
MarsyasX: multimedia dataflow processing
with implicit patching

Luis F. Teixeira, Luis G. Martins
INESC Porto

Campus da FEUP
Rua Dr. Roberto Frias, 378
4200 - 465 Porto, Portugal

{luis.f.teixeira,lmartins}@inescporto.pt

Mathieu Lagrange, George Tzanetakis
Dep. of Computer Science

University of Victoria
3800 Finnerty Road

Victoria, BC, Canada V8P 5C2
{lagrange,gtzan}@uvic.ca

ABSTRACT
The design and implementation of multimedia signal pro-
cessing systems is challenging especially when efficiency and
real-time performance is desired. In many modern applica-
tions the software system must be able to handle multiple
flows of various types of multimedia data such as audio and
video. Researchers frequently have to rely on a combina-
tion of different software tools for each modality to assem-
ble proof-of-concept systems that are inefficient, brittle and
hard to maintain. Marsyas is a software framework orig-
inally developed to address these issues in the domain of
audio processing. In this paper we describe MarsyasX, a
new open-source cross-modal analysis framework that aims
at a broader score of applications. It follows a dataflow ar-
chitecture where complex network of processing objects can
be assembled to form systems that can handle multiple and
different types of multimedia flows with expressiveness and
efficiency.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Software Architectures—
domain-specific architectures; D.2.13 [Software Engineer-
ing]: Reusable Software—reusable libraries

Keywords
Multimedia processing framework, Dataflow processing, Open-
source library

1. INTRODUCTION
Over the last decade we have witnessed a proliferation of
multimedia content that is easily and widely accessible. One
of the main challenges facing multimedia research is how to
analyze and search such huge amounts of information. The
multimedia signal processing community has been actively
working on these problems.

This paper presents the most recent line of development

of Marsyas1, termed MarsyasX, which stands for Marsyas
“cross-modal”. Marsyas is an open-source software frame-
work which finds its roots in the Music Information Retrieval
community. Its name stands for Music Analysis, Retrieval
and SYnthesis for Audio Signals, and it started as a frame-
work for the audio analysis, being especially suited for the
development, testing and prototyping of analysis, process-
ing and machine learning algorithms for audio signals [7].
Marsyas supports many ways of interacting with other pro-
grams and software environments including: run-time com-
munication with MATLAB, Qt integration, bindings in var-
ious languages (Python, Ruby, Lua, Java) [8]. The new
MarsyasX version implements a new payload architecture
and extends the functionalities of Marsyas 0.2 (the current
Marsyas version) by adding support for the processing of
multiple flows with different modalities (e.g. audio, video).
In addition to supporting real-time applications, MarsyasX
has been designed with multimedia mining and retrieval ap-
plications in mind and has support for batch processing and
machine learning tools (e.g. Weka)

Examples of other well known open source software frame-
works for audio analysis and processing are CLAM [1], Chuck
[9] and Pd [5], among others. Commercial tools also exist
in this area, as is the example of MAX/MSP R©. In what re-
gards visual processing tools, there are many open libraries
that deal exclusively with image or video processing, namely
OpenCV, LTI-Lib and The Recognition and Vision Library
(RAVL), just to mention a few. However, these projects
focus exclusively on computer vision and can be seen as
utility libraries since they do not provide mechanisms to
easily assemble algorithms based on building blocks. Other
frameworks and tools already exist that allow the integrated
processing of audio and video streams. Although not origi-
nally created as multimodal platforms, Pd can be extended
with visual processing modules from GEM, and Jitter R© adds
video and image processing abilities to the MAX/MSP R© en-
vironment. EyesWeb, on the other hand, has been originally
conceived for supporting research on multimodal expressive
interfaces and multimedia interactive systems [3], but al-
though being freely available, is not an open-source initia-
tive.

2. ARCHITECTURE
MarsyasX borrows from Marsyas 0.2 most of the concepts,
namely the hierarchical composition paradigm and the im-

1http://marsyas.sourceforge.net

plicit patching of modules. It was created in order to support
multiple flows with differents modalities rather than just au-
dio. Similarly to other module-based processing frameworks,
such as SIMULINK R© and LabView R©, systems in Marsyas
0.2 are expressed as interconnected dataflow networks of
processing modules. Each processing module performs a
specific task that always consists of a matrix transformation.
Audio and other types of data are represented by matrices
with some semantics associated with them. Processing is
performed on defined chunks of data and is executed when-
ever the tick() function of the module is called.

2.1 Implicit patching
To assemble multimedia processing systems, modules are
implicitly connected using hierarchical composition [2]. Spe-
cial “Composite” modules such as Series, Fanout, Parallel
are used for this purpose. For example, modules added to
a Series composite will be connected in series, following the
order they were added - the first module’s output is shared
with the second module’s input and so on. Moreover, the
“tick” method is called sequentially following the same or-
der. Figure 1 shows an example of how composite and non-
composite modules can be used. This paradigm differs from
typical processing tools based on explicit patching such as
CLAM, MAX/MSP or PD, where the user would first cre-
ate the modules and then connect them by explicit patching
statements.

Series (network)

Series (series1) Fanout (fanout1)

Series
(series2)

...
Module
(module1)

Module
(module2)

Series (series2)...

Fanout (fanout2)

...

Module
(module3)

Legend: Controls ProcessingControl link

Figure 1: Building blocks in Marsyas 0.2.

2.2 Dynamic access to modules and controls
Each module can be accessed by querying the system with a
path-like string. For example, to reach the processing mod-
ule module1 shown in Figure 1, the query path would be
/Series/network/Series/series1/Module/module1.
The first “/” indicates the outermost module and the rest
of the path is always composed by the concatenation of
Type/Name strings. This naming scheme was inspired from
the way messages are exchanged in Open Sound Control
(OSC) [10]. It is possible to access controls with a simi-
lar naming scheme. Controls represent internal parameters
of the modules, and can be of different types (e.g. inte-
gers, floats, strings, vectors, or arbitrary user-defined types).
Controls can be linked as shown in Figure 1, so that changes
to the value of one control are automatically propagated to
all the others.

2.3 Payload architecture
As in Marsyas 0.2, data is processed in defined chunks by
calling a tick() function and each module also has a set
of controls that are used to access their internal parame-
ters. The main conceptual difference is in the way data is
exchanged between processing modules. Instead of using
shared matrices of real values, MarsyasX exchanges data
through a payload mechanism. Whenever data is produced
in a given module at each tick, a payload is created. This
payload, “carrying” the data, is then sent to the output
channel as depicted in 2. A channel is a connection between
adjacent modules where payloads are stacked while waiting
to be processed. It is important to note that channels are
established implicitly, according to the type of composite
being used.

Series

1

Source
producing flow 3

Sink
consuming flow 32 1 2 3 1

Sink
consuming flow 2 1

2

to origin factory

P
ay

lo
ad

s

3
channel

2

Figure 2: Payload architecture in MarsyasX.

This data exchange mechanism is highly generic and flexi-
ble, supporting any type of data (e.g. images, audio frames,
MIDI, XML, lists of points, etc.). However, it does have
its own specific issues such as timing and synchronization.
Timing relations and constraints between data is assured
by two time metadata fields in payloads – Time of Capture
(TOC), which stores at what time the data held by the pay-
load was created or captured, and Time to Schedule (TTS)
field, which stores the time when the data should be pro-
cessed by the modules that handle the payload. Whereas
TOC is used to synchronize data of different flows (with the
same or different types and names), TTS is used to schedule
payloads for processing. The latter is especially important
if, for optimization reasons, we want to parallelize the work
load while at the same time maintaining coherent time re-
lations. If there are any payloads of the respective flow on
the input channel, such the current time that Tcur ≥ TTS,
these are processed immediately and the resulting new pay-
load is placed in the output. In case new data is created
or if it is an in-place transformation, the same payload is
forwarded. Any other payloads not satisfying this condition
will remain in the input channel.

When a payload reaches a module that consumes the data
without forwarding it or when it reaches the end of the net-
work it becomes no longer useful. From an efficiency point of
view, creating and destroying payloads continuously would
be computationally expensive. To avoid this overhead, a
simple recycling mechanism is used. If a module is a source
of payloads, it will have an associated payload factory. When
a payload is required, it will be requested to the factory,
which will either reuse an existing one or create a new pay-
load based on a template. When the payload is no longer
needed anywhere in the processing network, it will be re-
turned to the corresponding factory where it will be stored

in a recycle bin for future use. However, if the properties
of the source have changed a new template will be assigned
and the old payloads are destroyed. This is a form of highly
efficient type-specific garbage collection (or more accurately,
recycling) that is enabled by the strict semantics of time and
dataflow processing used in MarsyasX.

2.4 Data flows
Different payloads can be grouped together in abstract en-
tities called flows. A flow consists of all payloads that have
the same type and are tagged with the same name. A flow
type field is used to distinguish different types of flows. Each
payload of a given type must contain the same type of data.
For example, a Visual flow payload should always contain
an image, an Audio flow payload, an audio frame, and so
on. On the other hand, a flow name field is used to identify
different flows of the same type. Distinguishing flows of the
same type can be useful for handling, for example, multiple
video feeds with different image sizes. Moreover, it is of-
ten mandatory to distinguish different sources of data since
many modules have stateful processing. If multiple sources
are propagated in the same flow, unexpected behaviour on
these modules will occur. Currently 5 types of flows are sup-
ported, namely Audio, Visual, XML, Multidata and Legacy.
Each flow type is closely related to a data structure: ma-
trix vector for multichannel audio frames, image supporting
multiple colour spaces, XML tree structure, vector of inde-
pendent matrices for generic data, and a matrix compatible
with Marsyas 0.2 for legacy flows (see next subsection).

2.5 Legacy interface
An important feature of MarsyasX is the legacy interface
with Marsyas 0.2. Undoubtedly it is very important to still
be able to use the large collection of modules available now
and or in the future in Marsyas 0.2 releases. Since the frame-
work base follows closely the previous, it is rather straight-
forward to support legacy modules. A MarsyasX module
called MarSystemLegacy wraps a legacy module and syn-
chronizes the controls of both. The most important differ-
ence is the way data is exchanged between modules. It is
also the most costly operation, since it implies copying the
data stored in the payload to the input slice of the legacy
module and, after processing, from the output slice to the
payload that will be sent to the output channel.

2.6 Modules
The similar architecture of MarsyasX and Marsyas 0.2, sim-
plifies the porting of modules. Moreover, with the legacy
interface it is possible to mix modules created with both
versions. The plethora of Marsyas 0.2 modules for reading
audio files, feature extraction, and audio analysis and syn-
thesis can easily be made available for MarsyasX users. In
addition to that, visual processing modules are being cre-
ated, including modules for video and image IO, filtering,
optical flow estimation, segmentation and feature extrac-
tion. Support for XML handling is also available. This is
an ongoing process and more modules are expected to be
developed.

Despite the complex architecture underlying the MarsyasX
modules, the process of creating modules has been simpli-
fied. Typically, a user only needs to define the input and out-
put flows and create a process function accepting the data

according to the defined flows. This does not require any
knowledge about payload mechanism. Additionally, mod-
ules are managed using a simple plugin system. Plugins
are dynamically loaded whenever necessary. Each plugin
includes modules that are somewhat related. This has mul-
tiple advantages, namely: avoid excessive startup times due
to module initialization, allow the deployment of smaller
packages containing only the strictly necessary, and open
the possibility for third-party modules (possibly with differ-
ent licenses).

3. EXAMPLE APPLICATIONS
3.1 Music Information Retrieval
Marsyas was recently used for the submission of several al-
gorithms to the MIREX2007 evaluation exchange2, show-
ing comparable results to other state-of-the-art algorithms
(e.g. it was ranked first in the Audio Mood Classification
task and second in the Audio Artist Identification task). In-
teresting to note are the computational runtimes achieved
by the Marsyas algorithms when compared to the other
contestants, being systematically lower in several orders of
magnitude (e.g. in the Audio Mood Classification task, the
Marsyas based algorithm, ranked first, took 122 seconds per
fold against the 521 seconds per fold taken by the second
fastest, though ranked last, algorithm).

3.2 Visual object segmentation and tracking
Another application implemented in MarsyasX was a visual
object matching algorithm, described in more detail in [6].
Only visual processing modules are used. The algorithm
consists of three steps: (1) segment each relevant visual ob-
ject, (2) extract a representation for each object, (3) com-
pare this representation with a database of objects, (4) if
a given object is known, label it accordingly, and (5) up-
date the database with the new information, if it is found
relevant. In MarsyasX each of these steps corresponds to
one or more modules performing a specific task. The main
modules for this application include: background modelling
and subtraction for object segmentation, extraction of local
descriptors and vocabulary-based representation, and SVM
classification.

3.3 Multimodal speaker identification
An example of a multimodal application implemented in
MarsyasX is a speaker segmentation system [4]. The algo-
rithm and the corresponding network can be broadly sepa-
rated in three parts: the audio speaker segmentation algo-
rithm, the visual motion estimation and centroid calculation
and finally a multimodal speaker segmentation module that
combines the visual and audio results.

The audio algorithm used for the speaker segmentation as-
sumes no prior knowledge about the number of speakers
or their identities and presumes that the audio input con-
tains only speech. The method follows a metric-based ap-
proach for coarse speaker segmentation using Line Spectral
Pairs (LSP), which is subsequently validated by means of
the Bayesian Information Criterion (BIC).

2http://www.music-ir.org/mirex/2007/index.php/
Main_Page

Series (main network)

Parallel

Legacy

Series (Marsyas 0.2 network)

Accumulator

Series

Sound
File
Source

LPCnet LSP

BICchange
Detector

Memory

Series

VisualFileSource Optical
FlowEstimation
accepts: Visual

Multimodal
Segmentation
accepts: Legacy,
Multidata

VisualSink
accepts: Visual

CentroidEstimation
accepts: Multidata

Visual Multidata

Legacy

Legend: Flow source ControlsControl linkNote: Only relevant module controls are represented to avoid cluttering.

Figure 3: Network used for the speaker segmenta-
tion scenario.

The visual algorithm part of the network considers scenarios
with only two speakers facing the camera, such as interviews
or lectures. It is assumed that the speaker will be located
in the region containing the most amount of motion. The
separation of these regions is defined by a boundary that
for simplicity is kept as a vertical straight line splitting the
image in two halves. A centroid of the motion is calculated
and is used to detect the potential speaker.

The multimodal speaker segmentation algorithm takes into
account two constraints: people tend to move their bod-
ies, arms and lips before producing any sounds and the first
sounds produced are usually non speech vocalizations such
as breath, etc, hence the visual change detector is then more
likely to be fired before the audio one; also, this last audio
detector is more likely to detect the correct boundary but
with a higher false alarm rate due to the presence of non
speech sounds and background noise. When a speaker seg-
mentation is detected by the multimodal module it is sig-
naled in a control. This control is linked to the VisualSink
that will display which speaker is speaking.

This work implements a late fusion scheme where one clas-
sifier is attached to each modality and the decisions of the
classifiers are finnaly combined. Future work will concen-
trate on early fusion, namely the use of only one classifier
that considers all the modalities at once which is usually
considered more reliable but harder to implement. Using
MarsyasX can be powerful in such scenarios, since audio
and video data can be conveniently aligned and combined
within the same network of data.

4. DISCUSSION AND CONCLUSIONS
Cross-modal processing is an important and growing field
of research among the scientific community. However, cre-
ating applications that rely on audio or visual processing
can often be a cumbersome task. Although, there is a wide
offer of specific tools and libraries, both commercial and
free (open source or not), if one wants to combine some of
these problems arise. The first problem is that data struc-
ture and semantics are almost always different and the user
ends up creating custom wrappers or sometimes reimple-
menting functionalities. This is even more evident with a
combination of audio and visual processing libraries. In fact,
cross-modal processing is an important and growing field of

research among the scientific community. Having the abil-
ity to, under the same framework, use or develop new tools
and algorithms is undoubtedly important. We proposed in
this paper MarsyasX, a broad framework that attempts to
solve these problems. By abstracting both data structures
as well as its ow, and by using uniform procedures to dene
and set parameters a considerable effort of integration can
be removed from the user.

Marsyas is a software multimedia processing framework, with
a special emphasis on audio processing. MarsyasX extends
the functionalities of Marsyas 0.2 to visual support along-
side audio. It is however not limited to audio and visual
processing but can in fact be seamlessly used for generic
data processing. Data is exchanged between modules using
timed payloads, which in turn are implicitly grouped in flows
which enable efficient processing and memory recycling.

5. REFERENCES
[1] X. Amatriain. CLAM, a framework for audio and

music application development. IEEE Software,
24(1):82–85, Jan./Feb. 2007.

[2] S. Bray and G. Tzanetakis. Implicit patching for
dataflow-based audio analysis and synthesis. In
Proceedings of International Computer Music
Conference (ICMC), 2005.

[3] A. Camurri, P. Coletta, A. Massari, B. Mazzarino,
M. Peri, M. Ricchetti, A. Ricci, and G. Volpe. Toward
real-time multimodal processing: Eyesweb 4. In AISB
2004 Convention: Motion, Emotion and Cognition,
Leeds, UK, 2004.

[4] M. Lagrange, L. G. Martins, L. F. Teixeira, and
G. Tzanetakis. Speaker segmentation of interviews
using integrated video and audio change detections. In
Fifth International Workshop on Content-Based
Multimedia Indexing (CBMI 2007), Bordeaux, France,
2006.

[5] M. Puckette. Pure data. In Proceedings of
International Computer Music Conference (ICMC),
pages 269–272, 1997.

[6] L. F. Teixeira and L. Corte-Real. Video object
matching across multiple independent views using
local descriptors and adaptive learning. Pattern
Recognition Letters, 2008. (in press).

[7] G. Tzanetakis and P. Cook. Marsyas: a framework for
audio analysis. Organized Sound, 3(4), 2000.

[8] G. Tzanetakis, L. G. Martins, L. F. Teixeira,
C. Castillo, M. Lagrange, and R. Jones.
Interoperability and the marsyas 0.2 runtime. In
Proceedings of International Computer Music
Conference (ICMC), 2008.

[9] G. Wang and P. Cook. Chuck: A programming
language for on-the-fly, real-time audio synthesis and
multimedia. In ACM Multimedia, New York, USA,
2004.

[10] M. Wright, A. Freed, and A. Momeni. Opensound
control: State of the art 2003. In International
Conference on New Interfaces for Musical Expression
(NIME’03), Montreal, Canada, 2003.

