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Abstract
Music can significantly effect game play and help players un-
derstand underlying patterns in the game, or the effects of
their actions on the characters. Conversely, inappropriate
music can have a negative effect on players by creating ad-
ditional difficulties. While game makers recognize the effects
of music on game play, solutions that provide users with
a choice in personal music are not forthcoming. We de-
sign, implement and evaluate an algorithm for automatically
adapting an arbitrary music track from a personal library
and synchronizing play back to the user, without requiring
any access to the video game source code.

1 Introduction
Much of what we expect from video games is a function of
our experience with movies and other visual media. When
we talk about music in movies, we talk about it as a con-
tributing factor to the artistic medium. As a result, music
in video games, much like movies, is left to the discretion
of artistic narrators, who choose tracks to advance the story
line of a game or to contribute emotional depth. Unlike
movies, which are a passive medium; in games the player
takes a more active role. Often the musical score is added
without examining the effect it has on this more active role
that the player is having. Most games have sound effects
associated with them that do influence player action or com-
municate information back to the player. Game makers are
often overlooking an opportunity to help players both enjoy
and understand their games. Tuning the parameters of the
musical score of a game to influence player actions provides
an exciting possibility for game creation.

A popular approach to this issue is to allow players to
choose the music they want to hear during the course of a
game from a personal music collection. This allows for a de-
gree of customization to help players better immerse them-
selves in the game. However, in terms of game play, this
results in a “chicken and egg” problem; players cannot ap-
propriately select music without having already experienced
the game. Players tend not to be experienced composers and
often lack a conceptual understanding of what it is they are
trying to achieve. Additionally, nor does their music library
have the flexibility of adapting to the game dynamics.

This paper reports on an algorithm to automatically
adapt soundtracks from personal music specified by the user.
By examining user input during game play we can compute
an optimal rhythm for a level of a platform game. We de-
termine the underlying structure of a sound track by auto-
matically estimating the tempo and dominant periodicities
of the music. Finally, we adjust the music to the rhythm
of the game level to achieve synesthetic game play. Our
method is evaluated in three ways: user input is shown to
be predictable; user input is identified as an aproximation of
the rate of gameplay; and input types between different gen-
res of video games can be distinguished using a naive bayes
classifier.

Smith et al.[2008] posit that two dimensional platform
games can be broken down into subcomponents or “rhythm
groups”. While this solution could provide for extremely
accurate assessment of the underlying “rhythm” of a level,
currently no implementations exist. Additionally, we have
to consider the possiblity of proprietary code being used for
the game in question. Because we cannot necessarily know
the underlying structure of the game, we are forced instead
to look at what data we do have available: user input. If we
assume user input is a close approximation of the underlying
structure of the level, then an understanding of the user
input is sufficient. The accuracy of such an approach is
evaluated in section 3.

Our algorithm analyzes the player’s actions as input and
translates it into a meaningful beat sequence which can be
synchronized with a predetermined music track from a per-
sonal library with an automatically annotated beat struc-
ture. Because the beat sequence of the music is determinis-
tic, it does not need be calculated at run time. The resulting
implementation of the system, can thus be broken into three
major parts:

I Extracting meaningful user input

II Identifying the tempo of the music

III Syncronizing the user input and music

2 Background and Previous Work
Music has been shown to affect mood and deal with feelings
of monotony and boredom [Karageorghis and Terry 1997].
People were able to engage more thoroughly in a dull task
if they had music to listen to as well. Matesic and Cromar-
tie [2002] were able to show that listening to music decreases
lap pace and increases overall performance of untrained run-
ners. While music had an influence on the performance of
both trained and untrained athletes, the effect was much
larger on the untrained group. Matestic posits that the mu-
sic may provide a pacing advantage, as the cause for this
effect. Cram and Duser [2000], were able to show that mu-
sic not only have a marked affect on performance but also
affects heart rate. In their study, users who exercised to mu-
sic with faster tempo, showed higher heart rates on average.

Thayer [Minami et al. 1998] demonstrated that modifying
the musical scores for the same visual response can heavily
affect the electrodermal response in subjects. Participants
were shown a safety film, a known stressor, with either a
documentary score, a horror film score, or no music. Not
only did participants show significantly more electrodermal
response to the horror score, compared to the control, but
less reaction when shown the documentary control. The
implication of this study is that music can directly affect
player’s “mood” in a measurable fashion.

Konecni [1982] argued that because music requires cogni-
tive processing, listening to music may impair performance
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as the additional cognitive load acts as a distractor. McK-
elvie and Low [2002] demonstrate that in the presence of mu-
sic there is little or no effect on spatial IQ scores and reading
comprehension. By comparison Rauscher et al. [1993] show
significant improvement from exposure to Mozart. Rauscher
argues that music contributes as a neuropsychological primer
for the children, and that playing the music before testing
increases their performance. Cassidy and MacDonald [2007],
by contrast show that high arousal music has a demonstra-
bly negative effect, while low arousal music has a smaller,
but still negitive, effect. While overall music does tend to
inhibit performance, the music in these studies is unrelated
to the task at hand. The study does not compare the effect
of music that has been chosen to augment preformance in the
task. Additionally, on certain cognitive tasks (eg. Stroop)
the music has a positive effect on performance, suggesting
that the right music can be beneficial.

The idea of using audio sounds to convey additional in-
formation in Computer Science has been around for some
time. Early work attempted to simulate audio icons [Blat-
tner et al. 1989]. Synthetic sounds that are often created
to express an underlying quality, as in the previous exam-
ple, are known as Sonification. A good example of this is
Chafe and Leistikow [2001] who created a sonification tech-
nique for understanding internet latency. However, instead
of using time repetition to display data, a direct mapping be-
tween tones is established. Kilander and L’onnqvist [2002]
attempted to extend peripheral awareness of users through
audio-based techniques in a similar manner to our work.
Much of their implementation is concerned with the human
interactive component; they made important attempts to
streamline incoming sounds through traffic shaping. While
traffic shaping allowed for the separation of sounds (unlike
previous work), it did not do so in an intelligent manner.
The sounds became spaced, but spacing was unrelated to
user interaction.

Alternatively, there have been a number of attempts to
modify game play to musical scores. Some of the more fa-
mous techniques are the RockBand and GuitarHero fran-
chises. Each “level” in a game like this is generated from an
original sound track. This design of game has become very
popular recently, however, it is limited by the media which
it will accept. Instead of being able to supply your own
sound tracks, tracks must be created and then distributed
to users by the official licenser. To combat this, a number of
grass roots projects such as Dancing Monkeys have sprung
up [O’Keefe and Haines 2009]. Holm et al. [2005] provide
a very good survey of tools of this nature. In his work he
explores the usage of not only Audio but Visual images as
well. Finally, he implements such an approach in a mobile
phone context [Holm et al. 2006]. While this work is tangen-
tially related, it is mainly concerned with adapting games to
music, instead of music to games which is our goal.

One of the major problems with adapting music to an in-
teractive setting is that a lot of music, especially western, is
linear in nature. Griffin [1998] implies that traditional so-
lutions to this problem tend to resemble using segments of
music to represent specific events and handling interaction
between them. This is highly flawed, as handling the interac-
tion often times ruins the intent. For example, when cutting
off a segment that is too long, the result is “un-musical.”
Likewise, reducing the length of segments (to prevent inter-
action), has less musical value than truncated longer seg-
ments. Griffin suggests a solution to this problem by treat-
ing the music as a number of layers, some of which are con-
stant, while others fade in and out based on specific events.

Figure 1: System Diagram

While Griffin’s solution does produce fairly good music, it
still makes many poor choices based on the fact that individ-
ual MIDI files have to be both simple and universal in nature
to compete with the underlying music. Additionally, it can
only run on scenarios where a musical score is composed of
multiple separate tracks with a predefined underlying layer.
It does not, therefor, handle audio files such as the ones in
personal audio music collections. A more advanced impli-
mentation of this algorithm can be found in Left 4 Dead’s
director [Larkin 2008].

3 User Event Extraction

Ideally, an implementation would would take place in game
source code where interaction can be observed directly.
Source code for most games is generally unavailable; as such,
the goal for our implementation is to interface with an ex-
isting game without access to the source code. There are
a number of possible alternatives to direct access, and they
can be observed by looking at the input structure of an op-
erating system. While an ideal implementation would be
cross platform, the input structure often depends on the de-
sign of the system in question. Given the target of adapting
sound to video games, it would make logical sense to target
a platform with high proliferation of said media. Although
we could consider modern seventh generation consoles as a
viable platform, support for running code in parallel is often
non-existent. The resulting choice is the Windows platform,
specifically Vista for this implementation.

3.1 Intercepting Events

The lack of source code for the target application will mean
that we will have to access the DirectInput to capture user
events. Fortunately, Windows, as of 3.2, implements hooks
for identifying keyboard and mouse input [Marsh 1993]. A
hook is a mechanism for intercepting events and passing
them to a filter function which can be designed by the user.
This filter function can then analyze the data before send-
ing it on. In our implementation, this analysis will consist
of time stamping and pushing the data to a seperate appli-
cation via a pipe.

Because of the nature of hooks, these filter functions must
exist in a seperate dynamically linked library (DLL) which is
then accessed by the client application. The net effect is that
the filter function can be called from the DLL for every user
event without tedious paging of memory. It is important
to note that on a system with multiple cores, all hooks will
be called in order for a single message, but multiple mes-
sages can have their hooks processed asynchronously. To
handle this, events need to keep track of their timestamps
and not their interarrival time. Interarrival time needs to
be processed elsewhere, outside of the hook. Finally, to
guarantee the accuracy of captured keyboard events passing
through Direct Input we must use the low level version of
keyboard and mouse hooks (WH KEYBOARD LL and not
WH KEYBOARD). Our hooks have a sampling frequency of
5.0ms, which is an order of magnitude faster than the stan-
dard 60th of a second often used in video games for frame
updates.
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Figure 2: Plot of Estimated Expontential Distribution
against Real Data

3.2 Establishing a Model

Once user data has been properly identified, statistical in-
formation is gathered about the periodicity of user actions.
The rate of incoming input is characterized as a distribu-
tion with a mean and standard deviation. This is done for
each type of input. As a result, new interarrival times can
be identified as being part of the current model, or unlikely.
If a number of incoming interarrival times are classified as
unlikely (P < .05), the model is considered “broken,” as the
player has established a new beat rate. The median beat
rate of this model is then compared to a precomputed beat
rate.

3.3 Experimental Model

There are two candidate distributions for examination:
Power Law and Exponential. In order to determine which of
these curves is correct we need to compare the best candi-
dates of both possible models. We will use Maximum Like-
lihood to estimate the parameters of both candidates from
our observed data. The basis for a maximum likelihood es-
timation is the probability of a given observed value for a
parameter space. We can perform this estimate for all data
points, thus producing a selection that is most likely given
our observed data. We then can use a Least Squares method
to fit our estimate to the data.

Neither equation provides a very good fit to the data.
Much of the instability is an attempt to match the shorter
duration interarrivals. If, instead, we look at only events
greater than .5 seconds the Power Law Distribution provides
an excellent fit to the data, while the Exponential Distribu-
tion continues to provide a less than ideal fit. It is important
to note that events less than .5 seconds constitute a signif-
icant portion of all events (45%). The most likely cause of
this instability is a similar source as that of shorter events.
While events below 1

6
th of a second are completely uniform,

those from 1
6
th to .5 of a second are a combination of uniform

and the later model (figures 2 and 3). As the later model
provides a high degree of accuracy past this point, we are
able to determine that it does represent, atleast partially,
the underlying structure.

The mean of the estimated distribution for the period that
the model is valid is used as the estimate periodicity.

Figure 3: Plot of Estimated Power-law Distribution against
Real Data

4 Beat Extraction
The identification of tempo and beat structure is a well de-
fined problem in the field of music information retrieval.
Earliest studies involved beat extraction by using subjects
tapping or clapping in time [Drake et al. 2000]. Tzanetakis et
al. [2002], compare two methods of beat extraction based on
beat histograms. These histograms are assembled by iden-
tifying the amplitude envelope periodicities of multiple fre-
quency bands. This is accomplished with a standard Dis-
crete Wavelet Transform filter bank and a multiple channel
envelope extraction. While this technique does give an accu-
rate representation, some level of information is lost due to
imprecision on the part of the performer. To expand on this
technique, our algorithm utilizes graduated non-convexity to
smooth the extracted histograms while retaining their peak
structure.

4.1 Multiresolution Analysis

To preform beat extraction we are going to need to under-
stand which sounds occur at which times. Because sounds
are characterized by their frequency, it becomes necessary
to use frequency analysis to identify the sounds that are
contained within the signal. We can consider a signal as
existing in the Time-Domain where the independent vari-
able is time and the dependent variable is the amplitude at
that time. To obtain which sounds are occuring, we must
necessarily use a frequency transform to preform analysis in
frequency. This frequency transform will move us from the
Time-Domain to the Frequency-Domain. Additionally,
to identify the periodicity or beats of a given sound, we need
to know not only which sounds are occuring, but when they
are occuring temporally. As a result, our frequency analysis
will have to occur at multiple resolutions. This multiresolu-
tion analysis will allow us to identify when frequencies occur
at different times. Envelope extraction is used to obtain the
periodicity.

The human auditory system does not have perfect reso-
lution for both frequency and time either. Instead, it has
good time resolution for high frequencies, and good fre-
quency resolution for low frequencies. This implied trade-
off would require multiple windows in a Short Time Fourier
Transform application. Instead, our application utilizes a
Wavelet Transform which encompases these characteristics.
A wavelet can be viewed in terms of a scaling function φ
and a mother wavelet ψ, where the resolution is obtained by
updating the scaling function and then scaling the wavelet
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by the scaling function.
As our application occurs on discrete data to which we

wish to apply a continuous function, it is necessary that we
apply concrete mathematics [Graham et al. 1989] to rectify
this situation. Instead of applying a continous function over
our signal, we will instead define a set of matrices which
perform the wavelet transform in a discrete context. We
can achieve this by utilizing the matrices which allow us to
go from the father to son scaling functions and mother to
daughter wavelets.

For a given scaling function φ(x) there must exist some
matrix P j such that we can produce the scaling function at
the next level of resolution j − 1 by taking the product, or:

φj−1(x) = φj(x)P j

Likewise there must be some matrix Qj such that, given
a scaling function φ(x), the product produces the wavelet
function ψ(x) at the next level of resolution j − 1, or:

ψj−1(x) = φj(x)Qj

These matricies P j and Qj have transforms hj and gj

expressed formally:
Aj = (P j)T

Bj = (Qj)T

We can use the rows of these matricies Aj and Bj as our
filters gj and hj to analyze the signal data and produce the
coeffecients cj and dj for the wavelet transform through a
processes called subband coding. These coeffecients will give
us translation and scaling information about our original
signal. In the case of sound, this will correspond to location
in time and period of a given set of sounds

Daubechies’ wavelets have the property of being orthonor-
mal and compact for the infinite real line, which satisfies
our requirements for our filterbank. The coeffecients of the
DAUB4 wavelet family are expressed as follows:

p = a =
1

4
√

2
(1 +

√
3, 3 +

√
3, 3−

√
3, 1−

√
3)

q = b =
1

4
√

2
(1−

√
3,−3 +

√
3, 3 +

√
3,−1−

√
3)

Where the p sequence represents the nonzero entries of the
columns in our vector P and q represents the same entries of
the columns in the vector Q. Similarly, a and b provide the
same service for vectors h and g as rows to maintain the re-
lationship between P and h. Furthermore, these sequences
have the quadrature mirror filter property, which allows us
to create the wavelet sequence from the scaling function se-
quence by reversing the order of the entries and alternating
their signs [Stollnitz et al. 1995].

4.2 Envelope Extraction

Once the data has been seperated, the relevant time domain
amplitude envelope can be extracted for each band. Initially,
the bands are run through a low pass filter to identify domi-
nant frequencies. Full wave rectification occurs to move the
data into the positive domain. Next the data is down sam-
pled to a common range and each band is normalized via
mean removal. Finally, the data is run through an autocor-
relation function

y(k) =
1

N

N−1∑
n=0

x(n)x(n+ k)

and the top five periodicities are added to the histogram The
music analysis system Marsyas [http://marsyas.sness.net/ ]
was used to implement the algorithms because the frame-
work is naturally designed for synchronous signal processing.

While this beat histogram implementation does exhibit
peaks for beats with greater strength, it does not provide
more in-depth insight into ranges of beats. If the underlying
music has a constant tempo, then the corresponding tem-
pos and dominant periodicities (beats) would show up as
impulses spanning single bins of the histogram. Frequently,
music contains expressive changes in rhythm; therefore, sev-
eral neighboring histogram bins are affected reducing the
performance of the original algorithm.

4.3 Graduated Non-Convexity

To distill this range of periodicities into a single value while
preserving their strength, we expand on the original code by
applying a technique known as Graduated Non-Convexity.
Analyticaly, we can express this as an energy minimization
function of the form:

m∑
i=1

χi(fi − di)2 + λ

m∑
i=1

∑
i′∈N

gγ(fi − fi′)

Where di is the smoothing term and gγ here represents

our blur level going from g
(n)
γ to g

(0)
γ as our target, and g

(n)
γ

is sufficiently large to be strictly convex[Blake and Zisserman
1987] .

The beat histogram is first blurred by a 1 dimensional
Gaussian kernel to establish a pyramid. For the purposes
of this implementation, kernels of size 3 were applied start-
ing at a γ(4) . Major peaks were then identified on the
blurred images. The peaks were then related to other peaks
on histograms of higher level granularity until the bottom
of the pyramid was reached. After being identified, the ar-
eas around an identified beat rate were then modified with
a Haar transform to simulate lateral inhibition. Lateral in-
hibition is necessary for this algorithm to give each group of
peaks a deterministic result, and to prevent identified peaks
from providing secondary influence.

This algorithm was applied on a series of music with differ-
ent beat rates and tempos. Both standard and syncopated
beats were successfully identified in all cases. A sampling of
the results can be seen in Figure 4. Figure 5 shows a blur
factor of γ(4). These graphs show that while some beats ap-
pear very strong, once we factor in neighbors they do not
retain their absolute strength. It should be noted that this
algorithm does not run in real time, and is necessarily pre-
computed for all tracks in a personal music collection.

5 Syncronization
Given the user input beat rate, the nearest beat rate with
the highest strength, in the music, can be identified by our
model. In addition we can give greater importance to differ-
ent kinds of input at this stage (stronger beats to keyboard
or mouse as necessary). A ratio is then constructed be-
tween the target beat and the user rate. This ratio is used
to modify the rate at which the music is fed to the audio
driver, and eventually output. The method for time stretch-
ing and shrinking the music is a phasevocoder which allows
for changes in the time domain while preserving frequencies.

5.1 Phasevocoder

A vocoder is a time-scaling algorithm which stretches au-
dio samples over a larger or smaller window without caus-
ing a shift in the frequencies. The most popular vocoders
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Figure 4: Plot of Beat Histogram

achieve this dilation by considering overlapping time win-
dows and aligning the “phases” between them. The result is
that phase consistency within a given frequency channel is
consistent over time, but that phase consistency is not main-
tained across all the channels in a given time slice. The pha-
sevocoder in question is based on the work of Jean Laroche
and Mark Dolson’s [1999].

During the analysis of the signal using a STFT we define
an analysis hop factor Ra such that given a time-instant
tau for sucessive integer values u, tau = Rau . We can then
calculate the Fourier transform of this instant tau by taking
a windowed portion of the original signal centered about tau.
This STFT, denoted by Xtau,Ωk can be expressed:

Xtau,Ωk =

∞∑
n=−∞

h(n)xtau+ne
−jΩkn

with respect to the original signal x. In this case h(n) is
our windowing function which is necessarily compact. Here
Ωk = 2πk

N
is the center of the frequency channel k where N

is the size of the discrete Fourier transform.
As time dilation is the desired result of this process we will

use a different synthesis hop factor Rs, giving us different
time instants tsu = Rsu. We can thus obtain a short-time
signal yu(n) for each of these time-instance via the inverse
Fourier transform, denoted Ytsu,Ωk . We can then multiply
each short-time signal with a synthesis window w(n) and
sum to produce the output signal y.

yn =

∞∑
u=−∞

w(n− tsu)yun−tsu

where:

yun =
1

N

N−1∑
k=0

Ytsu,Ωke
jΩkn

5.2 Phase Alignment

While the STFT will produce values which dictate the fre-
quency at a given timeslice, these frequencies do not neces-
sarily have the correct phase. Due to the influence different
waves have on each other if they are ”in” or ”out” of phase,
a complete algorithm must identify and correct phases be-
tween time slices and frequency channels.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

Figure 5: Plot of Beat Histogram with a blurring factor of 4

To identify the phase of the STFT Ytau,ωk we must first
perform phase unwrapping. Phase unwrapping is a tech-
nique that gives us the phase increment between consecutive
frames. This is important because the phase between one
time slice and the next needs to be consistent. The phase
increment can then be used to estimate the instantaneous
frequency of sinusoids in a given channel. The instanta-
neous frequency ŵk(tau) of the closest sinusoid is determined
by the phase increment δφku and the frequency channel given
by Ωk:

ŵk(tau) = Ωk +
1

Ra
δφku

where the principal determination of the increment is
taken between ±π because of the cyclical nature of sinu-
soids. We can think of this as the increment δφku being the
phase shift between the instantaneous frequency wk(tau) and
the frequency channel Ωk. As phases need to be aligned be-
tween time slices, the value ŵk(tau) can be used to propagate
the correct phase alignment between time slices.

6 Y (tsu,Ωk) = 6 Y (tsu−1,Ωk) +Rsŵk(tau)

5.3 Implementation of Time-Stretching

The actual implementation of the phase vocoder occurs once
again in the Marsyas [http://marsyas.sness.net/ ] frame-
work. Information about the user interaction rate comes
in through a pipe and is modeled in the manner described
in section 3 . Information received from the user model is a
ratio representing Rs/Ra.

As beat detection will, on occasion, determine the har-
monic of the underlying beat structure, ratios greater than
2 or less than 1

2
will be scaled by the inverse amount. We

can then take this ratio and multiply it with the sampling
rate to achieve the correct output rate. This is then used as
input into our phasevocoder.

While the phase vocoder will run in real time, because
the spacing between the currently playing time slice and the
next slice being processed is not taken into account there is
a potential loss of time. This actual change in the output is
perceptible if it occurs too often, regardless of phase locking.
To compensate for this the output is modified gradually at
a rate of 1 to 64 every 8 slices of the current processing rate
of music.
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Figure 6: Plot of Std vs Mean for 4 Different Genres, with
Green Circle Representing the Platformer

6 Results and Discussion
While we have discussed and implemented a fully functioning
system it is also necessary to evaluate our system both as
a complete piece of software, as well as individual pieces to
demonstrate our underlying assumptions are correct. One of
the major assumptions of this work is that video games have
an underlying structure. While this has been concluded in
previous work, in this paper we report on our evaluation of
the accuracy of this assumption. In the earlier section 3.3 we
discussed how we can model the underlying structure, thus
implying that there is a structure. In this section we will
evaluate if this structure is a) correlated with user experience
and b) unique to specific games. Finally, we will report on
the evaluation of the fully functioning system.

6.1 Associating with User Experience

While we have shown that the data shows specific charac-
terstics associated with two overlapping distributions, there
is no guarantee that this is actually due to the video game.
For all we know users always interact in this way. If user
interaction with a video game is unique to the game in ques-
tion (or even games in general), then we should be able to
verify this by changing the time domain (speeding up and
slowing down) of the game. One would expect that if the
user is attempting to approximate this model then the re-
sulting interarrival time would likewise change. If, on the
other hand, the user merely interacts with the computing
devices consistently in this way, we should see no variation.

Users were asked to play a game (in this case Starcrafttm)
at two seperate speeds (denoted to the user as Slow and
Fast). These speeds were the equivalent of 75% and 100%
standard gameplay (thus constituting a 33% speed up).
Users were then asked to replay the same level at both speeds
and the data was recorded in the previously discussed man-
ner. Two data sets were generated per user and the data
was analyzed for comparison using a T-test on the means of
the trials.

Results indicated a significant difference between the two
groups (P(T) < 1%), and that users interacted with the
game, on average, 17% faster while maintaining a simi-
lar standard deviation. This shift is statistically significant
enough for us to indicate that increasing the speed does af-

Cassification Matrix
Genre RTS Plat MMO FPS
RTS 80% 20% 0% 0%
Platformer 30% 50% 20% 0%
MMO 0% 0% 90% 10%
FPS 0% 17% 17% 67%

Table 1: The Results of Genre Classification

Cassification Matrix
Genre RTS MMO FPS
RTS 90% 10% 0%
MMO 0% 90% 10%
FPS 0% 17% 83%

Table 2: The Results Without Platformer Data

fect user interaction in the anticipated method. However,
this shift is still smaller than the expected 33% increase.
This suggests that there is a second factor at play here.
While the user does speed up to accommodate the faster
pace, there are limits to the speed of human interaction. If
we examine only events shorter than .5 seconds (as in the
previous subsection) we notice that in addition to having
similar distributions, these make up half of all events in both
cases, which explains why we see about half the speed up we
might expect.

6.2 Game Genre Classification based on User Input

The idea that games have an underlying structure, or design,
is not an original idea[Smith et al. 2008]. This idea has
yet to be evaluated, and a demonstration is necessary for
this work. Because we have established that user input is
predictable to a degree, and that it is a close approximation
of whatever structure exists, it becomes necessary to show
that this model is not identical across different games.

To demonstrate this we conducted a pilot study where
ten users were asked to play four different games. User in-
put was recorded over the course of normal play. To guar-
antee the most noticable results, games were chosen from
four different genre: Real Time Strategy (Starcrafttm), First
Person Shooter (Left4Deadtm), Massive Multiplayer Online
Role Playing Game (World of Warcrafttm), and Platform
Leveler (Super Mario Worldtm). Each genre was run for 10
trials, with the exception of the first person shooter, which
received only 6. Data was gathered for each user, and mean
and standard deviation of interarrival time of the user’s ac-
tions was calculated for each data sample.

To evaluate this data we used a Naive Baysian
classifier on the average interarrival time and stan-
dard deviation. The implementation used was
Weka[http://www.cs.waikato.ac.nz/ml/weka/ ]. Using
a 10 fold cross-validation 72% accuracy was achieved;
individual results are tabulated in table 1. The most
notable standout was the Platformer with 50% accuracy. If
we remove that from the data we achieve 88.5% accuracy as
shown in table 2. This is most likely due to rapid changes
in pace between levels, whereas the other genres tend to be
consistent across levels. If we examine the data directly we
see that the platformer has a standard deviation from .5
seconds to 2.3 seconds. No other data set has a standard
deviation spanning more than a second; moreover it spans
the range of all three others (see figure 6).

While more data might still provide higher accuracy, this
clearly shows that between these four games, the game being
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Preformance
Condition Avg. Progress
Silence 24.15%
Unmodified 15.40%
Adapted 26.95%

Table 3: A Comparison of the Preformance between Our
System and Control

played can be determined purely from the input data. This,
in turn, provides strong evidence that the underlying models
being approximate by user input are different across these
different video games.

6.3 User Feedback

Finally, there is the concern that our system may have a
negative effect on performance as a distractor. Research
in the past has demonstrated that music, especially music
characterized as “High Arousal” [Cassidy and MacDonald
2007], can have a negative effect. As our system is designed
to adapt music to gameplay to reduce negitive effects, we
evaluate it in the course of regular usage. For this purpose
we conducted a pilot study to observe how well a user pre-
formed under our system. Participants were recruited from
the Faculty and Student Body of the University of Victoria
Computer Science Department.

Participants were asked to play Super Mario Worldtm in
the manner in which they felt appropriate. If they were
unfamiliar with the game they were given instructions on
the controls. Participants were randomly assigned to play
the game with no music first (Negative Control), with mu-
sic which was not adapted (Positive Control, or our system
(Experimental); this order was randomized for each user.
Participants were allowed 5 trials with each condition for a
total of 15 trials, where a trial consisted of a death or com-
pletion of the level. Data was recorded on how far into the
level the users were able to progress in a single life. The data
on table 3 summerizes the average distance into the level for
each of the condidtions. The average distance of all trials
was 22.2% which corresponded to approximately a minute
and a half of game play.

If we look at the data from this study we can see that
Cassidy’s[2007] findings are reaffirmed. In the presence of
an additional distractor (Positive Control) performance is
inhibited. However, when we examine the application of our
current system vs. the negative control we notice that this
performance difference is reduced as well as being reversed.
Although the sample size is not sufficient to say this trend
is certain (P > .1) it is evidence that our system is not as
significant a distractor (P < .1).

7 Future Work

While the majority of this paper is concerned with adapting
music to user data, a large portion of our evaluation is con-
cerned with that user data. Being able to draw information
out of user interaction is a useful tool; our identifying genre
based on user interaction is evidence of this. Future applica-
tion of this system could includ identifying the specific game
the user is playing, the competency of the user playing, or
the specific user that is playing, all of which could be of
great benefit to our system or the state of the art. Finally,
being able to identify which musical track might fit best to
the user interaction is a future goal of this system.

8 Conclusion
In 2009, over 750 video games were released. Top
sellers moved over 5 million units during 2009 in US
alone[Wikipedia ]. Despite these impressive sales, only four
games had this high level of success. All of them came with
sound tracks. More importantly, many of them had spe-
cialized sound tracks, where the actions of the players influ-
enced the sound in more ways than just sound effects. This
new area of relevant non-diegetic music has farther reaching
implications than just assisting as a story telling tool. By
changing the nature of where sound comes from, its uses also
change.

The purpose of our work is to establish a method for
adapting generic audio data to human input. To that end,
our algorithm and the implementation here described accom-
plishes this goal. However, there still exists the possibility
for errors. Because the algorithm is based upon a lower
level technique for identifying beat strength, we inherit all
the possible inaccuracies that lie therein. For example, mu-
sic with irregular beat patterns is not adapted effectively
using this approach. It will be interesting to see how im-
provements in understanding tempo and rhythm in audio
files affects this work.

More information about our system and a video can be
found at http://leffe.cs.uvic.ca/smr624/Syncronization/
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