
Flexible Scheduling for DataFlow Audio Processing

Neil Burroughs, Adam Parkin, and George Tzanetakis
Department of Computer Science, University of Victoria

{inb, aparkin, gtzan}@cs.uvic.ca

Abstract

The notions of audio and control rate have been a pervasive
feature of audio programming languages and environments.
Real-time computer music systems depend on schedulers to
coordinate and order the execution of many tasks over the
course of time. In this paper we describe the scheduling in-
frastructure of Marsyas-0.2, an open source framework for
audio analysis and synthesis. We describe how to support
multiple, simultaneous, dynamic control rates while retain-
ing the efficiency of block audio processing. In addition we
show how timers and events can be abstracted and decou-
pled from the scheduler in an extensible way. Specific types
of supported events such as control updates, implicit patch-
ing, wires and expressions are described. In addition, we
show how multiple timers based on sample-time, real-time
and virtual-time can be utilized. The work in this paper has
been motivated by the precise handling of time in the Chuck
audio programming language and therefore we show how
a simple Chuck program can be expressed in the Marsyas
Scripting Language (MSL).

1 Introduction

There is a large ecology of programming languages, frame-
works, and environments for the analysis and synthesis of
audio and music signals. The design of such computer mu-
sic systems is especially challenging as there are many po-
tentially conflicting requirements that need to be addressed.
Three of the most important requirements are: 1) efficient
audio processing 2) interactivity, and 3) expressivity. Even
today, with laptops that are as powerful as supercomputers
were five years ago, practitioners of computer music are fre-
quently constrained by computational efficiency (for example
by limits in the number of simultaneous oscillators that are
supported). In addition to efficient computation, computer
music systems must be able to respond quickly to external
events such as user interface actions, sensor measurements or
precomposed actions. Finally computer music programming
languages and environments should provide a small number

of high level concepts, constructs and building blocks that can
be combined to accomplish a large variety of tasks.

The central focus of this paper is the handling of time in
Marsyas an open source framework for audio analysis, re-
trieval and synthesis 1. The concepts of audio and control
rate are pervasive in many computer music systems including
the Max/PD family (Puckette 2002), SuperCollider (Mccart-
ney 2002), and CSound (Boulanger 2000). More recently,
handling multiple concurrent and adjustable control rates has
been demonstrated in Chuck (Wang and Cook 2004).

Marsyas is based on a dataflow model of computation
which supports easy dynamic adjusting of audio rate for ar-
bitrarily large networks of audio processing units. We de-
scribe the new scheduling/timing infrastructure developed in
Marsyas to support multiple control rates. This infrastruc-
ture also supports multiple user-defined Timers and Events
by abstracting these notions from the Scheduler. Our work
has been motivated by ideas in Chuck, therefore we show
how a simple Chuck program can be expressed in the Marsyas
Scripting Language (MSL) without losing the computational
efficiency of block processing.

2 Related Work

All real-time computer music systems depend upon sched-
ulers as a means of coordinating and ordering the execution
of many small tasks over the course of time. A good overview
of real-time scheduling in Computer Music is provided in
(Dannenberg 1989). Marsyas started as a framework for au-
dio analysis with specific emphasis to Music Information Re-
trieval (MIR) applications. The 0.2 version (a complete re-
design/rewrite) was initiated in order to provide synthesis func-
tionality similar to the Synthesis Toolkit (STK) (Cook and
Scavone 1999). Marsyas is based on synchronous dataflow
block processing with block-synchronous control updates for
efficient audio processing. Implicit patching (Bray and Tzane-
takis 2005) doesn’t enforce a fixed processing block size across
the dataflow network and enables dynamic adjustment of buffer
sizes (audio rate) at run time.

1http://marsyas.sourceforge.net

The development of Marsyas has been influenced by a va-
riety of existing systems and ideas. A detailed description
of an object-oriented metamodel for audio processing with
clear separation of synchronous dataflow and asynchronous
control flow is provided in (Xavier 2005). The default path-
based naming of controls utilized in Marsyas is inspired by
Open Sound Control (OSC) (Wright and Freed 1997), and
the explicit representation of time in the processing of slices
is inspired by SDIF (Schwarz and Wright 2000). The use of
implicit patching using composites is similar to the block al-
gebra in Faust (Graef, Kersten, and Orlarey 2006). Another
influence has been the use of multiple control rates in Aura, a
flexible object-oriented software synthesis system (Dannen-
berg and Brandt 1996). The timing infrastructure described
in this paper was motivated by ideas from Chuck (Wang and
Cook 2004). Chuck also influenced syntactic decisions for
the Marsyas Scripting Language (MSL).

3 The Marsyas Dataflow Architecture

Marsyas-0.2 is an open source software framework writ-
ten in C++. A variety of existing building blocks are pro-
vided as dataflow components that can be composed to form
more complicated algorithms. In addition, it is straightfor-
ward to extend the framework with new building blocks. In
this section we provide a quick overview of the architecture
in order to provide context for the remainder of the paper.
MarSystems are the processing nodes of the dataflow net-
work. Complicated audio processing networks can be ex-
pressed as a single large “Composite” MarSystem which is as-
sembled by implicitly patching basic MarSystems (Bray and
Tzanetakis 2005). Figure 1 shows how a Series composite
consisting of a SoundFileSource src, Gain g, and AudioSink
dest can be assembled in C++. At every iteration of the loop
the audio rate is incremented starting from 1 sample (simi-
lar to Chuck or STK) until the block size of 1000 samples
is reached. All the intermediate shared buffers between the
MarSystems are adjusted automatically and the sound plays
without interruption. Although this example might seem arti-
ficial dynamically adjusting window size is useful for analysis
algorithms such as pitch synchronous overlap-add (PSOLA).

MarSystems process chunks of data called Slices. Slices
can be viewed as a generalization of blocks of samples and
are matrices of floating point numbers characterized by three
parameters: number of samples (things that “occur” at differ-
ent times), number of observations (things that “occur” at the
same time) and sampling rate. Figure 2 shows a MarSystem
for spectral processing that converts an incoming audio buffer
of 512 samples of 1 observation at a sampling rate of 22050
to 1 samples of 512 observations (the FFT bins) at the lower
sampling rate of 22050/512. Controls can be used to modify

the behavior of MarSystems and utilize path notation similar
to OSC(e.g. /net/gain/frequency). Updating controls is done
in a slice synchronous manner.

4 Scheduling Infrastructure

Scheduling is central to any computer music system. A
scheduling request consists of an event and a time. The sched-
uler keeps track of pending requests. Computer music sched-
ulers use times which are typically references to a single clock
that is presumed to correspond to real (physical) time. In sys-
tems with explicit handling of time, like Chuck, events can be
scheduled in sample time. Sample time is defined directly in
terms of the number of audio samples generated. Chuck pro-
cesses individual samples and therefore provides sample ac-
curate timing. Marsyas can do sample accurate timing by set-
ting inSamples to 1 but also allows to tradeoff more efficient
block processing at the cost of more coarse timing at block
boundaries. If audio computation takes longer than real-time
then system time and sample time can be different. Both of
these notions of time can be useful. In computer music pro-
grams it is also often convenient to have a time reference or
references that do not correspond to real time. For example
consider scheduling events in beats that are defined in rela-
tion to a conductor’s baton. In this section we show how mul-
tiple notions of time and events are supported through object-
oriented abstractions in Marsyas.

Each MarSystem object has its own Virtual Scheduler that
manages an arbitrary number of Event Schedulers. Each Event
Scheduler contains its own Timer that controls the rate at
which time passes and events are dispatched. Schedulers them-
selves do not keep track of time but leave this task solely to
the Timer. Structured this way events may be scheduled to
any number of different Timers.

A Timer in Marsyas is any object that can read from a
time source and trigger some action on each tick. A timer
must also provide some way to specify units of time in its time
base. The one restriction in defining a time source is that time
must always advance. Timers are definable by the user pro-

MarSystem* net = mng.create("Series", "net");
net->addMarSystem(src);
net->addMarSys(g);
net->addMarSys(dest);

for (int i=1; i<1000; i++) {
net->updctrl("natural/inSamples", i);
net->tick(); }

Figure 1: Marsyas C++ dynamic audio rate adjustment

tick()

SystemTimeScheduler[n]VSchedulerms : Series ScheduledEvent ev : UpdCtrl

tick()

tick()

dispatch()

ev = getEvent()

ev.dispatch()

ms.updctrl(cname,value)

Figure 3: UML sequence diagram of event dispatch

Figure 2: MarSystem and corresponding slices for spectral
processing

vided they support the AbstractTimer interface. The interface
requires specification of the following: a method for deter-
mining the interval of time since the last reading, a method
for comparing time intervals for that particular Timer, a trig-
ger method which calls the Scheduler dispatch, and a method
for converting time representations to the specific notion of
time used by the Timer. This generalization of Timers allows
for many different possibilities in controlling event schedul-
ing. Linear and non-linear advancing are both possible.

Events are user definable actions that are “frozen” until
dispatched. They are distinct from the normal flow of audio
data. There are no restrictions on the types of events that can
be defined. Perhaps the most common event is updating a
MarSystem control. Another example is the Wire event which
updates the value of a control based on the value of another
control (similar to a control wire in Max/MSP, PD). Expres-
sions involving multiple controls, constants and user defined
functions are also Events. Events must supply a dispatch()
method that the scheduler can call at the appropriate time.
Events may take place immediately or some time in the fu-
ture. The time at which an event happens may be specified by

the user and depends on the timer that the requested time is
with respect to. An Event is then sent to the scheduler and re-
moved when its time interval has passed. The Scheduler then
calls the dispatch() method on the event.

Figure 4 shows a UML class diagram of the scheduling
architecture. Notice how multiple, user-defined Timers and
Events can be supported by abstraction and are decoupled
from the Scheduler. The UML sequence diagram of figure
3 shows the order of method calls between objects for per-
forming a control update (a specific type of event).

MarSystem

VScheduler

Scheduler[n]

ScheduledEvent[]
abstract Timer

ScheduledEvent
time
abstract MarEvent

SystemClockSampleCount
...

Timer
abstract1

1..*

1

0..*

1

...
UpdateControl

MarEvent
abstract

ApplyExpression

VScheduler

Scheduler[]

abstract

Figure 4: UML class diagram of the scheduler’s architecture.

sinosc s => dac;
440.0 => s.freq;
while (true) {

(Math.rand() * 10000.0) => s.sfreq;
100::ms => now; }

Figure 5: ChucK example

Series net is [SineSource s,
AudioSink dac]

do [440.0 => net/s/frequency]
do [(Math.rand() * 10000)

=> net/s/frequency
] every 100ms using SampleTimer
run net run

Figure 6: MSL example

5 Marsyas Scripting Language

MSL is a scripting language for building and controlling
MarSystem networks at runtime. Lexical analysis (or scan-
ning) is performed using the Flex scanner generator, and pars-
ing performed using the Bison parser generator. The output
of the parsing stage from Bison is an abstract syntax tree rep-
resentation of the MSL script, which is then traversed to gen-
erate and execute the equivalent Marsyas C++ code.

Figures 5 and 6 show how a simple example in Chuck can
be written in MSL. Every 100 milliseconds the sine oscilla-
tor is set to a random frequency between 0-10kHz. The “do”
construct allows multiple events to be scheduled at particular
times based on a Timer. Figure 7 shows a more complicated
example with two voice polyphony using a Fanout compos-
ite. Two sine oscillators are controlled by separate timers one
based on SystemTime and the other based on ConductorTime
which is based on MIDI input. Note that the block size deter-
mined by inSamples is completely decoupled from the timers
and can be changed by updating a control. It is possible to
instantiate in MSL the entire feature extraction method de-
scribed in (Tzanetakis and Cook 2002).

6 Future Work

The scheduling system has been designed to work on a
single host. We are working on making a distributed version
of the scheduler that allows events to be posted across a net-
work of hosts. An effort is also underway to add more event
types to Marsyas and to see to what extent the behaviour of
the system can be modified using events.

Series net is [
Fanout mix is [SineSource src1,

SineSource src2],
Sum sum,
AudioSink dac

]
do [(Math.rand() * 10000) + 100

=> net/mix/src1/frequency
] every 2beats using ConductorTimer

do [(net/mix/src2/frequency + 400) % 10000
=> net/mix/src2/frequency

] every 0.5s using SystemTimer
run net run

Figure 7: MSL example with multiple timer

References
Boulanger, R. (2000). The Csound book. MIT Press.
Bray, S. and G. Tzanetakis (2005). Implicit patching for dataflow-

based audio analysis and synthesis. In Proc. Int. Computer
Music Conf. (ICMC).

Cook, P. and G. Scavone (1999, October). The Synthesis Toolkit
(STK), version 2.1. In Proc. Int. Computer Music Conf.
ICMC, Beijing, China. ICMA.

Dannenberg, R. (1989). Real-time scheduling and computer ac-
companiment. In M.Mathews and J.R.Pierce (Eds.), Current
Directions in Computer Music Research, pp. 225–261. Cam-
bridge, MA: MIT Press.

Dannenberg, R. and E. Brandt (1996). A flexible real-time soft-
ware synthesis system. In Proc. Int. Computer Music Conf.
(ICMC), pp. 270–273.

Graef, A., S. Kersten, and Y. Orlarey (2006). Dsp programming
with faust, q and supercollider. In LAC (Ed.), Linux Audio
Conference 2006.

Mccartney, J. (2002). Rethinking the computer music language:
Supercollider. Computer Music Journal 26(4), 61–68.

Puckette, M. (2002). Max at seventeen. In Computer Music Jour-
nal, Volume 26, No. 4, pp. 31–43.

Schwarz, D. and M. Wright (2000). Extensions and applications
of the sdif sound description interchange format. In Proc. Int.
Computer Music Conf.

Tzanetakis, G. and P. Cook (2002, July). Musical Genre Classi-
fication of Audio Signals. IEEE Trans. on Speech and Audio
Processing 10(5).

Wang, G. and P. Cook (2004). Chuck: a programming language
for on-the-fly, real-time audio synthesis and multimedia. In
Proc. ACM Int. Conf. on Multimedia, pp. 812–815.

Wright, M. and A. Freed (1997). Open sound control: A new
protocol for communicating with sound syntesizers. In Proc.
Int. Computer Music Conf. (ICMC), Thessaloniki, Greece.

Xavier, A. (2005). An Object-Oriented Metamodel for Digital
Signal Processing with a focus on Audio and Music. Ph. D.
thesis, Univ. of Pompeu Fabra.

