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Abstract. We consider the problem of drawing Venn diagrams for which
each region’s area is proportional to some weight (e.g., population or
percentage) assigned to that region. These area-proportional Venn dia-
grams have an enhanced ability over traditional Venn diagrams to visu-
ally convey information about data sets with interacting characteristics.
We develop algorithms for drawing area-proportional Venn diagrams for
any population distribution over two characteristics using circles and
over three characteristics using rectangles and near-rectangular poly-
gons; modifications of these algorithms are then presented for drawing
the more general Euler diagrams. We present results concerning which
population distributions can be drawn using specific shapes. A program
to aid further investigation of area-proportional Venn diagrams is also
described.

1 Introduction

In 1880, John Venn introduced a notation for representing logical propositions
using intersecting Jordan curves [11]. These Venn diagrams were specialized
instances of a more general notation for representing set relations which Leonard
Euler developed in the 18th century [5].

Many people encounter the familiar 2-set and 3-set Venn diagrams shown
in Fig. 1 at some point in their mathematical education; they are often used to
introduce students to set theory. Informally, an n-set Venn diagram is comprised
of n Jordan curves The curves divide the plane into 2n connected sets of points
called regions which uniquely represent all possible intersections of the (open)
interiors and exteriors of the curves. For compactness, the intersection symbols
(∩) in Fig. 1 will be omitted from future diagrams.

The utility of Venn diagrams comes by mapping the curve interiors to sets in
the problem domain. For example, if curves A, B, and C in Fig. 1(b) represent
teenagers, smokers, and drinkers, respectively, then region ABC would represent
teenage smokers who do not drink. If a region is mapped to an empty problem
domain set, it is shaded as shown by regions ABC and ABC in Fig. 2(a).

Euler diagrams are similar to Venn diagrams except they omit shaded regions
all-together. Figure 2(b) is an Euler diagram derived from Fig. 2(a) by removing
regions ABC and ABC. Euler diagrams are useful because they reduce some of
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Fig. 1. Common 2-set and 3-set Venn diagrams
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Fig. 2. A Venn diagram (a) with empty regions and the associated Euler diagram (b)

the clutter associated with Venn diagrams and make certain relationships more
evident [8].

In addition to being useful as teaching aids, Venn and Euler diagrams have
been used to solve problems in many domains including diagrammatic logic rea-
soning, finite set counting, and constraint modelling [7]. Irrespective of particular
problems, Venn and Euler diagrams can also be used to effectively visualize data
sets.

This paper focuses on techniques for drawing Venn and Euler diagrams with
an improved ability to convey information about a data set. The work contained
herein was inspired after one of the authors published a survey of Venn diagrams
[10] and received numerous requests by readers for software to produce diagrams
such as the one Fig. 3(a), but with the added constraint that each region’s area
should be representative of its associated data. Figure 3(b) is an example of such
an area-proportional Venn diagram.

Although there are algorithms to produce Venn and Euler diagrams for any
number of sets [11, 4, 6], the authors are unaware of any work on drawing
algorithms that take area into account. As such, the forthcoming sections will
formalize the concept of area-proportional Venn and Euler diagrams, provide
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Fig. 3. A Venn diagram (a) representing a weighted data set and its corresponding
area-proportional version (b)

algorithms for drawing 2-set and 3-set Venn and Euler diagrams, and discuss
some of the aesthetic qualities desirable in area-proportional diagrams. It is the
authors’ hope that this paper will provide a solid foundation for future work in
the area.

This work is related to graph drawing in the sense that a Venn or Euler
diagram can be viewed as a graph embedded in the plane. In the graph draw-
ing literature some attention has been paid to the areas of regions, mainly the
aesthetic criteria that the area not get too small in relation to the area of other
regions [1].

2 Formalisms

Before we proceed with describing the drawing algorithms, we must formally de-
fine area-proportional Venn and Euler diagrams. We begin by defining a division
of the plane IR2 into regions by a collection of Jordan curves.

Definition 1. Let C = {C1, C2, . . . , Cn} be a collection of Jordan curves in IR2

and let int(Ci) and ext(Ci) denote the points of IR2 − Ci that are interior and
exterior, respectively, to Ci as defined by the Jordan Curve Theorem [9].

The regions of C, denoted R(C), are defined as follows:

R(C) = {X1 ∩X2 ∩ · · · ∩Xn | Xi ∈ {int(Ci), ext(Ci)}} . (1)

Note that |R(C)| = 2n. Each region, X1∩X2∩· · ·∩Xn, is labelled L1L2 · · ·Ln

where Li = Ci if Xi = int(Ci) and Li = Ci if Xi = ext(Ci). For example, region
int(A) ∩ int(B) ∩ ext(C) would be referred to as region ABC.

Region C1C2 . . . Cn represents the part of the universe exterior to all curves
and is designated U ′.

Venn diagrams are a special instance of a collection of curves whose regions
satisfy a non-empty and connected condition.



Definition 2. A collection of curves, C, is a Venn diagram if for all r ∈ R(C),
r is a non-empty set of connected points.

For example, Fig. 4 shows two collections of curves that are not Venn dia-
grams; (a) fails because region ABC is empty and (b) fails because region AB
is disconnected.
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Fig. 4. Two collections of curves that are not Venn diagrams; however, (a) is an Euler
diagram

By relaxing the non-empty constraint on Venn diagrams, we yield a definition
for Euler diagrams. Note that because certain regions can be empty, an Euler
diagram may have non-intersecting curves.

Definition 3. A collection of curves, C, is an Euler diagram if for all r ∈ R(C),
the region r is connected (an empty region is vacuously connected).

For example, returning to Fig. 4, (a) is an Euler diagram, but (b) remains
neither a Venn nor an Euler diagram.

The aforementioned definitions of Venn and Euler diagrams are the broadest
possible. A number of subclasses of Venn and Euler diagrams have been stud-
ied (interested readers should consult [10]), and some researchers define Venn
and Euler diagrams at the exclusion of certain subclasses. Although we consider
the most general cases of Venn and Euler diagrams, we will discuss the impli-
cations of certain characteristics on the diagrams’ visual effectiveness. The two
characteristics that we will consider are simplicity and finiteness.

Definition 4. A Venn or Euler diagram is simple if no more than two curves
intersect at a common point; otherwise, it is termed non-simple.

For example, the Venn diagram in Fig. 1(b) is simple, but the Euler diagram
in Fig. 4(a) is non-simple because of the common intersection of curves A, B,
and C at the bottom of the diagram.

Definition 5. A Venn or Euler diagram is finite if its curves intersect at finitely
many points; otherwise, it is termed infinite.



All the Venn and Euler diagrams discussed up to this point have been finite.
In Section 4 we will encounter infinite Venn diagrams.

Now that we have formally defined Venn and Euler diagrams, we can proceed
to formalize the notion of area-proportionality. Area-proportionality only has
meaning once problem domain values have been mapped to the regions of a Venn
or Euler diagram. The problem domain values may be related to the cardinality
of the sets represented by each region as shown in Fig. 3 or they may be other
values such as the probabilities shown in Fig. 5. Regardless of their meaning, the
values can be treated simply as arbitrary weights assigned to the regions of a
Venn or Euler diagram. The idea behind area-proportionality is that a region’s
area (that is, the smallest area of the plane that encloses the region’s points),
should be directly proportional to the weight assigned to the region. For example,
if region A has a weight twice that of region B then region A should have an
area twice that of region B.

0.45 0.10 0.20Low Blood
Pressure Nausea

Fig. 5. A area-proportional Venn diagram showing the probabilities of certain compli-
cations for a trial drug

Definition 6. Given a Venn or Euler diagram, C, and a non-negative function
ω : R(C) → IR, a diagram C is an area-proportional with respect to ω if

Area(r)∑
r′∈R(C)−U ′ Area(r′)

=
ω(r)∑

r′∈R(C)−U ′ ω(r′)
for all r ∈ R(C)− U ′.

Note that since the universe is represented by the unbounded plane, it does
not factor into determining the proportions of the diagram. Also, by necessity,
a Venn diagram can only be area-proportional to an ω with positive values.

3 2-Set Area-Proportional Venn and Euler Diagrams

Figure 5 shows a 2-set area-proportional Venn diagram with curves that are
circles; to compute such a diagram, G = A,B, for a weight function ω, we
first calculate the radii of the circles so that their areas equal the sum of their
constituent regions’ weights:
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√
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We next choose a canonical orientation for the diagram by centering A in
the cartesian plane IR2 at (0, 0) and centering B at (d, 0) where d is chosen so
that the area of overlap between A and B is ω(AB) (see Fig. 6). Note that since
πr2

1 and πr2
2 are at least ω(AB), there is always a d that yields the necessary
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Fig. 6. Canonical form of two-circle diagram

In order to compute d, we first need a formula, σ, for the area of overlap
between the two circles; this can be derived by applying Euclidean geometry
and trigonometry to yield the following result:

σ(d) =
1
2
r2
1 (α− sin(α)) +

1
2
r2
2 (β − sin(β)) (3)

where

α = 2 arccos
(

d2 + r2
1 − r2

2

2r1d

)
β = 2 arccos

(
d2 + r2

2 − r2
1

2r2d

)
are in radians.

Because σ is not invertible, in order to solve σ(d) = ω(AB) we need to
apply numerical methods. Note that σ is minimal at d = r1 + r2, maximal at
d = r1 − r2, and monotonically non-decreasing within this range regardless of
the relative sizes of A and B (although if r1 < r2, σ achieves a maximum at
d = r2 − r1). Because of σ’s monotonicity, we can apply a simple bisection
algorithm [2] in the range [r1 − r2, r1 + r2] to efficiently determine d.



This algorithm produces Euler diagrams without need for any changes. If
regions AB and AB both have weight 0, the algorithm will produce two equal-
sized circles centered at (0, 0); if only one of these regions has weight 0, the
algorithm will produce a diagram where the circles intersect at a single point and
one circle lies within the other. Lastly, if region AB has weight 0, the algorithm
will produce a diagram where the closed interiors of the circles intersect a single
point.

The values of r1, r2, and d fully specify a 1 : 1 scale diagram with respect to ω.
In order to produce a diagram for an output device such as a printer, a standard
scaling transformation can be applied. This algorithm provides a constructive
proof for the following theorem.

Theorem 1. A 2-set area-proportional Venn or Euler diagram, G, whose curves
are circles exists with respect to any non-negative weight function ω : R(G) → IR.

4 3-Set Area-Proportional Venn and Euler Diagrams

It is generally not possible to extend the results of Thm. 1 to three circles;
this can be seen by considering Fig. 7. Given a weight function ω, the amount
of overlap between circles A and B in Fig. 7(b) is proportional to ω(ABC) +
ω(ABC); similarly, for B and C it is proportional to ω(ABC)+ω(ABC). Using
the algorithm from Sec. 3, we can compute the distance between the centers of A
and B so that the necessary overlap is achieved; if all the regions are non-empty
(i.e., a Venn diagram), then there is only one solution. A similar computation
is performed for B and C. At this point, we don’t know the relative orientation
of A and C as shown in Fig. 7(a). To determine the overlap of A and C while
maintaining the overlap that has already been established between A and B, we
revolve A in a fixed-distance orbit about B until region ABC has the proper
area as shown in Fig. 7(b); this can be done using polar coordinates and another
bisection. At the end of this process, regions ABC, ABC, ABC, and ABC have
the right area, but regions ABC, ABC, and ABC may be incorrect. There are
no more degrees of freedom in positioning the circles, so in general, there are
weight distributions that cannot be represented using three circles.

In order to increase the number of degrees of freedom, more complex curves
are necessary. An alternative to circles are ellipses, but the area calculations
become unwieldy, and it is unclear how to adjust the ellipse parameters to achieve
the desired areas. Because of their amenability to area calculations and discrete
manipulation, we will consider how to use axis-aligned rectangles to produce
orthogonal drawings [1] of Venn and Euler diagrams. Following is an example to
describe an algorithm for producing a 3-set finite Venn diagram, G = {A,B, C},
given the weight function ω defined in Tbl. 1.

The idea is to build the diagram region-by-region using rectangles whenever
possible. We use Wr and Hr to refer to the width and height, respectively, of
region r; if r is not rectangular, then Wr and Hr refer to the longest width and
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Fig. 7. A possible algorithm for 3-set area-proportional Venn diagrams

Table 1. Sample weight function

r ω(r)

ABC 2

ABC 6

ABC 6

ABC 1

ABC 3.5

ABC 7

ABC 9

height. The first step is to choose a value for WABC and place the resulting
rectangle on the plane. In this example we choose WABC = 2 and place a 2× 1
rectangle on the plane.

Next, we place a WABC × ω(ABC)
WABC

rectangle above ABC for ABC, and sim-

ilarly a ω(ABC)
HABC

×HABC rectangle to the right of ABC for ABC.
For ABC we need to decide how much of it to place below ABC and how

much of it to place to the left of ABC. We let d be the vertical distance of ABC
below ABC, and we can choose any value for this as long as WABC ·d < ω(ABC).
Once d is chosen, ABC will be the union of a ω(ABC)−WABC ·d

HABC+d × (HABC + d)
rectangle and a WABC × d rectangle. In this example we choose d = 1 and the
resulting diagram is shown in Fig. 8(a).

Now that the core of the diagram has been established, the remaining regions
are filled in as best as possible to create rectangular curves. Referring to Fig. 8(b),
if ω(ABC) > WABC · HABC , then ABC can fill the corner between ABC and
ABC before overflowing to the right of ABC. Similarly, if ω(ABC) > d ·WABC ,
then ABC can fill the corner between ABC and ABC before overflowing below
and to the left of ABC.

In the case of ABC, ω(ABC) ≤ WABC ·HABC so the corner between ABC

and ABC cannot be filled to create a rectangular curve A. As a result, we
evenly distribute ABC around the top of ABC and top left corner of ABC. An
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Fig. 8. Example of 3-set infinite area-proportional Venn diagram algorithm

analogous rule would hold for ABC and ABC where they not sufficiently large
to fill there associated corners.

There are a few things to note about this algorithm. First, if a curve cannot
be made rectangular, then its shape is that of a rectangle with a corner cut
out (see curve A in Fig. 8(b)); we call these shapes near-rectangular. Second,
the choice to overflow ABC to the right of ABC is arbitrary. ABC could over-
flow on top of ABC instead which would have caused the subsequent regions
to “rotate” counterclockwise 90 degrees, and although this results in a different
diagram, the criteria concerning whether or not the resultant curves are rect-
angular does not change. Third, once WABC and d are chosen, the rest of the
diagram is determined (according to the algorithm). Fourth, the choice of d can
effect whether or not the resulting curves are rectangular. Larger values of d
decrease the width of ABC to the left of ABC which might allow ABC to fill
its corner and create a rectangular curve A; however, there is a trade-off since
larger values of d create a larger corner for ABC to fill and may result in curve
B becoming near-rectangular.

The last point is important because it suggests that the choice of d is critical
to achieving a diagram comprised of rectangles. The following theorem is a direct
result of this observation.

Theorem 2. A 3-set area-proportional Venn diagram, G = {A,B,C}, whose
curves are orthogonal rectangles exists with respect to a positive weight function
ω : R(G) → IR if, and only if, there exists a permutation, π, of {A,B,C} such
that Ω(r) = ω(π(r)) (that is, Ω permutes the regions’ labels) and the following
conditions hold:

max

(
0,

Ω(ABC) ·Ω(ABC)−Ω(ABC) ·Ω(ABC)
Ω(ABC) + Ω(ABC)

)



< min

(
Ω(ABC),

Ω(ABC) ·Ω(ABC)
Ω(ABC)

)
and

Ω(ABC) ·Ω(ABC)
Ω(ABC)

< Ω(ABC) .

Proof. For the sake of space, we provide only a sketch of the proof. For suffi-
ciency, we establish the inequalities that must be satisfied in order for all curves
to be rectangular; that is, we require the corners of Fig. 8(a) to be small enough
to permit filling by the subsequent regions. By simultaneously solving these in-
equalities, we derive the conditions of the theorem. The addition of Ω is to allow
for all possible orderings of the curves around the diagram.

For necessity, we consider a three rectangle Venn diagram and remove one
of the curves. The resulting diagram has two intersecting curves whose shared
region is itself a rectangle. In order to be a Venn diagram, the third curve must
bisect each region exactly once which results in a core that is isomorphic to Fig.
8(a) under rotation and reflection. The result then follows.

Even if a rectangular Venn diagram cannot be produced, the resulting curves
will at least be near-rectangular. In addition, the algorithm can also be applied
without change for Euler diagrams. As long as ω(ABC) > 0, the algorithm
functions correctly; however, it is not optimal in the sense that some infinite
Euler diagrams are produced that could be finite. The case when ω(ABC) = 0,
remains an open problem.

5 Conclusion

In order to experiment with various drawing algorithms and to better understand
some of the user interface issues concerning area-proportional diagrams, we have
developed a Java application called DrawVenn that implements the 2-set and
3-set Venn and Euler algorithms described in this paper. As shown in Fig. 9, a
DrawVenn user can dynamically adjust the weight function and view the updated
diagram. There is also a control for adjusting algorithm-specific parameters such
as the values of WABC and d in the 3-set algorithm. Within DrawVenn, the
curves are filled with user-selectable transparent colors that are alpha-blended
to provide an intuitive cue as to which curves are intersecting in a given region.
DrawVenn can also output color bitmaps as well as scalable vector formats. In
the case of vector formats, DrawVenn produces monochrome drawings and varies
the thickness of the curves to indicate their relative sizes.

We are also interested in studying the aesthetic characteristics of area-proportional
diagrams that may affect their ability to convey information. A person viewing
an area-proportional Venn or Euler diagram needs to be able to determine which



Fig. 9. Screenshot of DrawVenn showing sliders for dynamic adjustment of populations

curves enclose a region (i.e., what the region represents) and how the size of a
region compares to other regions.

In order to determine a region’s enclosing curves, the curves must be distin-
guishable and easy to trace (i.e., follow with the eye). On the surface, it would
seem that the curves of an infinite Venn or Euler diagram are less distinguish-
able than the curves of a finite one. Similarly, it would seem that the curves of a
non-simple Venn or Euler diagram are more difficult to trace than the curves of
a simple diagram since there are more options for where a curve exits a vertex.
According to the gestalt “good continuation” principle [3], smooth curves should
also be more traceable than ones whose direction changes sharply, thus providing
some motivation for developing a 3-set algorithm that uses ellipses rather than
rectangles.

In order to compare regions, their shapes should be similar. For example, it
is easier to compare the relative size of a circle to another circle than it is to
a triangle. The orthogonal diagrams hold an advantage in this area since their
regions are largely rectangular; however, the areas of rectangles can be difficult
to compare if their aspect ratios are vastly different. The measure of a diagram’s
regional uniformity may be a good indicator of its effectiveness.

Area-proportional Venn and Euler diagrams have an advantage over tradi-
tional diagrams because they leverage both an individual’s perceptual and cog-
nitive abilities. We hope that the algorithms described in this paper provide a



first step in the direction of understanding how best to utilize area-proportional
diagrams, and we hope others will share our interest in this area.
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