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Abstract

Currently a large percentage of Internet traf£c con-
sists of music £les, typically stored in MP3 com-
pressed audio format, shared and exchanged over
Peer-to-Peer (P2P) networks. Searching for music is
performed by specifying keywords and naive string
matching techniques. In the past years the emerging
research area of Music Information Retrieval (MIR)
has produced a variety of new ways of looking at the
problem of music search. Such MIR techniques can
signi£cantly enhance the ways user search for music
over P2P networks. In order for that to happen there
are two main challenges that need to be addressed: 1)
scalability to large collections and number of peers, 2)
richer set of search semantics that can support MIR
especially when retrieval is content-based. In this
paper, we describe a scalable P2P system that uses
Rendezvous Points (RPs) for music metadata regis-
tration and query resolution, that supports attribute-
value search semantics as well as content-based re-
trieval. The performance of the system has been eval-
uated in large scale usage scenarios using “real” au-
tomatically calculated musical content descriptors.

1 Introduction

One could argue that both the ideas of Music Information
Retrieval (MIR) and Peer-to-Peer networks (P2P) essentially
started with Napster (http://www.napster.com). Al-
though crude both in terms of search capabilities and in terms
of P2P performance, Napster for the £rst time provided an ex-
ample of sharing large amounts of musical data over large ad-
hoc networks. Despite this early connection there has not been
much progress in combining these two areas. Although bet-
ter P2P paradigms have been proposed, searching for music is
currently still performed using traditional keyword-based text
search. While a variety of novel ways of searching and retriev-
ing music, especially in audio format, have been proposed, they
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haven’t found their way into P2P networks and remain largely
academic exercises.

There are many advantages to P2P networks such as distributed
computing and storage power, low bandwidth, fault-tolerance
and reliability. Although because of copyright restrictions ma-
jor recording labels have been reluctant to follow this paradigm
the emergence of audio £ngerprinting technology Haitsma and
Kalker (2002) is likely going to change this attitude. One of
the greatest potential bene£ts of P2P networks is the ability to
harness the collaborative efforts of users to provide semantic,
subjective and community-based tags to describe musical con-
tent.

Centralized P2P such as Napster, are not robust and may
be vulnerable to Denial-of-Service attacks, since the cen-
tral server forms the system’s single point of failure. Such
a system does not scale well as registration and query
load increases. Distributed P2P systems, such as Gnutella
(http://www.gnutella.org) and KaZaA (http://
www.kazaa.com), are more robust, but since peers do not ex-
plicitly register their shared £les, a query may have to be broad-
cast throughout the network to get resolved. The potentially
large number of messages involved limits the system’s scala-
bility and performance. Distributed Hash Table (DHT) based
systems, such as the ones described in Stoica et al. (2001); Row-
stron and Druschel (2001), achieve good scalability by deploy-
ing a structured overlay P2P network that supports ef£cient con-
tent location. However, the basic set of applications built on top
of DHT, only supports exact £le name look up and does not
allow the rich search semantics desired for MIR.

In this paper, we describe a robust, scalable P2P system that
provides ¤exible search semantics based on attribute-value (AV)
pairs and supports automatic extraction of musical features and
content-based similarity retrieval. The system is shown to per-
form well under realistic loads consisting of features automati-
cally extracted from a large database of audio recordings. The
main contributions of this work are: a general content discov-
ery mechanism that supports exact and similarity search based
on AV-pairs and its evaluation using a speci£c set of audio fea-
tures computed on actual audio recordings. We believe that
the proposed system provides the necessary ¤exibility and per-
formance for effective use of Music Information Retrieval for
searching in Peer-to-Peer networks.



2 Related Work

The main focus of this work is the retrieval of music in audio
format over P2P networks. There is a lot of recent exciting
work in MIR that is relevant to the design of our system and we
review some representative publications. Although this paper
mainly describes similarity retrieval, the underlying framework
of features and distance calculations forms the basis of a vari-
ety of audio analysis algorithms such as: musical genre clas-
si£cation (Tzanetakis and Cook (2002); Aucouturier and Pa-
chet (2003)), beat detection and analysis (Foote and Mathew
(2002)), similarity retrieval (Logan and Salomon (2001); Au-
couturier and Pachet (2002) Yang (2002)), audio £ngerprinting
(Haitsma and Kalker (2002)) and clustering and visualization
(Rauber et al. (2002)). In addition to features computed from
automatic analysis of audio content, features computed based
on text analysis of critics reviews as well as P2P usage patterns
have been shown to be effective for classi£cation in Whitman
and Smaragdis (2002). These articles are representative of each
category. A general overview of the current status in MIR and
an extensive bibliography can be found in Futrelle and Downie
(2002). Another good overview of the current state of the art
and challenges in MIR is Pachet (2003).

DHT-based systems such as Stoica et al. (2001); Rowstron
and Druschel (2001) solve some of the scalability prob-
lems of the more well known broadcast-based systems such
as Gnutella (http://www.gnutella.org) and KaZaA
(http://www.kazaa.com). The Content Discovery Sys-
tem (CDS) proposed in this paper is built on top of such a DHT-
based system. The idea of using MIR over a P2P was proposed
in Wang et al. (2002). However the proposed system architec-
tures suffer from scalability problems and only the retrieval of
symbolic data is examined. The potential of integrating MIR
and the evolving semantic web was explored in Baumann and
Kluter (2002). More recently content-based retrieval over a
P2P network using the JXTA programming framework was pre-
sented in Baumann (2003). The proposed system mainly is con-
cerned with integrating feature representations into the P2P sys-
tem rather than using the structure of the network to support ex-
act and similarity search. An initial description of the system
presented in this paper can be found in Gao et al. (2003). The
main differences of this paper from previous work is the scal-
able and ef£cient support for both exact and similarity search-
ing based on Rendezvous Points and the performance evaluation
of using audio features computed from actual audio recordings
rather than simulated synthetic data.

3 System Overview

Following recent work in P2P networks, our system decouples
the process of locating content from the process of download-
ing it. Each node in the network not only stores music £les for
sharing but also information about the location of other music
£les in the network. Therefore when the user submits a search
to the P2P system, the system returns a set of peers from which
the music £les that satisfy the search criteria can then be down-
loaded. Each £le in the system is described by a Music File
Description (MFD) which essentially is a set of attribute-value
(AV) pairs. For example a possible MFD might be the follow-
ing: {artist = U2, album = Rattle and Hum, song = Desire, ...,
specCentroid= 0.65, mfcc2 = 0.85, ...}. Notice that the descrip-
tion contains both attributes that can be manually speci£ed by
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Figure 1: Software architecture on a peer node.

the user as well as automatically extracted features for describ-
ing musical content (underlined). The Music Feature Extraction
Engine (MFEE) is the component that calculates these features
from the audio £les. These automatically extracted features in
addition to being used for content-based similarity search can
also be used for various other types of audio analysis such as
musical genre classi£cation.

There are two operations that are supported by the system and
both take MFDs as arguments. In registration, a new music £le
is made available for sharing and its associated MFD is regis-
tered to the P2P system. During searching, the user query is
converted into an appropriate MFD which is then used to locate
the nodes that contain £les that match the search criteria. Once
the nodes are located they are contacted directly to start the ac-
tual downloading for the £le. The main concern in the design
of our system is the ef£cient content discovery rather than the
actual downloading mechanism.

Figure 1 shows the software architecture on each peer node.
The MFD of either registration or search query is passed to the
Content Discovery System (CDS), which runs on top of a Dis-
tributed Hash Table (DHT) based P2P system, such as Chord
Stoica et al. (2001). In a DHT, each peer is responsible for a
region, represented with a node ID, in a contiguous m-bit vir-
tual address space. A data item such as a £le name, is associ-
ated with some value in this address space, e.g., by applying a
uniform hash function to the data item, and stored on the peer
whose region covers the value. Correspondingly, by applying
the same computation to the data item, a peer can locate it from
the same peer who stores it. We present the algorithm used by
the CDS to distribute MFDs to peers in Section 5. The underly-
ing mechanism of DHT ensures routing and message forward-
ing ef£ciency in such a system: in Chord, a peer only needs to
keep information about O(log Nc) neighboring peers, and the
number of overlay hops between two peers is O(log Nc), where
Nc is the total number of peers in the system. Each peer main-
tains a local MFD database to store the MFDs it is assigned by
the CDS. Upon the arrival of a query, each peer examines its
local MFD database and returns the set of MFDs that match the
query to the query initiator. Subsequently, the query initiator
can download the actual music £le from the peer that owns the
music.



4 Music Feature Extraction

The MFEE component takes as input an audio £le in either
PCM (pulse code modulated) or compressed format, such as
MP3, the MPEG audio compression standard, and outputs a
feature vector, also known as the content-based vector, of AV-
pairs that characterizes the particular musical content of the £le.
In our system, we use the feature set proposed in Tzanetakis
and Cook (2002) for the purpose of musical genre classi£ca-
tion. This feature vector captures aspects of instrumentation
and sound texture (what instruments are playing and their den-
sity distribution over time), rhythm (fast-slow, strong-weak),
and pitch content (harmony) and has been shown to be an ef-
fective representation for the purposes of classi£cation and re-
trieval of music. More speci£cally, features based on the Short
Time Fourier Transform as well as Mel-Frequency Cepstral Co-
ef£cients are used to represent sound texture, and features based
on Beat and Pitch Histograms are used to represent rhythm and
pitch content. More speci£cally, the means and variances of
the Spectral Centroid, Rolloff, Flux and ZeroCrossings and the
£rst 5 Mel Frequery Cepstral Coef£cients (MFCC) over a 1
second texture window using 20 millisecond window are cal-
culated for representing Spectral Texture. For the Beat His-
togram calculation a Discrete Wavelet Transform £lterbank is
applied and autocorrelation-based envelope periodicity detec-
tion is performed. For the Pitch Histogram calculation the mul-
tiple pitch detection algorithm described in Tolonen and Kar-
jalainen (2000) is used. The different types of information rep-
resented by the feature vector combined with the query ¤exi-
bility of the system supports a rich variety of possible query
speci£cations. For example, a user can search only on the basis
of rhythmic content while ignoring other aspects.

We use standard linear quantization and normalization to trans-
form the dynamic ranges of the continuous features into dis-
crete values necessary for searching based on AV-pairs. Linear
quantization was chosen so that the statistics of the distribu-
tion of the features do not change. In our system, each feature
is quantized to 100x1 discrete values. Experiments comparing
automatic classi£cation of the original continuous features and
the quantized features showed no signi£cant differences in the
results. Using the features and dataset (10 genres) described in
Tzanetakis and Cook (2002) and a Gaussian classi£er we obtain
57.5% accuracy using the unquantized features and 58% accu-
racy using the quantized version. The results of the MFEE com-
ponent together with manually annotated metadata such as artist
and album name are combined to form a Music File Descrip-
tion (MFD), which is a collection of AV-pairs. As an example,
MFD1 : {a1 = v1, ..., an = vn} consists of n AV-pairs, where
ai, i = 1..n can be either a manually annotated attribute or a
content-based feature attribute. For specifying queries, MFDs
are similarly formed to represent the search criteria. In particu-
lar, the MFEE is used to generate a query MFD when the user
provides a sample piece of music. Any subset of the MFD can
be used for query speci£cation and using named AV-pairs in
MFDs allows more possibilities than traditional keyword-based
search. Some examples of possible queries of increasing com-
plexity are the following:

• Search for {artist = U2}

• Search for {artist = U2, year = 1985, tempo = 80 beats-
per-minute (BPM) - 100 BPM }

• Search for { 10 most similar to x.mp3} (content-based sim-
ilarity search)

• Search for { 10 most similar to x.mp3, artist = U2}

These are just a symbolic representations of queries. In an ac-
tual implementation a variety of user interfaces for query spec-
i£cation would be provided by the system (for examples see
Tzanetakis et al. (2002)). For queries with content-based parts
such as the last two ones, the audio £le, x.mp3, is £rst con-
verted using the MFEE to numerical features that describe mu-
sical content which are subsequently used for similarity search.
This mechanism allows any audio £le to be used in the system
even if it doesn’t have any metadata information associated with
it (for example a £le recorded off a radio broadcast).
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Figure 2: Illustration example of Content Discovery System

5 Scalable Content Discovery

Unlike centralized systems where £les are registered at a single
place or broadcast-based systems where a query may potentially
be sent to all peers in the system, CDS uses a scalable approach
based on Rendezvous Points (RPs) for registration and query
resolution. Essentially the P2P network is structured to ef£-
ciently represent the space of AV-pairs for search and retrieval.

5.1 MFD registration

To register an MFD, the CDS applies a uniform hash function
H such as SHA-1 to each AV-pair in the MFD to obtain n node
IDs: H(ai = vi) → Ni, i = 1..n, where Ni is the ID of a peer
in the system. The MFD is then sent to each of these peers,
and this set of peers is known as the Rendezvous Points(RP) set
for this MFD. Upon receiving an MFD, the peer inserts it into
its database. Hence each peer is responsible for the AV-pairs
that are mapped onto it. For example, node N1 will receive
all MFDs that contain {a1 = v1}. Figure 2 shows a made-
up small scale example of how the system works. The MFD
is 2-dimensional with the horizontal coordinate corresponding
to the £rst attribute and the vertical coordinate corresponding
to the second attribute. This is only done for illustration pur-
poses. The actual system can handle multidimensional data as



well. One can visually observe the distribution of the MFD
(a,b,c,d,e,f) and how they are assigned to nodes such as N[x=3].
Basically in two dimensions each node is responsible for a row
or a column of the attribute-value grid. Obviously, this results
in signi£cant overlap between the entries of the local databases
on each node something which enhances the robustness of the
system. Even in this contrived example it can be seen that the
load on each node depends on the distribution of speci£c AV
pairs such as x=3. This issue is addressed by the load balancing
scheme described in Sect. 5.3.

Since the number of AV-pairs in an MFD is typically small (e.g.,
< 50), the size of the RP set for an MFD is small and registra-
tions can be done ef£ciently. Different MFDs will have different
corresponding RP sets, which naturally separates the system’s
registration load. Registering each AV-pair of an MFD individ-
ually allows the MFD to be searched using any subset of its
AV-pairs which important to allow the rich set of possible query
semantic we desire for MIR.

5.2 MFD searching

We classify searches conducted by a user into two categories:
exact searches and similarity searches. In an exact search, the
user is looking for MFDs that match all the AV-pairs speci£ed
in the query simultaneously, and any extra AV-pairs that may
be in the MFDs but not in the query are ignored. Suppose
the query is Q : {a1 = v1, ..., am = vm}. Since the MFDs
that match Q are registered at RP peers N1 through Nm, where
Ni = H(ai = vi), the CDS can send a single query message to
any of these m peers to have the query fully resolved. For ef£-
cient resolution, the CDS chooses the peer that has the smallest
MFD database. Once a query is received, the peer conducts a
pairwise comparison between the query and all the entries in
its database to £nd the matching MFDs. An example may be
{artist = U2, year = 1985, tempo = 100 bpm (beats per minute)
}, which means the matched MFD must have the above three
AV-pairs in their description. Most likely the node that contains
the locations of all U2 songs will have the smallest local MFD
database so it will be contacted and locally searched for MFDs
with the correct year and tempo.

To further illustrate this process, in Figure 2, the query
q0 : {y = 2} will go to the corresponding node N[y=2]
and directly return the correct answer {a,e}. The query
q1 : {x = 3 , y = 3} will check the database size of nodes
N[x=3] and N[y=3], select the smallest N[y=3] , and then re-
turn the correct answer {b}. Note that the answer is the location
of the music £le which can then be subsequently downloaded.

In a similarity search, the user is trying to £nd music £les that
have a similar feature vector to what is speci£ed in the query.
Suppose the user has a clip unknown.mp3 with an extracted fea-
ture vector {f1 = v1, ..., fm = vm}, and wants to £nd the 10
songs that are most similar to the clip. Using the same tech-
nique as above, the CDS may select a pair, e.g., {f1 = v1}
and send the query to the peer N(= H(f1 = v1)). This
peer, instead of conducting a pairwise equality test, computes
the “distance” between the query vector and each MFD in its
database. In our current system, Manhattan distance de£ned as
d(f, f ′) = |v1 − v′

1
| + ... + |vm − v′

m
| is used, where vi’s and

v′

i
’s are the values of vector f and f ′ respectively. More sophis-

ticated way of computing distance, such as “cosine distance”
may also be used. The distances are then ranked and the 10
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Figure 3: Popularity distribution of feature attributes.

MFDs that have the smallest distance are returned to the user.

However, sending the query to peer N alone will fail to dis-
cover the MFDs that slightly differ from the query in f1, but
are similar or identical regarding other features, because those
MFDs are not registered with N . This is undesirable especially
when N does not have enough matches. In this case, our system
uses a limited expanding ring search to gather more results: in
addition to N , the query is sent either by N or the query ini-
tiator to peers that correspond to values that are near v1, e.g.,
f1 = v1 ± 1, f1 = v1 ± 2, .... Accordingly, these peers will
carry out the distance computation and return any results. Fig-
ure 2 schematically shows this expanding ring search for query
q2 : {x = 3 , y = 4} as two cocentric circles. Of course it is
also possible to combine exact AV search and content-based
similarity search. This last point is important and directly in-
¤uenced the design of our system. Although it is possible to
use more elaborate data structures for multidimensional nearest
neighbor search (the similarity search) such as KD-trees (Bent-
ley (1975)) and to distribute them over the P2P network these
structures do not directly support searching for arbitrary sub-
sets of AV-pairs as our system does. Supporting such searches
is important for MIR because we would like to combine both
metadata and content-based retrieval in the same query. Finally,
range queries such as {tempo=80-120 bpm} are resolved by is-
suing multiple queries corresponding to the values within the
range. We are experimenting with a more ef£cient multiresolu-
tion approach to range searching where not only values but also
ranges of values are assigned to nodes. That way the number of
nodes that need to be visited in order to resolve a range query is
reduced in O(logL) where L is the length of the range.

5.3 Load balancing

By using Rendezvous Points, network-wide message ¤ooding is
avoided at both registration and query times. However, in prac-
tice, some AV-pairs may be much more common or popular in
MFDs than others. It has been observed that the popularity of
keywords in Gnutella follows a Zipf-like distribution (Sripanid-
kulchai (2001)). Such a distribution will cause a few peers be-
ing overloaded by registrations or queries, while the majority
of peers in the system stay underutilized. Figure 3 shows a



distribution of AV-pairs computed from automatically extracted
musical content features described in more detail in the sec-
tion 6. To improve system’s throughput under skewed load, the
CDS deploys a distributed dynamic load balancing mechanism
described in Gao and Steenkiste (2003), where multiple peers
are used as RP points to share the heavy load incurred by popu-
lar AV-pairs. When an AV-pair appears in many MFDs, instead
of sending all the MFDs to one peer, the system partitions them
among multiple peers. Similarly if there are a large number
of queries for the same AV-pair, the system allows the original
peer who is responsible for this pair to replicate its database at
other peers. As a concrete example some particular AV pair
such as tempo = 100 BPM might be very common. Partitioning
the set of songs that have that particular AV pair among mul-
tiple RP points balances the registration load. Another type of
load which is possibly independent of the registration load is the
popularity of queries for example artist = Madona, year =2003
for a new release that will initially only be registered with a
few RPs. Replicating their information balances the query load.
The partitions and replicas corresponding to one AV-pair are
organized into a two dimensional logical matrix, the Load Bal-
ancing Matrix (LBM), and the matrix automatically expands or
shrinks based on this pair’s current registration and query load.
LBMs help to eliminate hot spots in the system under skewed
load, and the system can maintain high throughput in processing
registrations and queries ( Gao and Steenkiste (2003)).

6 System Evaluation

The MFEE is built using Marsyas (Tzanetakis and Cook
(2000)), a free software framework for audio analysis. We
evaluate our system using an event-driven simulator ( Gao and
Steenkiste (2003)). For our experiments, we set up a P2P net-
work that has 10,000 peers, and each peer is con£gured with
DSL-level link bandwidth (∼ 500Kbps). As MFDs, 30 music
content-based features are used as attributes. They were auto-
matically extracted from 5,000 MP3 £les representing a variety
of genres and styles. Figure 3 shows the log-log plot of the
AV-pair distribution in these £les. There are 2,178 distinct AV-
pairs, and the distribution is highly skewed: the most common
AV-pair (ranked 1) appears in 53% of the MFDs and 41 AV-pairs
only appear in 1 MFD.

For registration workload, we generated 100,000 MFDs by
replicating each of the 5,000 £les 20 times, and assigning them
to random peers. Each peer registers the £les it is assigned with
the system. Due to the skewed feature distribution, registrations
of common AV-pairs result in multiple partitions. For query
load, 100,000 queries were generated following a query popu-
larity Zipf distribution which is independent from the AV-pair
distribution shown above in Figure 3. Each query corresponds
to the features of one particular music £le. This is done in order
to emulate the behavior of a user who submits a music clip and
looks for similar music. The most popular MFD occurs in over
10% of the queries, and the majority of the MFDs only occur
in a few queries. A query’s initiator is randomly picked from
all peers, and for simplicity, only exact matches are returned. A
peer rejects a query and generates a failure when the peer’s link
utilization has reached 100% due to simultaneous queries.

Figure 4 compares the query success rate as a function of query
arrival rate (Poisson arrival) to the system under two scenarios.
In the £rst scenario, when reaching link capacity, a peer sim-
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ply rejects new queries that arrive at it without replicating its
content at other peers. Since for each query the CDS has 30
candidate AV-pairs, query load is spread evenly among peers
even without replication. Therefore the system achieves a high
success rate under high load, e.g., the success rate is 94% for
a query rate of 10, 000q/s(queries/s). However, as load in-
creases further, peers corresponding to popular queries will be
saturated, and the success rate drops quickly. In the second sce-
nario, by using the dynamic replication mechanism, peers who
observe high load will replicate their databases at other peers to
dissipate concentrated query load. As a result, we observe that
with replication, the system can sustain a much higher query
rate while keeping the success rate above 95%.

7 Conclusions

In this paper, we described a scalable, and load-balanced P2P
system that supports a rich set of music search methods. In
particular, our automatic music feature extraction technique
enables sophisticated music content based searches such as
content-based similarity retrieval. The RP-based registration
and query speci£cation scheme ensures system scalability by
avoiding network wide message ¤ooding encountered in cur-
rent P2P systems. We evaluated the system using a realistic
registration load obtained from a large set of music £les. Our
dynamic load balancing mechanism allows the system to main-
tain high throughput under skewed Zipf query load. It is our
hope that the design of our system will inspire additional re-
search in the interesting area of bringing state of the art Mu-
sic Information Retreival algorithms to the increasingly popular
Peer-to-Peer networks. Another important aspect of the pro-
posed system is that new attributes can be incorporated into the
system with minimum effort.

We are currently re£ning the design of our system to handle
range queries more ef£ciently and plan to further evaluate our
system with traces acquired from real users. Further experi-
ments are necessary for a more detailed evaluation of system
performance. In addition, user studies need to be conducted
to explore how the users interact with the system and what are
their typical queries. We are working on implementing a pro-



totype of our system across a medium area (university campus)
LAN to obtain more information about usage patterns and the
performance of the system.

In order to handle different types of range queries we are plan-
ning to explore multi-resolution quantization grids. Another
important direction is the and inclusion and creation of various
query speci£cation user interfaces for specifying the MFDs. Fi-
nally, duplicate copies of the same audio content can be detected
by adapting an audio £ngerprinting scheme such as Haitsma and
Kalker (2002) to work with our P2P system.
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