
GENERATING TARGETED RHYTHMIC EXERCISES FOR MUSIC
STUDENTS WITH CONSTRAINT SATISFACTION PROGRAMMING

Graham Percival
University of Victoria

Department of
Computer Science

Torsten Anders
University of Plymouth

Interdisciplinary Centre for
Computer Music Research

George Tzanetakis
University of Victoria

Department of
Computer Science

ABSTRACT

Generating technical exercises for various levels of play-
ing ability is important for any instrument method book.
Writing exercises by hand can be quite tedious, and severely
limits the number of exercises which could be created.
This is particularly apparent when we consider computer
music tutoring systems, which could benefit from a library
of thousands of exercises. This library could be used to
pick material which addresses the specific weaknesses of
students, or to ensure that the student always practices new
material while working on sight-reading. We therefore
turn to computer-assisted composition to generate these
technical drills. This is a challenging problem for which
the use of constraints provides an elegant solution.

1. INTRODUCTION

Most work in Computer-Assisted Composition (CAC) has
focused on artistic goals: either replicating an existing
musical style, or creating music according to a composer’s
desires. In this paper, we propose using CAC for pedagog-
ical goals: creating rhythmic exercises for students.

Modelling compositional tasks with constraint program-
ming is not new. A Constraint Satisfaction Problem (CSP)
is defined as a problem composed of a finite set of vari-
ables, each of which is associated with a finite domain. A
set of constraints restricts the values that the variables can
simultaneously hold; the task is to assign each variable a
value in its domain. A good introduction to CSPs is pre-
sented in [9]. There have been a few general CSP systems
for music composition, including PWConstraints and Sit-
uation [2], OMClouds [8], and Strasheela [1]. Specific
CSPs have been created; these include rhythmic patterns
[7] and instrumental writing [3]. However, these efforts
have focused on artistic, rather than pedagogical, goals.

Rhythmic exercises were chosen for their generality:
all musicians need to learn simple rhythms. Certain mu-
sical styles and instruments may demand more advanced
rhythms than others, but the basic rhythms are universal.
In contrast, the difficulty of playing certain pitch combina-
tions diverges quickly based on instrument. For example,
playing two adjacent notes at once is simple on a piano,
difficult on a cello, and impossible for a singer. Pedagog-
ical exercises which include pitches would therefore be
quite instrument-specific.

We begin by discussing the usefulness of computer-
created exercises in section 2. This is followed by an ex-
amination of musical rhythms and how they may be di-
vided into difficulty levels in section 3. Details of the
technical implementation are explained in section 4 and
discussed in section 5. We end with the conclusion and
future plans in section 6.

2. APPLICATIONS

2.1. Sight-Reading Exercises

Imagine a Computer-Assisted Musical Instrument Tutor-
ing (CAMIT) [5] program which tests the sight-reading
ability of a student. It presents an exercise to the student;
if the student performs the exercise correctly, she receives
a high mark and is presented with a harder exercise. If she
does not perform the exercise correctly, she receives a low
mark and is given another exercise on the same level.

If the program only includes a few musical exercises,
a student may receive high marks by memorizing those
exercises. There is nothing wrong with computer testing
of a prepared exercise or piece of music – but if the in-
tent of a particular program is to test sight-reading ability,
then we should ensure that the program really is testing
sight-reading ability and not memory. To avoid repeating
exercises, the CAMIT project would require dozens (if not
hundreds!) of exercises for each difficulty level.

2.2. Targeted Exercises

Imagine a sophisticated CAMIT program which tests a
student’s rhythmic ability. In addition to analyzing the stu-
dent’s performance and providing a single overall grade,
the program also detects specific mistakes.

For example, suppose that the student has difficulty
switching between triplets and duple notes (Figure 1). Once
the program detects this, it may generate exercises which
use this pattern more often. Conversely, if the student has
no difficulty performing this rhythm, the computer may
decrease the frequency of this pattern.

3

����
4
4 ����

3

��

Figure 1. Triplets and duple notes.

Level Events constraints Durs. Example

0 Must have an event on every beat, and no rests. 1
4 4

4 ����� �� �

1 Must have an event on every beat, and no rests. 1
4

1
8

��� � ��
4
4 � ��� � �

2 Must have an event on every beat, no rests, and
each beat is divided into equal durations.

1
4

1
8

1
16

� �� � �� �� ����
4
4 � �� � � � �

3 Must have an event on every beat, no rests, and
1
16 must occur in pairs replacing an 1

8 .

1
4

1
8

1
16

� �� ��� � �� � �� ��
4
4 � � ���

4 Must have an event on every beat, no rests, and
each beat is divided into equal durations.

1
4

1
8

1
12

�� � � �

3

�� � � ��

3

��

3

�
4
4 � �

5 Must have an event on every beat, and rests can
only occur on beats.

1
4

1
8

� �� �
4
4 ���� �

�
�

�
�

6 Must have an event on every second beat, and
rests can only occur on beats.

1
2

3
8

1
4

1
8

�
� ���

4
4

�
�

�
� ���

�
�

. . .

≈ 15 Must have an event on every second beat, and a
note longer than one beat must either begin or
end a beat.

1
2

7
16

3
8

1
4

3
16

1
8

1
16

��
�

� ��� ��
�

�� �
4
4 �� ������

Table 1. Levels of rhythmic difficulty: general musical information.

Level Beat
div.

Normal
solutions

Constraints to exclude uninteresting solutions Interesting
solutions

0 1 1 ∅ 1
1 2 256 Cannot have three identical adjacent beats. 68
2 4 6561 Cannot have three identical adjacent beats, and must have at least eight 1

16 . 3167
3 4 390,625 Cannot have three identical adjacent beats, must have at least eight 1

16 , at least
eight 1

8 , and at least two 1
4 .

8778

4 6 6561 Cannot have three identical adjacent beats, and must have at least four 1
8 and

six 1
12 .

3100

5 2 65,536 Cannot have identical durations in three adjacent beats, must have at least two
rests, and cannot have adjacent rests.

6436

6 2 331,776 Must have a 1
2 , a 3

8 , a 1
4 tied over a beat, and at least two rests and two notes. 5784

. . .
≈ 15 4 3.2·1014 Must have two notes longer than 1

4 , at least three rests, at least eight notes, and
at least eight 1

16 .
> 10, 000

Table 2. Levels of rhythmic difficulty: technical details.

3. RHYTHMIC DIFFICULTY LEVELS

Most musicians have an intuitive sense of what makes a
rhythm easier or harder to perform. However, we cannot
teach human intuition to a computer – before we can be-
gin creating rhythms with CAC, we must formalize our
concept of “easy” and “hard” rhythms.

We begin by considering music as a series of events.
An event represents the beginning of a note or rest, re-
gardless of its duration (see Figure 2). If this rhythm is
clapped (a very common way to practice rhythms), the
two bars will sound identical. However, the second bar is
harder to read, due to the quarter rest spanning the second
beat. In the first bar, there is an event on each beat; this is
very useful for students.

Using the terminology of events and durations, we can
express different rhythmic difficulty levels quite concisely.
Table 1 shows the first few levels of rhythmic difficulty.
Each level is defined independently, so they may be re-
ordered or modified if desired. Our rhythmic exercises
are quite short: two bars in 4/4 time.

��

**

�
�

*

�
�

*

music
beats

� �� �

events *

�
�

*

4
4

*

��

* *

�
�

*

�

*

Figure 2. Sample rhythm. Beats: thick blocks show beats,
while thin lines show the eighth note off-beats. Events: a
star indicates an event in this position.

When we divide rhythms into difficulty levels, we must
consider the readability of the exercise in addition to sim-
ply where the note onsets occur. This is quite apparent
when we consider the example in level 15 – the notes
which are syncopated against the beat make this exercise
quite challenging (as is appropriate for this high level).

Table 2 contains technical details, including the total
number of rhythms on each level. In many cases, these
rhythms include rhythms which were solutions to some
previous levels – for example, level 2 rhythms include all
level 1 rhythms, and level 5 rhythms will not necessarily
contain any rests. For some applications this may be de-
sirable, but for other applications we may wish to generate
only “interesting” rhythms. We therefore introduce extra
constraints which exclude uninteresting solutions.

The “Beat div.” (division) column represents how many
events we divide each quarter-note beat into. For example,
to represent sixteenth notes we must divide each beat into
at a multiple of 4, and to represent triplet eighths we must
divide each beat into a multiple of 3.

4. IMPLEMENTATION

We used Strasheela [1] and its underlying language Oz [6]
to phrase rhythmic exercises as a CSP, and generated sheet
music with GNU/LilyPond [4]. Oz is a multi-paradigm
programming language, including functional and constraint
programming.

4.1. Music Representation: Events and Durations

To express a problem as a CSP, we must state what the
variables are. Most musical CSPs specify the number of
notes at the outset, but this is problematic for more ad-
vanced rhythms. One beat may be filled with anywhere
from zero (if this beat falls inside a long note) to eight
notes (if we allow thirty-second notes).

We therefore create a list of all possible events, where
each variable represents which event occurs in that posi-
tion. For example, to produce two bars with no rests and
notes as fast as eighth notes, we create a list of 16 vari-
ables. Each variable represents one possible event – these
correspond to the “beats” in Figure 2. If there is no event
at this position, the variables will be 0. The beginning of
a note is represented with 1, while the beginning of a rest
is represented with 2. Figure 3 shows our event list.

The event list can express any rhythm which fits into
our “grid” of beats and beat divisions. However, there are
some constraints which we cannot easily express, such as
“must contain at least one half note”. To constrain the du-
rations directly, we introduce a second list of variables to

2
1

�

1
1

�

1
events

�
�

1

��

0 1

�

0
1

� �

0
00

2

���� �

2
1
2 1

4
4

beats
music

1
3
21

0
0

�

1 0
0

1

�

2
0

�

durs. 2
2

Figure 3. Sample rhythm with implementation details.

store durations. The duration list D has the same number
of variables as the event list E, and is linked to the event
list so that information may pass between the two. The
lists are indexed starting from position 1.

• Di = 0 ⇐⇒ Ei = 0

• Di = 1 ⇐⇒ (Ei 6= 0) ∧ (Ei+1 6= 0)
e.g. starting from position i, E contains 1 1.

• Di = 2 ⇐⇒ (Ei 6= 0)∧(Ei+1 = 0)∧(Ei+2 6= 0)
e.g. starting from position i, E contains 2 0 1.

• Di = N, N > 2 ⇐⇒ (Ei 6= 0) ∧ (Ei+1 = 0) ∧
. . . ∧ (Ei+n−1 = 0) ∧ (Ei+n 6= 0)
e.g. starting from position i, E contains 1 0 0 2
(for M = 3).

4.2. Defining Constraints

Once we have linked our event and duration lists, imple-
menting the constraints is straightforward – we may ex-
press constraints in terms of events and/or durations. We
shall examine two levels in detail to illustrate this point.

4.2.1. Level 2 Constraints

To represent quarter notes, eighth notes, and sixteenth notes,
we need to divide each beat in 4. Our event and duration
lists will therefore contain 32 variables. We begin by spec-
ifying that an event occurs on every beat (1), and that we
do not allow any rests (2):

∀Ei|i ∈ {1, 5, 9, 13, 17, 21, 25, 29} : Ei 6= 0 (1)

∀Ei : Ei 6= 2 (2)

Now we specify that each beat must be divided into
equal durations – in other words, every non-zero duration
must be equal to the first duration of that beat (3):

∀i|0 ≤ i ≤ 7 : (3)
(D4∗i+2 = 0) ∨ (D4∗i+2 = D4∗i+1)
(D4∗i+3 = 0) ∨ (D4∗i+3 = D4∗i+1)
(D4∗i+4 = 0) ∨ (D4∗i+4 = D4∗i+1)

This constraint may appear to allow invalid solutions
for duration sequences such as 1 0 0 1, but such so-
lutions are already forbidden by the linking between the
Event and Duration lists.

Constraints (1), (2), and (3) define this level. We add
two more constraints to ensure that we always get “inter-
esting” exercises: we cannot have three adjacent identical
beats (since the beats contain equal durations on this level,
we may simply constrain the first duration of each beat
(4)), and we require at least 8 sixteenth notes (5).

∀Di|i ∈ {1, 5, 9, 13, 17, 21} : (4)
(Di = Di+4) =⇒ (Di+8 6= Di)

(
32∑
Di

Di = 1) ≥ 8 (5)

In (5), true and false are represented by 1 and 0, allow-
ing us to add them.

4.2.2. Level 6 Constraints

To create the durations we desire we need to divide each
beat into 2, so our lists have 16 variables each. We begin
by specifying that we want an event every two beats (6):

∀Ei|i ∈ {1, 5, 9, 13} : Ei 6= 0 (6)

Then we specify that rests can only occur on beats (in
other words, if Ei is not a beat, it cannot be a rest (7)):

∀Ei|i ∈ {2, 4, 6, 8, 10, 12, 14, 16} : Ei 6= 2 (7)

Constraints (6) and (7) define this level. To exclude un-
interesting exercises, we add four more constraints: each
solution should contain at least one dotted quarter and half
note (8), at least one quarter note or rest which is held over
a beat (9), and contain at least two rests and two notes (10).

∃Di : Di = 3, ∃Di : Di = 4 (8)

∃Di|i ∈ {2, 4, 6, 8, 10, 12, 14} : Di = 2 (9)

(
16∑
Ei

Ei = 2) ≥ 2, (
16∑
Ei

Ei = 1) ≥ 2 (10)

5. DISCUSSION

As previously mentioned, a CSP must specify the number
of variables before searching for a solution. For our goal
of creating short rhythmic exercises, it was sufficient to
create a list of Events and Durations. This approach fixes
the total duration (in our case, to 2 bars), but allows the
number of notes to fluctuate. Another approach would
be to fix the number of notes, and let the total duration
vary – exercises with many sixteenth notes may only be 1
bar long, while an exercise with half notes may be 6 bars
long. A more sophisticated solution would be to fix the
total number of notes, but allow notes with a duration of
0. Such notes would be considered “non-existing”, and
would not be exported into musical notation. This method
would allow both the total duration, and total number of
“existing notes”, to vary between different solutions. This
is covered in greater detail in [1].

The simple rhythms produced in our exercises do not
use any tied notes. However, our music representation
may be easily extended to create rhythms which include
ties: let 3 in the event list represent “begin a note which
is tied to the previous note”. We also need the constraint
that 3 cannot follow 2 (you cannot tie a rest to a note).
With those small modifications, we can begin writing con-
straints to allow ties in any position we desire.

The rhythms in real music generally do not change as
quickly as our exercises: a single rhythmic pattern may be
repeated for many bars as a time, especially for an instru-
ment which is not playing a melody. Our CSP could easily
be modified to produce such rhythms: create an exercise
which is 8 bars long, but add the constraint that the first
two beats are repeated 16 times.

6. CONCLUSION AND FUTURE WORK

We have presented a method of using CSPs to create rhythms
of specific difficulty levels. Rhythmic difficulty levels are
easily expressed by constraints, and the resulting exercises
may be easily integrated into computer-assisted musical
instrument tutoring programs. Formulating constraints in
terms of linked events and durations allows us to express
rhythmic difficulty in easily-understandable musical terms.

We chose to begin with rhythms since they may benefit
all musicians. Exercises with pitches are quite instrument-
dependent, so they only benefit those specific instrument(s).
Our future work will focus on creating pitched exercises
for violin and cello.

7. REFERENCES

[1] T. Anders. Composing Music by Composing Rules:
Design and Usage of a Generic Music Constraint Sys-
tem. Ph.D. Thesis, School of Music & Sonic Arts,
Queen’s University Belfast, 2007.

[2] G. Assayag, C. Rueda, M. Laurson, C. Agon, and
O. Delerue. Computer-Assisted Composition At IR-
CAM: From PatchWork to OpenMusic. Computer
Music Journal, 23(3):59–72, MIT Press, Cambridge,
MA, USA, 1999.

[3] M. Laurson and M. Kuuskankare. A Constraint Based
Approach to Musical Textures and Instrumental Writ-
ing. CP01 workshop on Musical Constraints, Cyprus,
2001.

[4] H. Nienhuys, J. Nieuwenhuizen, and G. Percival.
LilyPond Music Notation. http://www.lilypond.org/,
February 2008.

[5] G. Percival, Y. Wang, and G. Tzanetakis. Effective
Use of Multimedia for Computer-Assisted Musical
Instrument Tutoring. EMME ’07: Proceedings of the
international workshop on Educational Multimedia
and Multimedia Education, pages 67–76, Augsburg,
Bavaria, Germany, 2007.

[6] P. Van Roy and S. Haridi. Concepts, Techniques, and
Models of Computer Programming. The MIT Press,
March 2004.

[7] O. Sandred. Searching for a Rhythmical Language.
PRISMA 01, EuresisEdizioni, Milano, 2003.

[8] C. Truchet, G. Assayag, and P. Codognet. OMClouds,
a Heuristic Solver for Musical Constraints. MIC2003:
The Fifth Metaheuristics International Conference,
2003.

[9] E.P.K. Tsang. Foundations of Constraint Sat-
isfaction. Academic Press, London and San
Diego, Out of print; available for download at
http://www.bracil.net/edward/FCS.html, 1993.

