
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

Stack

X

Y

X

A

Environment = linear sequence of
memory cells

what about if I call a function p
many times ?
Activation records

unused space

1

2

3

4

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

Pointers

� Is a storage location whose stored value is a
reference to another object

3

2

4

unused space

1

2

3

4

1

In C: int *x;

causes allocation of a pointer
variable, but NOT the allocation
of a object to which x points

Convention: 0 or NULL
Java: null, Pascal nil

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

More pointers

� *x = 2;

� the value pointed by x (a pointer variable) is 2

3

2

4

unused space

1

2

3

4

1

int *x;
x = 3;
*x = 2;

3

2

4

unused space

1

2

3

4

2

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

Anonymous pointers

� void* x; (anonymous pointer variable x)

� x = (int) malloc(sizeof(int));

� Allocate a block of memory that fits an
integer

� Dereferencing operator * (*x)

� Pointer type is also confusingly * (for
example int* or float*)

� free(x);

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

Dynamic allocation – Heap

� Memory used for calls to malloc, free is
called the heap

� In C, C++ manual allocation is possible

� Java and ML don't allow allocation

� Static, Dynamic, Stack-based and Heap
allocation

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

Memory layout

stack

static global area

heap

Heap storage can be released
anywhere leaving “holes”. Simple
stack doesn't work. Functional languages
automatically manage the heap.
Java allows heap allocation but not
deallocation.

Manual control of the heap results
in very few cases in more efficient code
but invites all kinds of unsafe operations.

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria7

Variables – Storage semantics

� Value can be changed during execution

� name – location – value

� x = y

x

y

5

10

x

y

10

10

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria8

l-value, r-value

� x = y

� x is the name of a location of a variable

� y is the value of the variable named y

� In ML distinction explicit:

� x := !x +1;

� x := !y;

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria9

“Address of”operator in C

� int x;

� &x is the address of x and can be assigned to
a pointer;

� For example:

int x;
x = 10;
int *y = &x;
int z = *y;
int k = &y; (what does this one do ?)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria10

The swamp of C

� Address arithmetic (pointers can be added
subtracted like integers)

� mixing dereferencing and address of
operators expressions and assignment can
lead to some very confusing and complex
situations

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria11

Pointer semantics

� Assignment by sharing

� Assignment by cloning
 done in Java by
 implicit pointers

*x = *y
(pointers under
under the hood)

x

y

5

10

x

y

5

1010

1010

clone

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria12

Value semantics – constants

� No location just a value

� Not necessarily known at compile time once
computed never updated

� Examples: ML, Single assignment C

� In Java, keyword final is used for constants
(gets only one final value) and static can be
used when value can be computed prior to
execution.

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria13

Function Definitions

� In virually all languages functions are
essentially constants whose values are
functions

� In ML: val square = fn(x:int) => x * x;

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria14

Function Pointers in C

int gcd(int u, int v)
{

if (v == 0) return u;
 else return gcd(v, u % v);
}

/* function variable – pointer syntax necessary otherwise prototype */
int (*gcdv)(int, int) = gcd;

/* can be called */

gcdv(15,10)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria15

Aliases

� Same thing bound to two different names at
the same time

int *x, *y;
x = (int *) malloc(sizeof(int));
*x = 1;
y = x;
y = 2; /* changes x although x doesn't appear in the assignment */
printf(“%d\n”, *x);

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria16

Dangling references

� Location that has been dellocated from the
environment but can still be accessed

� pointer to a deallocated object:

int *x, *y;
x = (int *) malloc(sizeof(int));
*x = 2;
y = x;
free(x);
printf(“%d\n”, *y);

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria17

Garbage

� Eliminate dangling reference by never
deallocating

� Garbage only wastes memory doesn't
corrupt the program behavior

int *x;
...
x = (int *) malloc(sizeof(int));
x = NULL;

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria18

Garbage collection

� Lisp, Smalltalk, Java

� ML has a very efficient garbage collector

� There is a lot of interesting work in how to
implement garbage collectors – some of you
may learn about it when you write a
Compiler

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria19

Hidden Conventions in C

A string constant is a shorthand for nameless array of characters

char hello[] = “hello”;
char hello[5];
hello = “hello”;
char *hello;
hello = “hello”

char hello[] = “hello”
char world[] = “world”

Try to write concatenate:
char * helloword;
helloworld = concatenate(hello, world);
(dynamically allocate memory when
do we free it ?)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria20

Storage semantics are
conventions of the programmer

some string functions might allocate new memory for each call
sometimes this can be inefficient so calling the function deletes
the old memory and allocates new memory however wrong
use of such function can result in the disaster

USING STRINGS IN C++ IS A BOOKKEEPING NIGHTMARE

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria21

Malloc

� No C program of any significance doesn't
use malloc one way or another

� Know how much memory to allocate

� Note use any more memory than allocated

� Free memory when not required

� Not free memory before necessary

� Free only memory that's allocated

� Remember to check each allocation request

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria22

Machines should work for people

(From A.Koening, B.Moo “Ruminations on C++”)

Why do I care about language and abstraction ? Because I think that
huge programs are ineffcieint, uncomfortable to work on, and impossible
manage. I have neither seen, nor can imagine, a way to cope with a huge
projects that attacks all of these problems. But if I can help point the way
toward breaking up huge projects into bunches of little ones, I will be
advancing the cause of the individual over the anonymous mass, and that
of the human over the machine. We must be masters of our tools, not the
other way aroun.

