
Distributed audio feature extraction for music

Stuart Bray
Computer Science Department

University of Victoria
3800 Finnerty Rd

Victoria BC, Canada
sbray@csc.uvic.ca

George Tzanetakis
Computer Science Department (also in Music)

University of Victoria
3800 Finnerty Rd

Victoria BC, Canada
gtzan@cs.uvic.ca

ABSTRACT

One of the important challenges facing music information
retrieval (MIR) of audio signals is scaling analysis algo-
rithms to large collections. Typically, analysis of audio
signals utilizes sophisticated signal processing and ma-
chine learning techniques that require significant compu-
tational resources. Therefore, audio MIR is an area were
computational resources are a significant bottleneck. For
example, the number of pieces utilized in the majority of
existing work in audio MIR is at most a few thousand files.
Computing audio features over thousands files can some-
times take days of processing. In this paper, we describe
how Marsyas-0.2, a free software framework for audio
analysis and synthesis can be used to rapidly implement
efficient distributed audio analysis algorithms. The frame-
work is based on a dataflow architecture which facilitates
partitioning of audio computations over multiple comput-
ers. Experimental results demonstrating the effectiveness
of the proposed approach are presented.

Keywords: distributed processing, dataflow networks,
large-scale music information retrieval

1 INTRODUCTION

Advances in storage capacity, network speed, and audio
compression have made possible the storage of large col-
lections of audio and music on personal computers and
portable devices. Projecting these trends it is likely that
in the near future all of recorded music in human history
will be available digitally. In the last few years, there has
been a number of publications exploring ways of analyz-
ing audio signals for music information retrieval (MIR)
applications.

Developing audio and music analysis systems is chal-
lenging. Existing algorithms for extracting content infor-
mation from music tend to use sophisticated signal pro-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

cessing and machine learning techniques which require
signficant computational resources. Audio signal pro-
cessing for music signals utilizes computationally inten-
sive time-frequency analysis techniques such as the short
time Fourier transform, wavelets and auditory filterbanks.
Moreover, machine learning algorithms such as Support
Vector Machines (SVMs) and Artificial Neural Networks
(ANNs) require large amounts of training data in order to
build reliable classifiers that generalize well. Currently
developers of audio analysis applications are faced with
a hard dilemma. They can use an interpreted program-
ming environment such as Matlab that provides a lot of
the necessary components for building audio analysis ap-
plications but is not as efficient as compiled code, or write
the code from scratch which requires a significant invest-
ment of time just to build the necessary infrastructure.
Distributed computation can be used to speed up com-
putations and deal with the large data sets required for
the analysis of audio signals. Existing mechanisms for
parallelizing computer programs are designed for general
programming tasks and tend to be complicated and hard
to use. Therefore in audio analysis typically distributed
computing is not used at all or when it is used it is tailored
to very specific projects.

In this paper, we describe howMarsyas-0.2, a
dataflow-based audio analysis and synthesis framework
can be used for rapid prototyping and developing of dis-
tributed audio analysis systems. Although audio analy-
sis is a challenging application domain, it provides some
domain-specific constraints that can inform the design
of an effective framework. UsingMarsyas-0.2, music
analysis systems are assembled from component using a
dataflow-based approach. An important advantage of the
dataflow approach proposed in this work is that it sim-
plifies distributing audio and music analysis computation
among various computers. The dataflow model empha-
sizes the parallel computational structure of a particular
problem. Using a declarative dataflow specification ap-
proach the programmer can distribute audio analysis al-
gorithms with minimum effort. In contrast, distributing
traditional sequential programs places a significant burden
to the programmer who has to decide which parts of the
code can be parallelized and deal with load distribution,
scheduling, synchronization and communication.



2 RELATED WORK

Dataflow programming has a long history. The origi-
nal (and still valid) motivation for reasearch into dataflow
was to take advantage of parallelism. Motivated by criti-
cisms of the classical von Neumann hardware architecture
dataflow architectures for hardware were proposed as an
alternative in the 1970s and 1980s. During the same pe-
riod a number of textual dataflow languages such as Lu-
cid (Wadge and Ashcroft, 1985) were proposed. During
the 1990s there was a new direction of growth in the field
of dataflow visual programming languages especially in
specific application domains. Succesful commercial ex-
amples include Labview1 and SimuLink2. A recent com-
prehensive review of the history of dataflow programming
languages can be found by Johnston et al. (2004). A recent
trend is to view dataflow computation as a software engi-
neering methodology for building systems using existing
languages (Manolescu, 1997). A small scale case study
of distributed music analysis using the Geddei processing
framework is described by Wood and Keefe (2004). The
description of a large scale evaluation of different acous-
tic measures of similarity is provided by Berenzeig et al.
(2003). A similar dataflow approach to audio processing
is utilized in CLAM (Amatriain, 2005). More recently the
M2K/D2K dataflow framework (Downie et al., 2004) has
been used for evaluation of MIR systems. The Max/MSP3

dataflow visual programming language has also been used
extensively in computer music.

3 DATAFLOW ARCHITECTURE

Marsyas-0.24 is a software framework, written in C++,
for rapid prototyping and experimentation with audio
analysis and synthesis with specific emphasis on process-
ing music signals. A variety of existing building blocks
that form the basis of many published algorithms are pro-
vided as dataflow components that can be composed to
form more complicated algorithms (black-box functional-
ity). In addition, it is straightforward to extend the frame-
work with new building blocks (white-box functionality).

In Marsyasterminology the processing nodes of the
dataflow network are calledMarSystemsand provide the
basic building blocks out of which more complicated sys-
tems are built. Existing components include: I/O (au-
dio files, Matlab, audio playback and recording), feature
extraction (short-time Fourier transform, wavelets, mel-
frequency cepstral coefficients), synthesis (wavetable,
phasevocoder) and machine learning classifiers. cluster-
ing). Similarly to CLAM (Amatriain, 2005),Marsyas-0.2
makes a clear distinction between data-flow which is syn-
chronous and control-flow which is asynchronous. Be-
causeMarsyas-0.2has synchronous dataflow (i.e at every
“tick” a specific data slice is propagated across the entire
network) there is no need for queues between nodes and
shared buffers can be used for better performance (simi-
larly to Univ pipes).

1http://www.ni.com/labview/
2http://www.mathworks.com/products/

simulink/
3http://www.cycling74.com
4http://marsyas.sourceforge.net

Figure 1: Marsyas-0.2 Visual Patch Builder

Figure 2: Feature Extraction Network for real-time Mu-
sic/Speech classification

MarSystemscan be instantiated at run-time. There-
fore any complicated audio computation expressed as a
dataflow network can be instantiated at run-time. For ex-
ample multiple instances of any complicated network can
be created as easily as the basic primitiveMarSystems.
This is accomplished by using thePrototypeandCompos-
ite design patterns (Gamma et al., 1995). Currently there
are three ways to build audio analysis and applications in
Marsyas-0.2. The first is the traditional method of writing
directly C++ code and compiling an executable. The sec-
ond is based on a simple scripting language that provides
syntactic constructs for building the dataflow network, set-
ting appropriately the controls and moving sound through
the network. The third way is to use a visual patch builder
which uses the scripting language “under the hood”.

Figure 1 shows the visual patchbuilder that can be
used for specifying dataflow networks and controls. Fig-
ure 2 shows a dataflow network for extracting audio fea-
tures for real-time music/speech classification. The en-
tire network can be created at run-time without requiring
any code compilation. The feature extraction front-end of
Tzanetakis and Cook (2002), has been implemented as a
dataflow network inMarsyas-0.2.



3.1 Distributed audio computation

There are two standard data communication protocols
used on the Internet: transmission control protocol (TCP),
and user datagram protocol (UDP). TCP provides reliabil-
ity mechanisms to ensure that all packets are received ex-
actly as they are sent; on the other hand, UDP provides no
such mechanisms but is sigificantly faster due to less over-
head. UDP is therefore the protocol of choice for real-time
streaming applications where data is time critical.

Marsyas-0.2supports both the UDP and TCP proto-
cols. In order to send data to another machine, a “network
sink” object is simply inserted somewhere in the flow of a
MarSystem. In order to receive data, a “network source”
object is inserted. Control flow and data flow are man-
aged seperately so that controls can be changed from the
sender and propagate through the system. The idea is that
a user can operate several worker machines and the view
of the distributed system is abstracted as one large com-
positeMarSystem.

4 EXPERIMENTS

Audio features can be calculated either in realtime using
UDP, or non-real time using TCP. One of the main goals
of our experimentation was to demonstrate the cost ben-
efits of parallelization accross multiple computers; thus,
we used TCP and non-realtime feature extraction. For all
the experiments a feature vector consisting of the means
and variances of smoothed Mel-frequency Cepstral Coef-
ficients as well as STFT-based features such as spectral
centroid and rolloff was used. The data consists of 30-
second audio clips and a 35-dimensional feature vector is
calculated for each clip. The actual audio waveform sam-
ples are transmitted over the network.

4.1 Optimal Vector Size

File transfer throughput using TCP is highly affected by
the size of the packet generated at the application layer.
Requests that are larger than the TCP Maximum Segment
Size (MSS) get buffered and partitioned in the transport
layer; this can be costly. Additional overhead can come
from several sources, some of which are the handling
of out-of-order segments, retransmissions, and checksum
calculations. A detailed analysis of the segmentation cost
is beyond the scope of this paper, but is well documented
and available from other sources.

Our experimentation was done on a 100Base-T Eth-
ernet local area network of Apple G5 computers, where
the MSS is 1460 bytes. Although the details of TCP are
largely implementation specific, typically segments that
are smaller than the MSS will be sent immediately. Con-
sequently, we found that the optimal vector size to use
would be as close to the MSS as possible, as shown in fig-
ure 3. From the graph you will also note the significant
measured cost increase of over-stepping the boundary of
the MSS. The cost increase when smaller packets are used
is likely due to sending more packets than necessary, in-
volving extra processing in all layers of TCP/IP, and satu-
ration on the network.

Figure 3: Optimal Vector Sizes for Maximum Throughput

4.2 Parallelization of Feature Extraction

In this section we demonstrate our results from paralleliz-
ing audio computation across multiple computers using
the data-flow architecture of Marsyas 0.2. The model in-
volves a dispatcher node that sends seperate clips from an
audio collection to each worker node in the network. The
job of a worker node is to simply calculate features for
each file it receives and then send the results to a collector
process (possibly running on the same machine as the dis-
patcher) that gathers the results. In our first experiment,
the audio collection was partitioned into sub-collections
which were sent to each worker. All the audio clips are
stored on the dispatcher. We found that the optimal num-
ber of worker nodes in this model was three, after which
there was no time benefit of using extra machines. In fact,
it was costly to add any more than five worker nodes due to
the network capacity of the dispatcher / collector. Later in
this section it is shown that collection partitioning across
multiple dispatchers can improve results. Table 1 shows
results of using the collection dispatcher model, using up
to five worker nodes and audio collections of up to 10,000
files. The format is hours:minutes:seconds.

Table 1: Parallelization results for Collection Dispatcher

10 100 1000 10000
Local 00:05 00:58 09:39 1:36:49
1W 00:07 01:10 11:48 1:58:49
2W 00:03 00:38 06:01 1:10:46
3W 00:04 00:34 05:49 59:46
4W 00:03 00:34 05:52 1:04:56
5W 00:04 00:36 05:54 1:08:36

The problem with the first approach is that some nodes
may complete processing the features of their respective
sub-collection before others, sitting idle. Thus the time
it takes to process the entire audio collection is dependent
on the slowest node in the system. In order to alleviate this
problem and make use of idle nodes, an adaptive approach
is used where the dispatcher sends data as necessary to
each worker. That way, each node in the system is work-



Table 2: Parallelization results for Adaptive Dispatcher

10 100 1000 10000
Local 00:05 00:58 09:39 1:36:49
1W 00:07 01:10 11:48 1:58:49
2W 00:04 00:40 06:21 1:02
3W 00:03 00:33 05:33 57:10
4W 00:03 00:31 05:24 54:20
5W 00:03 00:31 05:25 54:15

Figure 4: Comparison of each Dispatcher Model

ing until the dispatcher has finished processing the files in
the collection. Table 2 shows the increase in performance
based on this approach.

4.3 Data Partitioning and Multiple Dispatchers

When using one dispatcher the bottleneck is the the net-
work capacity of the Ethernet card on the dispatcher. To
demonstrate this fact we decided to partition the audio
collection across two dispatchers, essentially doubling the
network capacity. In this model four worker nodes are still
used, as well as a seperate collector node whose only job
was to gather the feature results from each worker. As
expected, the time it took to process the same size audio
collection was cut in half. In figure 4 we show the results
of processing features on an audio collection of 10,000
files, using four worker nodes for each type of dispatcher.
Theoretically this model can be further improved by par-
titioning the data across even more dispatchers in an hier-
archical fashion.

4.4 Large Scale Experimentation

Typically feature extraction tests run on audio collections
of around 10,000 files. Based on our results we expect
a linear trend as collection sizes increase. To test that
hypothesis a large-scale test using the data-partitioning
model with the adaptive dispatcher was conducted on
100,000 files. As expected, it took approximately ten
times the amount of time to complete the 100,000 file test
as it took to complete the 10,000 file test (5:00:44).

5 CONCLUSIONS-FUTURE WORK

Distributed audio feature extraction using the dataflow ap-
proach exemplified byMarsyas-0.2can result in signif-
icant savings in computation time without significantly
burdening the programmer. Experimental results show
that using 5 computers we can perform audio feature ex-
traction for 100,000 30-second clips in 5 hours.

There are many directions of future work. More
computationally-intensive feature front-ends such as au-
ditory filterbanks can also be distributed. In many appli-
cations audio feature extraction is followed by machine
learning. We are conducting experiments in distributed
machine learning and it’s integration with feature extrac-
tion. The ability to scale to large datasets in reasonable
amounts of time will enable us to perform detailed ad-
justing of parameters without risking overfitting. We are
also exploring the use of multi-threaded collectors and
dispatchers to take advantage of mutiple-cpu and multi-
core workstations.

ACKNOWLEDGEMENTS

Our thanks to Yvonne Coady and Dan Hoffman for their
help with the networking and system aspects of this work.

References

X. Amatriain. An Object-Oriented Metamodel for Digital
Signal Processing with a focus on Audio and Music.
PhD thesis, Univ. of Pompeu Fabra, 2005.

A. Berenzeig, B. Logan, D. Ellis, and B. Whitman. A
large scale evaluation of acoustic and subjective music
similarity measures. InProc. Int. Conf. on Music Infor-
maiton Retrieval (ISMIR), Baltimore, USA, 2003.

J.S. Downie, J. Futrelle, and D. Tcheng. The int. music in-
formation retrieval system evaluation laboratory: Gov-
ernance, access, and security. InInt. Conf. on Music
Information Retrieval (ISMIR), Spain, 2004.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, 1995.

W. Johnston, J.R. Paul Hanna, and R.J. Millar. Advances
in dataflow programming languages.ACM Computing
Surveys, 36(1):1–34, March 2004.

D. Manolescu. A data flow pattern language. InPro-
ceedings of the 4th Pattern Languages of Programming,
Monticello, Illinois, September 1997.

G. Tzanetakis and P. Cook. Musical Genre Classification
of Audio Signals. IEEE Trans. on Speech and Audio
Processing, 10(5), July 2002.

W. Wadge and E.A. Ashcroft.Lucid, the dataflow pro-
gramming language. APIC Studies in Data Processing.
Academic Press, New York, NY, 1985.

G. Wood and S. Keefe. A case study of distributed mu-
sic analysis using the geddei processing framework. In
Proc. Int. Conf. on Music Information Retrieval (IS-
MIR), pages 275–276, Barcolona, Spain, 2004.


