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Abstract. An n-Venn diagram consists of n curves drawn in the plane
in such a way that each of the 2n possible intersections of the interiors
and exteriors of the curves forms a connected non-empty region. A Venn
diagram is convexly-drawable if it can be drawn with all curves convex
and it is simple if at most two curves intersect at any point. A Venn
diagram is called polar symmetric if its stereographic projection about
the infinite outer face is isomorphic to the projection about the innermost
face. We outline an algorithm that shows there are exactly 406 simple
convexly drawable polar-symmetric 6-Venn diagrams.
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1 Introduction

Named after John Venn(1834− 1923), who used diagrams of overlapping circles
to represent propositions [10], Venn diagrams are commonly used in set theory
to visualize the relationship between different sets. When talking about Venn
diagrams, the traditional three circles diagram with 3-fold symmetry often comes
to mind (Figure 1(a)). Although it is not possible to use circles to draw Venn
diagrams of more than 3 sets, more than 3 sets can be represented if the curves
of the Venn diagram are other simple closed curves. Figure 1(b) shows a 5-
set Venn diagram composed of 5 congruent ellipses which was discovered by
Grünbaum[5], and Figure 1(c) shows a 7-set Venn diagram with 7-fold rotational
symmetry called Adelaide which was discovered independently by Grünbaum [7]
and Edwards [3].

Intensive research has been done recently on generating and drawing Venn
diagrams of more than three sets, particularly in regard to symmetric Venn
diagrams, which are those where rotating the diagram by 360/n degrees results in
the same diagram. Henderson considered rotationally symmetric Venn diagrams
and he showed that they could exist only prime number of curves [9]. Griggs,
Killian, and Savage published a constructive method for producing symmetric
Venn diagrams with a prime number of curves [8]. Venn diagrams exist for any
number of curves and several constructions of them are known [12].

Another type of symmetry, introduced by Grünbaum [6], is called polar-
symmetry which can be imagined by first projecting the diagram onto the surface
of a sphere with the regions corresponding to the full and empty sets at the
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north and south poles, respectively. The Venn diagram is polar-symmetric if it
is invariant under polar flips, meaning that the north and south hemispheres are
congruent. In other words, for a polar-symmetric Venn diagram on the plane
turning the diagram inside-out (the innermost face becomes the outermost face)
gives the same Venn diagram. Note that all three Venn diagrams of Figure 1 are
polar-symmetric, as well as being rotationally symmetric.

The only other attempt that we know of to exhaustively list some interesting
class of 6-Venn diagrams occurs in the the work of Jeremy Carroll, who discov-
ered that there are precisedly 126 such Venn diagrams where all curves can be
drawn as triangles [2]. He used a brute force search algorithm for all possible face
sizes of a Venn diagram. However, the problem of generating polar-symmetric
six-set Venn diagrams has not been studied before. In this paper we are restrict-
ing our attention to the special (and most studied) class of Venn diagrams that
are both simple and monotone (drawable with convex curves). We introduce two
representations of these diagrams. Inspired by Carroll’s work, an algorithm for
generating all possible simple monotone polar-symmetric six-set Venn diagrams
is developed — an algorithm which determines that there are exactly 406 simple
monotone polar-symmetric 6-Venn diagrams.

Although our results are oriented towards 6-Venn diagrams, they could in
principle be applied to general n-Venn diagrams, but the computations will
quickly become prohibitive. Nevertheless, we believe that the data structures
and ideas introduced here (i.e., the representations) will be useful in further in-
vestigations, and in particular to resolving one of the main outstanding open
problems in the area of Venn diagrams: is there a simple 11-Venn diagram? We
intend to use the data structures proven useful here to attack a restricted, but
natural, version of that problem: is there a simple monotone polar-symmetric
11-Venn diagram?

The study of symmetric Venn diagrams in interesting not only because sym-
metry is core aspect of mathematical enquiry, but also because we are often led
to diagrams of great inherent beauty. Furthermore, the geometric dual of a sim-
ple Venn diagram is a maximal planar spanning subgraph of the the hypercube,
and so results about Venn diagrams often have equivalent statements as results
about the hypercube.

The remainder of paper is organized as follows. In the Section 2 we intro-
duce basic definitions. Representations of simple monotone Venn diagrams are
explained in Section 3. The generating algorithm and results are explained in
the last two sections.

2 Basic Definitions

A closed curve in the plane is simple if it doesn’t intersect itself. Each simple
closed curve decomposes the plane into two connected regions, the interior and
the exterior. An n-Venn diagram is a collection of n finitely intersecting simple
closed curves C = {C0, C1, . . . , Cn−1} in the plane, such that there are exactly
2n nonempty and connected regions of the form X0 ∩ X1 ∩ · · · ∩ Xn−1, where
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Fig. 1. (a) A 3-Venn diagram whose curves are circles. (b) A 5-Venn diagram whose
curves are ellipses. (c) A symmetric 7-Venn known as “Adelaide.”

Xi is either the unbounded open exterior or open bounded interior of curve Ci.
Each connected region corresponds to a subset of the set {0, 1, . . . , n− 1}. Two
Venn diagrams are isomorphic if one of them can be changed into the other or
its mirror image by a continuous transformation of the plane.

A k-region in a diagram is a region that is in the interior of precisely k curves.
In an n-Venn diagram, each k-region corresponds to a k-element subset of a set
with n elements. So, there are

(
n
k

)
k-regions. A Venn diagram is monotone if

every k-region is adjacent to both some (k − 1)-region (if k > 0) and also to
some (k + 1)-region (if k < n). A diagram is monotone if and only if it is
drawable with each curve convex [1]. A simple Venn diagram is one in which
exactly two curves cross each other at each intersection point. Figure 2 shows a
simple monotone 6-Venn diagram.

Consider a Venn diagram as being projected onto the surface of a unit sphere
where the empty region of the diagram encloses the north pole of the sphere and
the innermost region contains the south pole. A cylindrical projection of the
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Fig. 2. A simple monotone 6-Venn diagram.

Venn diagram can be obtained by mapping the surface of sphere to a 2π by 2
rectangle on the plane, where the equator of the sphere maps to a horizontal line
of length 2π and the north and south pole of the sphere are mapped to the top
and bottom sides of the rectangle respectively. In this representation, the top
of cylinder represents the empty region and bottom of cylinder represents the
innermost region. A Venn diagram is said to be polar symmetric if it is invariant
under polar flips. In the cylindrical representation the polar flip is equivalent
to turning the cylinder upside-down. For a Venn diagram on the plane, a polar
flip is equivalent to turning the diagram inside-out, with the innermost face
becoming the outermost. Figure 3 shows the cylindrical representation of the
polar symmetric 6-Venn diagram shown in Figure 2. It is known that there are
exactly 6 simple monotone 7-Venn diagrams with rotational and polar symmetry
[4],[3].

Fig. 3. Cylindrical representation of the 6-Venn diagram of Figure 2.

A simple Venn diagram can be viewed as a planar graph where the intersec-
tion points of the Venn diagram are the vertices of the graph and the sections of



Generating All Simple Convexly-Drawable Polar Symmetric 6-Venn 5

the curves that connect the intersection points are the edges of the graph. For
a planar graph with f faces, v vertices and e edges, Euler’s formula states that
f + v = e + 2. A graph of an n-Venn diagram has 2n faces. In a simple Venn
diagram each vertex of this graph has degree 4; i.e. e = 2v, so a simple n-Venn
diagram has 2n − 2 vertices.

3 Representing Venn Diagrams

In this section we introduce two representations for simple monotone Venn di-
agrams. First we discuss the binary matrix representation where each 1 in the
matrix represents an intersection point of the corresponding Venn diagram. Hav-
ing the matrix representation of a diagram, it is easy to check if it is a Venn dia-
gram or not. In the second part we show how to represent simple monotone Venn
diagrams using compositions. We use this representation to find all candidate
diagrams. Then we filter non-Venn diagrams using the matrix representation.

3.1 Matrix representation

For a simple monotone n−Venn, every 1-region is adjacent to the empty region.
So the empty region surrounds a “ring” of

(
n
1

)
1-regions. Since each region is

started by one intersection point and ended by another one, there are
(
n
1

)
inter-

section points in the first ring. Similarly, every 2-region is adjacent to at least
one 1-region. So, there are

(
n
2

)
2-regions that form a second ring surrounded by

the first ring and which contains
(
n
2

)
intersection points. In general, in a simple

monotone n−Venn diagram, there are n − 1 rings of regions, where all regions
in a ring are enclosed by the same number of curves and every region in ring i,
1 ≤ i ≤ n− 1, is adjacent to at least one region in ring i− 1 and also to at least
one region in ring i+ 1. The number of intersection points in the ith ring is the
same as the number of regions, which is

(
n
i

)
. The rings have different colors in

Figure 1(c).
Thus a simple monotone n−Venn diagram can be represented by a n by m

binary matrix, m ≤ 2n−2, where each 1 in the matrix represents an intersection
point in the Venn diagram. A Venn matrix has the following properties :

– There are
(
n
i

)
1’s in the ith row of the matrix, 1 ≤ i ≤ n− 1.

– There are no two adjacent 1’s in any row or column of the matrix.
– A valid matrix must represent exactly 2n − 2 distinct regions of the corre-

sponding Venn diagram. The two other regions are the outermost and the
innermost regions. Figure 4 shows the matrix representation of the Venn
diagram of Figures 2 and 3.

The rank of a region of a Venn diagram is defined by
∑n−1

i=0 2iXi where xi = 1
if curve i encloses the region and xi = 0 otherwise. Given a matrix representation
P , we need to check that no two ranks are the same to check if it represents a
valid Venn diagram.
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1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 000100 0

0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 010001010 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 101010101 0

0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 010100010 1

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 001001000 0

0 0 0

0

000

10

01

10

00

1

0

0

0

1

0 0 0 0 0

Fig. 4. Matrix representation of the 6-Venn diagram of Figures 2 and 3.

For a given matrix P , suppose vector C = [c0, c1, · · · , cn−1] represents the
curve labels of the corresponding diagram in cylindrical representation where c0
is the label of the outmost curve and cn−1 is the label of the innermost curve.
Then a region at ring i, 1 ≤ i ≤ n − 1, is enclosed by curves c0, · · · , ci−1 and
the rank of the region is

∑i−1
k=0 2kck. To get the curve labels for each region we

need to update C based on the entries of matrix P at each column. For a given
column j of the matrix, each entry of 1 represents an intersection point. So for
each row i, if pij = 1 then we need to exchange ci and ci+1 to get the next
curve labels. Starting from left to right with C = [0, 1, · · · , n − 1] as the initial
curve labels, then we can compute the rank of each region. Matrix P represents
a valid Venn diagram if we get exactly 2n − 2 regions with distinct ranks and
C = [0, 1, · · · , n− 1] at the end.

3.2 Compositions

In this part we introduce the other representation we use to generate Venn
diagrams. In this representation, we use a sequence of non-negative integers
to show the size of faces in each ring and and also to specify the position of
intersection points of the next ring.

Definition 1. Let a1, a2, · · · , ak be non-negative integers such that :

k∑
i=1

ai = n

Then (a1, a2, · · · , ak) is called a composition of n into k parts or a k−composition
of n.

In a simple monotone n-Venn diagram there are
(

n
i+1

)
intersection points at

ring i + 1 that are distributed among
(
n
i

)
intersection points at ring i. So if we

pick a particular point at ring i as the reference point, then we can specify the
exact location of points at ring i+ 1 using a composition of

(
n

i+1

)
into

(
n
i

)
parts.

Definition 2. Let C(n, k) be the set of all compositions of n into k parts. For
a simple monotone n-Venn diagram V , starting from an arbitrary point of the
first ring, we label the intersection points of V from 1 to 2n − 2 in clockwise
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direction. Let `i denote the label of the starting point at ring i. The composition
representation P of V is a set of n− 2 pairs of form 〈`i, ci〉, where

`1 = 1, `i = `i−1 +

(
n

i− 1

)
, ci ∈ C

((
n

i+ 1

)
,

(
n

i

))
Figure 5 shows the composition representation of the 6-Venn diagram of Figure
2 and 3.

42

3 3 3 3 2 1

1111 222 112 1 11

1111 1 1 1 11 1 11

2

1 0 1 0 1

00 1 1 0 1 0 0 1 0 0

0 0

1 0 0 1

0

1

1

7

22

Fig. 5. Composition representation of the 6-Venn diagram of Figures 2 and 3.

We now list several observations that will help us cut down on the size of the
search space.

Observation 1 For any simple monotone n-Venn diagram V , the largest part
of ci in the composition representation is n− i− 1.

Proof. A region at ring i is enclosed by i curves above its starting and ending
points. Since the size of a region is at most n and no two edges belong to the
same curve [11], at most n− i remaining curves can be used to shape the region.
As shown in Figure 6, to put p intersection points between the to end points of
the region on the next ring, we need p + 1 curves, p − 1 curves for the bottom
side and two curves for the left and right sides. So, p ≤ n− i− 1.

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

Enclosed by i curves

p intersection points

Fig. 6. Largest part of the composition at level i.
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Observation 2 In the composition representation of any simple monotone Venn
diagram with more than 3 curves, there are no two non-adjacent 1’s in c1.

Proof. Suppose, there is a such Venn diagram V, then the first ring of the Venn
diagram will be like Figure 7 , where regions A and D correspond to non-adjacent
1’s in the composition and A 6= D. Then A ∩ D = ∅ which contradicts the
assumption that V is a Venn diagram. So in the first ring composition there are
at most two 1’s which must be adjacent.

DE

EF

AF AB CD

A B C D

Fig. 7. Non-Adjacent 1’s in the first ring composition.

Observation 3 There are no two faces of size 3 adjacent to another face of size
3 in a simple monotone n−Venn diagram V.

Proof. There are only two cases, shown in Figure 8, that two faces of size 3 could
be adjacent to a single face of size 3. However, both cases result in a two part
disconnected region(the shaded region) which contradicts the fact that V is a
Venn diagram.

Observation 4 There are no two consecutive 0’s in c2 for the composition rep-
resentation of any simple monotone Venn diagram.

Proof. By observation 3

Definition 3. Let r1, r2 ∈ C(n, k) be two composition of of n into k parts. r1
and r2 are rotationally distinct if it is not possible to get r2 from any rotation
of r1 or its reversal.

Theorem 5. Let Fn denote the set of all rotationally distinct compositions of(
n
2

)
into n parts such that for any r ∈ Fn there are no two non-adjacent parts

of 1 and all parts are less than or equal to n − 2. Then all simple monotone
n-Venn diagrams can be generated from composition representations where the
first composition c1 ∈ Fn.

Proof. Given a simple monotone n-Venn diagram, suppose we get the compo-
sition representation P of V by picking a particular intersection point x in the
first ring as the reference point. Now let P ′ be another representation of V using
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any other intersection point different than x as the reference point. It is clear
that c′1 in P ′ is a rotation of c1 in P . Also for any composition representation
P

′′
of the mirror of V the first composition c

′′

1 in P
′′

is a rotation of the reversal
of c1. By the observations 1 and 2 the largest part of c1 is n − 2 and there are
no two non-adjacent 1’s in c1. Therefore, there is a composition c ∈ Fn which is
rotationally identical to c1.

ACBC

A

AB

B C A

(a)

BC

C

ACAB BC

B A

(b)

Fig. 8. Possible cases for two faces of size 3 being adjacent to a single face of size 3.

4 Generating Algorithm

Given the upper/lower half of the cylindrical representation of a polar symmetric
Venn diagram, one can generate the whole diagram by creating a copy of the
given half, turning it upside down and rotating it until the two parts match
together. So, to generate a polar symmetric monotone Venn diagram, we need
only to generate the first dn−22 e compositions.

Two halves of the diagram can match only if gluing them using the inter-
section points doesn’t create any faces of size 2. Given the last composition of
the upper half, for each positive part aj there are aj − 1 edges that bound the
corresponding face from the bottom and there is a gap between two faces cor-
responding to two consecutive parts of the composition. So, we can map the
composition to a bit-string where each 1 represents a bounding edge of a face
and each 0 represents the gap between two faces. The length of bit-string is the
same as the sum of all parts of the composition. In other words the composition
(a1, a2, · · · , ak) is mapped to the following bit-string.

a1−1 bits︷ ︸︸ ︷
11 · · · 1 0

a2−1 bits︷ ︸︸ ︷
11 · · · 1 0 · · · 0

ak−1 bits︷ ︸︸ ︷
11 · · · 1 0

We can find all matching of the two halves by computing the bitwise and of
the bit-string and its reverse for all left rotations of the reverse bit-string. Any
result other than 0 means that there is at least one face of size 2 in the middle.
Then for each matching we compute the matrix representation of the resulting
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diagram. The matrix can be obtained by sweeping the compositions from left
to right and computing the position of each intersection point. Checking each
resulting matrix for all compositions gives us all possible polar symmetric Venn
diagram.

Algorithm 1: GenPolarSymSixVenn

begin
foreach composition (a1, a2, · · · , a6) ∈ F6 do

foreach composition (b1, b2, · · · , b15) ∈ C(20, 15) do
create the corresponding upper and lower halves
for i← 1 to 20 do

glue the upper and lower halves
if there are no parallel edges in the diagram then

compute matrix X representing the diagram

if isV enn(X) then
Print(X)

rotate lower half one point to the left

5 results

Using the exhaustive search we found 406 simple monotone polar symmetric
6-Venn diagrams. Table 1 shows the number of Venn diagrams for each partic-
ular composition of the first level. Figure 9 shows one Venn diagram for each
of those 29 compositions that have at least one Venn diagram. Except for three
cases, for each pair of the first and second level compositions there is at most
one Venn diagram. Each of the other three pairs give exactly two Venn di-
agrams. Renderings of each of the 406 diagrams may be found at the website
http://webhome.cs.uvic.ca/~ruskey/Publications/SixVenn/SixVenn.html.
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