ n ≤ 4p.

30 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

For all such n,
⌈

n
4p

⌉
= 1, so we need only prove that for 1 ≤ n ≤ 4p,

⌈
pn(q)+n(r)−∑p

i=1 [[n(r)>a
(r)
i]]

2p

⌉
=

1. This is equivalent to proving that for 1 ≤ n ≤ 4p, 1 ≤ pn(q)+n(r)−∑p
i=1 [[n(r) > a

(r)
i]] ≤ 2p.

We consider three cases.
Case 1: 1 ≤ n < 2p. In this case n(q) = 0, n(r) = n. We want 1 ≤ n−∑p

i=1 [[n > a
(r)
i]] ≤ 2p.

Since [[n > a
(r)
i]] = 1 − [[n ≤ a

(r)
i]], the prior inequality is equivalent to 1 ≤ n − ∑p

i=1(1 −
[[n ≤ a

(r)
i]]) ≤ 2p, or 1 ≤ n− p+

∑p
i=1 [[n ≤ a

(r)
i]] ≤ 2p, which we can rearrange as 1+ p−n ≤∑p

i=1 [[n ≤ a
(r)
i]] ≤ 3p − n. Because n < 2p, the right-hand inequality is always true, and

clearly the left-hand inequality can only possibly be false for n ≤ p. By condition (1), at

most n− 1 of the a
(r)
i satisfy a

(r)
i ≤ n− 1, which is equivalent to a

(r)
i < n. Therefore, at least

p− (n− 1) of the a
(r)
i satisfy the negation, n ≤ a

(r)
i , so 1 + p− n ≤ ∑p

i=1([[n ≤ a
(r)
i]]).

Case 2: n = 2p, 4p. In this case, n(q) = 1 or 2, and n(r) = 0, which makes pn(q) + n(r) −∑p
i=1 [[n(r) > a

(r)
i]] = p or 2p, satisfying the required inequality.

Case 3: 2p < n < 4p. In this case, n(q) = 1 and n(r) = n − 2p. Thus, the required

inequality is 1 ≤ p + n − 2p − ∑p
i=1 [[n− 2p > a

(r)
i]] ≤ 2p. The left inequality is always

true since n > 2p. So we need only show that n − p − ∑p
i=1 [[n− 2p > a

(r)
i]] ≤ 2p, which

we may rewrite into n − 3p ≤ ∑p
i=1 [[n− 2p > a

(r)
i]]. Observe that [[n− 2p > a

(r)
i]] = 1 −

[[n− 2p ≤ a
(r)
i]], so the required inequality becomes n − 3p ≤ ∑p

i=1(1 − [[n− 2p ≤ a
(r)
i]]), or

4p− n ≥ ∑p
i=1 [[n− 2p ≤ a

(r)
i]]. If n ≤ 3p, this inequality is obviously true, so we need only

consider 3p < n < 4p, in which case 0 ≤ 4p − n < p. By condition (1), there are at most

4p−n values of i with a
(r)
i ≥ 2p− (4p−n) = n−2p, which proves the desired inequality. ¤

Theorem 5.2 gives a complete characterization of 2-ary meta-Fibonacci recurrences that are
formally satisfied by the sequence

⌈
n
α

⌉
6. As discussed above, this is not the same as generating

this sequence as the solution sequence from the recurrence, since in theory the recurrence
relation might refer to future terms. The following corollary rules out this possibility:

Corollary 5.1. If H(n) satisfies conditions (1)−(3) in Theorem 5.2, then, given a sufficient
number of initial values, H(n) references only terms in {1, 2, . . . , n− 1}.
Proof. By our assumption concerning the parameters in Equation (1.3), ai > 0 and bi > 0
and also s and t are non-negative. Thus H(n−ai) and H(n− bi) are not references to future
terms. It is easy to see that 0 < n − s −∑p

i=1 H(n − ai) ≤ n − 1 because
∑p

i=1 H(n − ai)
grows asymptotically like n/2. ¤

We now present two special cases of Theorem 5.2 for p = 1 and p = 2, the first of which
was given as Corollary 3.1. If p = 1 (writing a1 = a and b1 = b) then conditions (1) and (2)
of Theorem 5.2 say that a and b are odd while condition (3) says, up to the usual symmetry
in the parameters, that for some integer d,

⌊
a
2

⌋− s = 2d and
⌊

b
2

⌋− t = −2d− 1. If we add

the equations in (3) and multiply by 2 we get 2
⌊

a
2

⌋− 2s + 2
⌊

b
2

⌋− 2t = −2, from which we
derive the result promised in Corollary 3.1, namely, 2(s + t) = a + b, with a and b both odd.

If p = 2 then the conditions of Theorem 5.2 can be simplified as follows:

6Note that Theorem 5.2 actually shows formal satisfaction even when we do not require positivity of the
parameters.

NESTED RECURRENCE RELATIONS WITH CONOLLY-LIKE SOLUTIONS 31

Corollary 5.2. Let H(n) = H(n−s−H(n−a)−H(n−b))+H(n−t−H(n−c)−H(n−d))
be an order 2 meta-Fibonacci recurrence relation. The sequence

⌈
n
4

⌉
is a solution to H(n) if

and only if there is an odd integer k such that the following conditions are satisfied:

(i) a + b ∈ {4(s + k)− 1, 4(s + k), 4(s + k) + 1},
(ii) c + d ∈ {4(t− k)− 1, 4(t− k), 4(t− k) + 1},
(iii) a, b, c, d 6≡ 0 mod 4.

Proof. Suppose
⌈

n
4

⌉
is a solution to H(n). We apply Theorem 5.2 with p = 2. Condition (3)

of Theorem 5.2 says, up to switching the roles of {a, b, s} and {c, d, t}, that
⌈

a
4

⌉
+

⌈
b
4

⌉
= s+4e

and
⌈

c
4

⌉
+

⌈
d
4

⌉
= t − 4e − 2. Multiplying both sides by 4 and adding a(r) + b(r) gives

a+ b = 4(s+4e)+a(r) + b(r) while a similar operation gives c+d = 4(t− 4e− 2)+ c(r) +d(r).
From conditions (1) and (2) we have (iii) and a(r) + b(r) ∈ {3, 4, 5} and c(r) + d(r) ∈ {3, 4, 5}.
So a + b = 4(s + 4e + 1) + a(r) + b(r)− 4, and c + d = 4(t− 4e− 2 + 1) + c(r) + d(r)− 4. Since
4e + 1 = −(−4e− 2 + 1) then either κ = 4e + 1 or κ = −4e− 2 + 1 = −(4e + 1), so κ can
be any odd integer.

The argument can be reversed so that (1), (2) and (3) follow from (i), (ii) and (iii). That
is, assume κ is an odd integer. If κ = 4e + 1 for some integer e, then by (i), we have
a + b = 4(s + 4e) + E where E ∈ {3, 4, 5}. Subtracting a(r) + b(r) and dividing by 4 gives⌈

a
4

⌉
+

⌈
b
4

⌉
= s + 4e + E−a(r)−b(r)

4
. But the left hand side is an integer, so E − a(r) − b(r)

(mod 4) = 0. Since a, b 6≡ 0 mod 4, we have 1 ≤ a(r) ≤ 3, and 1 ≤ b(r) ≤ 3, so 2 ≤
a(r) + b(r) ≤ 6. Therefore, we must have E = a(r) + b(r). This forbids a(r) = b(r) = 1 and
a(r) = b(r) = 3. Combining this with condition (iii), we establish condition (1). A similar
argument yields condition (2). By Theorem 5.2, therefore,

⌈
n
4

⌉
is a solution to H(n). ¤

6. Concluding Remarks

We have an almost complete characterization of 2-ary order 1 Conolly-like recursions. The
only missing component is a proof that 〈0; 1 : 1; 2〉 and 〈0; 2 : 3; 5〉 are the only two order
1 recursions satisfied by the Conolly sequence. To show this, we would like an analogue of
Corollary 3.1 for (0, 1)-Conolly recursions.

For 2-ary recursions of higher order we have shown that (α, β)-Conolly recursions exist for
all permissible pairs (α, β). Unlike the situation for order 1, we believe that for β > 0 there
are many (α, β)-Conolly recursions. To expand on the existence result proved in Theorem
4.1 we would like an analogue to Theorem 5.2; a starting point would be to find a way to
show that all of the 180 recursions listed in Conjecture 5.1 are indeed Conolly-like.

Nothing is currently known about the existence of Conolly-like recursions with arity higher
than 2. An empirical investigation along the lines described in Section 2 likely would be a
useful starting point.

Another direction for further work is that Theorem 5.2 seems adaptable to k-ary recurrence
relations of order p and arbitrary α. A sequence A(n) that satisfies

⌈
n
α

⌉
also satisfies the

limit A(n)
n

−→ 1
α
. By Theorem 2.1, α = kp

k−1
and since gcd(k, k − 1) = 1, we must have

p = q(k − 1) for some q. Following the pattern of Theorem 5.2, one would want to use the
fact that

⌈
n

kq

⌉
=

⌈
n

k2q

⌉
+

⌈
n− kq

k2q

⌉
+

⌈
n− 2kq

k2q

⌉
+ · · ·

⌈
n− (k − 1)q

k2q

⌉
,(6.1)

32 ERICKSON, ISGUR, JACKSON, RUSKEY, AND TANNY

to show that the ith term on the right hand side corresponds to the ith term in the sum
H(n) =

∑k
i=1 hi(n) for some k-ary recurrence relation H of order p. In this case one would

define m(q) and m(r) to satisfy m = kqm(q) + m(r) for 0 ≤ m(r) < kq so as to take advantage
of the Iversonians used in Theorem 5.2. Particular attention should be paid to showing that
the form in Equation (6.1) is necessary, given k and q.

Further consideration might be given to sequences of the form
⌈

rn
q

⌉
with positive integers

r and q such that 0 < r/q ≤ 1 and gcd(r, q) = 1. These are only Conolly-like for r = 1,
but nevertheless they have some interesting features. For example, this is a necessary and
sufficient condition for a slow-growing sequence to have a periodic frequency function. These
sequences will be the subject of a forthcoming publication.

Finally, it would be interesting to apply the tree technique to help identify recursions with
solutions whose frequency functions are linear combinations of functions other than 1 and
rm. This will be the subject of a forthcoming publication.

References

[1] R.B.J.T. Allenby and R.C. Smith, Some sequences resembling Hofstadter’s J. Korean Math. Soc. 40
(2003) 921–932.

[2] Jean-Paul Allouche and Jeffrey Shallitt, Automatic Sequences: Theory, Applications, Generalizations,
Cambridge University Press, 2003.

[3] B. Balamohan, A. Kuznetsov, and S. Tanny, On the Behavior of a Variant of Hofstadter’s Q-Sequence,
Journal of Integer Sequences, Vol. 10 (2007), Article 07.7.1, electronic, 29 pages.

[4] B. Balamohan, Z. Li, and S. Tanny, A combinatorial interpretation for certain relatives of the Conolly
sequence, J. of Integer Sequences 11 (2008), Article 08.2.1.

[5] Joseph Callaghan, John J. Chew III, Stephen M. Tanny, On the Behavior of a Family of Meta-Fibonacci
Sequences, SIAM J. Discrete Math. 18(4): 794–824 (2005).

[6] B. W. Conolly, Meta-Fibonacci sequences, in S. Vajda, ed., Fibonacci & Lucas Numbers, and the Golden
Section, Wiley, New York, 1986, pp. 127-137.

[7] Solomon W. Golomb, Discrete chaos: sequences satisfying strange recursions, preprint, undated.
[8] J. Higham and S. Tanny, More well-behaved meta-Fibonacci sequences, Congr. Numer. 98 (1993), 3-17.
[9] Douglas R. Hofstadter, Godel, Escher, and Bach: An Eternal Golden Braid, Basic Books, New York,

1979.
[10] Abraham Isgur, David Reiss, and Stephen Tanny, Trees and meta-Fibonacci sequences, Electron. J. of

Combin. 16 (2009), R129.
[11] B. Jackson and F. Ruskey, Meta-Fibonacci sequences, binary trees and extremal compact codes, Elec-

tron. J. of Combin. 13 (2006), R26.
[12] F. Ruskey and C. Deugau, The combinatorics of certain k-ary meta-Fibonacci sequences, Journal of

Integer Sequences, Volume 12, Article 09.4.3, 36 pages, 2009.
[13] N. J. A. Sloane, Online Encyclopedia of Integer Sequences,

http://www.research.att.com/∼njas/sequences.
[14] T. Stoll, On Hofstadter’s married functions, Fibonacci Quarterly 46/47 (2008/2009), 62-67.
[15] S.M. Tanny, A well-behaved cousin of the Hofstadter sequence, Discrete Mathematics 105 (1992) 227–239.

Dept. of Computer Science, University of Victoria, CANADA

Dept. of Mathematics, University of Toronto, CANADA

Dept. of Computer Science, San Jose State University, USA

Dept. of Computer Science, University of Victoria, CANADA
URL: http://www.cs.uvic.ca/~ruskey

Dept. of Mathematics, University of Toronto, CANADA

