
IMPLICIT PATCHING FOR DATAFLOW-BASED
AUDIO ANALYSIS AND SYNTHESIS

Stuart Bray and∗George Tzanetakis
University of Victoria

Computer Science Department∗(Also in Music)

ABSTRACT

Programming software for audio analysis and synthesis is
challenging. Dataflow-based approaches provide a declar-
ative specification of computation and result in efficient
code. Most practitioners of computer music are familiar
with some form of dataflow programming where audio
applications are constructed by connecting components
with “wires” that carry data. Examples include networks
of unit generators in Music-V style languages and visual
patches in Max/Msp or PD. Even though existing dataflow-
based audio systems offer a concise conceptual model of
signal computation, this model does have limitations. In
many cases, these limitations are a consequence of the
programmer having to explicitly specify connections be-
tween components. Two such limitations are the diffi-
culty of handling spectral data and the need for fixed-size
buffers between components. In this paper we introduce
Implicit Patching(IP), a dataflow-based approach to audio
analysis and synthesis that attempts to address these limi-
tations. By extending dataflow semantics a large number
of connections are automatically created and buffer sizes
can be changed dynamically. We describeMarsyas-0.2,
a software framework based on IP, and comment on the
strengths and limitations of the proposed approach.

1. INTRODUCTION

There is a plethora of programming languages, frameworks
and environments for the analysis and synthesis of audio
signals. The processing of audio signals requires exten-
sive numerical calculations over large amounts of data es-
pecially when real-time performance is desired. Therefore
efficiency has always been a major concern in the design
of audio analysis and synthesis systems. Dataflow pro-
gramming is based on the idea of expressing computation
as a network of processing nodes/components connected
by a number of communication channels/arcs. Computer
Music is possibly one of the most successful application
areas for the dataflow programming paradigm. The ori-
gins of this idea can possibly be traced to the physical
re-wiring (patching) employed for changing sound char-
acteristics in early modular analog synthesizers. Exam-
ples from Computer Music include the unit generators in
the MusicN family of languages and visual programming
environments such as Max/Msp and Pure data.

Expressing audio processing systems as dataflow net-
works has several advantages. The programmer can pro-
vide a declarative specification of what needs to be com-
puted without having to worry about the low level imple-
mentation details. The resulting code can be very efficient
and have low memory requirements as data just “flows”
through the network without having complicated depen-
dencies. In addition, dataflow approaches are particularly
suited for visual programming. Despite these advantages,
dataflow programming has not managed to replace exist-
ing imperative, object-oriented and functional languages.
Some of the criticisms include: the difficulty of expressing
complicated control information, the restrictions on using
global state information, and the difficulty of expressing
iteration and complicated data structures.

Computer music has been one of the most successful
cases of dataflow applications. However, existing audio
processing dataflow frameworks have difficulty handling
spectral and filterbank data in an conceptually clear man-
ner. Another restriction is the use of fixed buffer sizes/audio
rates. Both of these limitations can be traced to the re-
stricted semantics of patching as well as the need to ex-
plicitly specify connections.Implicit Patchingthe tech-
nique described in this paper is an attempt to overcome
these problems while maintaining the advantages of dataflow
computation. Marsyas-0.2is a software framework for
audio analysis and synthesis that is structured around the
idea of IP. In order to illustrate the concept of IP we pro-
vide specific examples from audio analysis, synthesis.

2. RELATED WORK

Motivated by criticisms of the classical von Neumann hard-
ware architecture, dataflow architectures for hardware were
proposed as an alternative in the 70s-80s. During the same
period a number of textual dataflow languages such as
Lucid [1] were proposed. During 90s dataflow concepts
resurfaced in visual programming languages for specific
domains. Commercial examples include Labview1 and
SimuLink 2 . A recent comprehensive review of the his-
tory of dataflow programming languages is [2]. Another
recent trend has been to view dataflow computation as a
software engineering methodology for building systems
using existing programming languages [3].

1 http://www.ni.com/labview/
2 http://www.mathworks.com/products/simulink/

It is interesting to note that the use of dataflow ideas
in Computer Music follows a similar trajectory. Initial
experimentation started in the 1960-1970s with modular
analog synthesizers that could be programmed by phys-
ically “patching” wires. Textual dataflow programming
languages in Computer Music are exemplified by the the
Music N family legacy whose most popular member to-
day is Csound [4]. Today the use of visual dataflow pro-
gramming environments such as Max/MSP and Pure Data
(PD) is pervasive in the computer music community [5].
An object-oriented metamodel for digital signal process-
ing that abstracts many of the dataflow ideas used in au-
dio and music processing is presented in [6]. The use of
object composition advocated in this paper has similar ad-
vantages to the use of expressions in [7].

Marsyas 0.2, the software framework for audio anal-
ysis and synthesis described in this paper, evolved from
Marsyas 0.1[8] a framework that focused mostly on au-
dio analysis and Music Information Retrieval. One of mo-
tivating factors for the rewrite of the code and architecture
was the desire to add audio synthesis capabilities influ-
enced by the design of the Synthesis Toolkit [9]. Other
influences include the powerful but complicated flow ar-
chitecture of CLAM [6], the interesting patching model of
Chuck [10] and ideas from Aura [11]. The matrix model
used inImplicit Patchingwas influenced by the design
of SDIF [12] and the control naming scheme is inspired
by the Open Sound Control (OSC) format [13].Implicit
patching, the technique described in this paper is illus-
trated with examples from audio analysis and synthesis.
The phasevocoder is a computationally intensive audio
synthesis algorithm. As an example of audio the feature
extraction front-end described in [14] is used.

3. MARSYAS-0.2 ARCHITECTURE

Marsyas-0.23 is a software framework, written in C++,
for rapid prototyping and experimentation with audio anal-
ysis and synthesis with specific emphasis on processing
music signals. The main goal is to provide a general, ex-
tensible and flexible framework that allows easy experi-
mentation with algorithms and provides the fast perfor-
mance necessary for developing real time audio analysis
and synthesis tools. A variety of existing building blocks
that form the basis of many published algorithms are pro-
vided as dataflow components that can be composed to
form more complicated algorithms (black-box functional-
ity). In addition, it is straightforward to extend the frame-
work with new building blocks (white-box functionality).
The goal of this section is not to provide an extensive
overview of the system architecture but provide the neces-
sary context to understand the ideas described in the paper.

In Marsyasterminology the processing nodes of the
dataflow network are calledMarSystemsand provide the
basic building blocks out of which more complicated sys-
tems are built. As will be shown in the next section essen-
tially any audio processing can be expressed as a large

3 http://marsyas.sourceforge.net

compositeMarSystemwhich is assembled by appropri-
ately connected basicMarSystems. Some representative
MarSystemsprovide inMarsyas-0.2are the following:

In addition to being able to process data, in order for
MarSystemsto be useful, they need additional informa-
tion. For example aSoundFileSourceneeds to the name
of the soundfile to be opened and aGaincould be adjusted
while data is flowing through. This is accomplished by
a separate message passing mechanism. Therefore, sim-
ilarly to CLAM [6], Marsyas-0.2makes a clear distinc-
tion between data-flow which is synchronous and control-
flow which is asynchronous. BecauseMarSystemscan
be assembled hierarchically the control mechanism uti-
lizes a path notation similar to OSC [13]. For example
Series/playbacknet/Gain/g1/real/gainis the control name
for accessing the gain control of aGain MarSystemnamed
g1 in a Seriescomposite namedplaybacknet. A mecha-
nism for linking top-level controls to the longer full path
control names is provided. For example a single gain con-
trol at the top-level can be linked to the gain controls of
20 oscillators in a synthesis instrument. That way one-to-
many mappings can be achieved in a similar way to the
use of regular expressions in OSC [13].

Dataflow inMarsyas-0.2is synchronous which means
that at every “tick” a data slice is propagated across the en-
tire dataflow network. This eliminates the need for queues
between nodes and enables the use of shared buffers which
improves performance.MarSystemsare hierarchically com-
posable and can be instantiated at run-time. Currently
there are three ways to build audio applications inMarsyas-
0.2. The first is writing directly C++ code and compiling
an executable. The second is a simple scripting language
for building the dataflow network, setting appropriately
the controls and moving sound through the network. The
third is to use a visual patch builder.

4. IMPLICIT PATCHING

The basic idea behindImplicit Patching is to use object
composition rather than explicitely specifying connections
between input and output ports in order to construct the
dataflow network. For example the following pseudo-code
examples illustrates the difference ofExplicit andImplicit
Patchingin a simple playback network.

EXPLICIT PATCHING
create source, gain, dest
connect the appropriate in/out ports
connect(source.out1, gain.in1);
connect(gain.out1, dest.in1);

IMPLICIT PATCHING
create source, gain, dest
create a composite that
is essentially the network
create series(source, gain, dest);

EXAMPLE 2

Implicit Patchingevolved from the integration of three
different ideas. The first idea originated from the desire
for dynamic buffer sizes and proper semantics for spec-
tral data. The majority of existing audio environments re-
quire that all processing nodes in a patch process fixed
size buffers (typical 64 or 128 samples). This simpli-
fies memory management and patching as all connections
are treated the same way. However, some applications
like audio feature extraction require a variety of differ-
ent buffer sizes to flow through the network (for example
feature vectors typically have much lower dimensional-
ity than audio data). Dynamic buffers in explicit patching
systems are complex to implement and not transparent to
the programmer. In addition, audiod buffers are reused
for holding spectral data and it is up to the programmer
to correctly interpret them. Therefore the exact details of
the Short Time Fourier Transform are encapsulated as a
black box and the programmer has little control over the
process. Our proposed solution to these two problems
is to extend the semantics of the data that is processed.
In Marsyas-0.2, processing objects (MarSystems) process
chunks of data calledSlices. Slicesare matrices of floating
point numbers characterized by three parameters: number
of samples (things that “happen” at different instances in
time), number of observations (things that “happen” at the
same time) and sampling rate. This approach is similar
to the matrix approach used in the Sound Description In-
terchange Format (SDIF) [12]. For example aMarSystem
for spectral processing that converts an incoming audio
buffer of 512 samples of 1 observation at a sampling rate
of 22050 to 1 sample of 512 observations (the FFT bins)
at a lower sampling rate of 22050/512. By propagating in-
formation about the sampling rate and the number of ob-
servations through the dataflow network, the use ofSlices
provides more correct and flexible semantics for dynamic
buffers and spectral processing.

The second major idea behindImplict Patchingis the
use ofCompositedesign pattern [15] as a mechanism for
constructing dataflow networks. The extended semantics
of Slicesrequire careful manipulation of buffer sizes espe-
cially if run-time changes are desired. The first composite
used wasSerieswhich connects a list ofMarSystemsin
series so that the output of the first one becomes the in-
put to the second etc (similar to Unix pipe mechanism).
The pseudo-code Example 2 above uses aSeriescompos-
ite. Initially composites were used a programming short-
cuts. However, gradually we discovered that they offer
many advantages and we decide to made them the main
mechanism for constructing complicatedMarSystemsout
of simpler ones. Their advantages include hierarchical
encapsulation, automatic dynamic handling of all inter-
nal buffers, and run-time instantiation. More specifically,
any dataflow network, no matter how complicated, is rep-
resented as a singleMarSystemhierarchically composed
of other simplerMarSystems, multiple instances of any
MarSystemscan be instantiated at run-time and all inter-
nal patching and memory handling is encapsulated.

Figure 1. Comparison of Implicit Patching (left) and Ex-
plicit Patching (right)

The third idea was the unification ofSourcesandSinks
as regularMarSystemsthat have both input and output.
Sourcesare processing objects that have only output and
Sinksonly have input. In order to be able to use them
as anyMarSystemwe extend them in the following way:
Sourcesmix their output with their input andSinksprop-
agate their input to their output while at the same time
playing/writing their input. This way, for example, one
can connect aSoundFileSinkto aAudioSinkand the data
will be written both to a sound file and played using the
audio device. Basically in bothSourcesand Sinksdata
gets injected into the network as a side effect but they can
be used anywhere inside a network.

Implicit Patching is made feasible by the integration
of these three ideas. In this approach, eachMarSystem
has a single input port and one output port process a sin-
gle token. However because of the extended semantics
of Slicesone can essentially have multiple input/output
ports (as observations) and consume/produce multiple to-
kens (as samples). This enables non-trivialComposites
such asFanout to be created. That way, the expressive
power of composition is increased and a large variety of
complex dataflow networks can be expressed only using
object composition and therefore noExplicit Patching.

To illustrate this approach, consider theFanoutcom-
posite which takes as input a slice and is built from a list of
MarSystems. The input slice is then used as input to each
internalMarSystemand their outputs are stacked as obser-
vations in the outputSliceof the Fanout. For example a
filterbank can be easily implemented as aFanoutwhere
each filter is a internal componentMarSystem. The filter-
bankMarSystemwill take as input a slice ofN samples by
1 observations and write to an output slice ofN samples by
M observations, whereM is the number of filters. Because
the innter loops ofMarSystemsiterate over both samples
and observations if we connect the filterbank with, for ex-
ample, aNormalize MarSystemeach row of samples cor-
responding to a particular observation (each channel of the
filterbank) will be normalized appropriately. This can be

extremely handy in large filterbanks as the part of the net-
work after the filterbank doesn’t need to know how many
filter outputs are produced. This information is taken im-
plicitely from the number of observations. Figure 1 shows
the difference betweenImplicit Patching(left) where the
dotted lines are created automatically from the semantics
of compositing andExplicit Patching(right) where each
connection must be created separately. Even though en-
vironments such as Max/MSP or PD provide subpatching
the burden of internal patching is still on the user.

Some examples from audio analysis, synthesis and dis-
tributed computation are used to illustrate howImplicit
Patchingcan be used in practice. They all have been im-
plemented inMarsyas-0.2and their source code is part of
the distribution. Figure 2 shows how a layer of nodes
in an Artificial Neural Network can be expressed using a
Fanout. The input to the layer (the output of the previous
layer) consists 4 numbersx1, x2, x3, x4. These 4 numbers
(observations) based on theFanoutsemantics become the
input to each individual neuron (Ni) of the layer. Each
neuron forms a weighted sum (with weights specific to
each neuron) of the input, applies a sigmoid function to
the sum and outputs a single output. The outputs using the
Fanout semantics are stacked as observationsy1, y2, y3

(one for each neuron) ready for processing for the next
layer. Figure 2 illustrates this process graphically (left
side) and contrasts it with explicit patching (right side). In
Marsyas-0.2, creating an artificial neural network using an
annNodeMarSystemis simply a series of fanouts of annN-
odes (more specifically seriesNet(fanoutLayer1, fanout-
Layer2, ..., fanoutLayerM) where fanoutLayer1(annNode11,
annNode12, ..., annNode1N). All the connections are cre-
ated implicitely. The complete feature extraction front-
end described in [14], has also been implemented as a
dataflow network inMarsyas-0.2. The Phasevocoder is
a computationally intensive audio algorithm that allows
independent control of pitch and time shifting of sounds.
The phasevocoder, inMarsyas-0.2, can be fully specified
as a dataflow network created withImplicit Patching. Even
on a Pentium III laptop, this implementation real-time.

5. REFERENCES

[1] W. Wadge and E. Ashcroft,Lucid, the dataflow pro-
gramming language, ser. APIC Studies in Data Pro-
cessing. New York, NY: Academic Press, 1985.

[2] W. Johnston, J. Paul Hanna, and R. Millar, “Ad-
vances in dataflow programming languages,”ACM
Computing Surveys, vol. 36, no. 1, pp. 1–34, 2004.

[3] D.-A. Manolescu, “A data flow pattern language,” in
Proceedings of the 4th Pattern Languages of Pro-
gramming, Monticello, Illinois, September 1997.

[4] R. Boulanger, The Csound book. Cambridge,
Mass.: MIT Press, 2000.

[5] M. Puckette, “Max at seventeen,”Computer Music
Journal, vol. 26, no. 4, pp. 31–43, 2002.

Figure 2. Layer of an Artificial Neural Network

[6] X. Amatriain, “An object-oriented metamodel for
digital signal processing with a focus on audio and
music,” Ph.D. dissertation, Univ. of Pompeu Fabra,
2005.

[7] R. Dannenberg, “Machine tongues xix: Nyquist, a
language for composition and osound,”Computer
Music Journal, vol. 21, no. 3, pp. 50–60, 1997.

[8] G. Tzanetakis and P. Cook, “Marsyas: A frame-
work for audio analysis,”Organised Sound, vol.
4(3), 2000.

[9] P. Cook and G. Scavone, “The Synthesis Toolkit
(STK), version 2.1,” inProc. Int. Computer Music
Conf. ICMC. Beijing, China: ICMA, Oct. 1999.

[10] G. Wang and P. Cook, “Chuck: A concurrent, on-
the-fly audio programming language,” inProc. Int.
Computer Music Conf. (ICMC), Singapore, 2003.

[11] R. Dannenberg and E. Brandt, “A flexible real-time
software synthesis system,” inProc. Int. Computer
Music Conf. (ICMC), 1996, pp. 270–273.

[12] D. Schwarz and Wright.M., “Extensions and appli-
cations of the sdif sound description interchange for-
mat,” in Proc. Int. Computer Music Conf., 2000.

[13] M. Wright and A. Freed, “Open sound control: A
new protocol for communicating with sound synte-
sizers,” inProc. Int. Computer Music Conf. (ICMC),
Thessaloniki, Greece, 1997.

[14] G. Tzanetakis and P. Cook, “Musical Genre Classi-
fication of Audio Signals,”IEEE Trans. on Speech
and Audio Processing, vol. 10, no. 5, July 2002.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995.

