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ABSTRACT

The identification of the instruments playing in a poly-
phonic music signal is an important and unsolved prob-
lem in Music Information Retrieval. In this paper, we pro-
pose a framework for the sound source separation and tim-
bre classification of polyphonic, multi-instrumental music
signals. The sound source separation method is inspired
by ideas from Computational Auditory Scene Analysis
and formulated as a graph partitioning problem. It uti-
lizes a sinusoidal analysis front-end and makes use of the
normalized cut, applied as a global criterion for segment-
ing graphs. Timbre models for six musical instruments are
used for the classification of the resulting sound sources.
The proposed framework is evaluated on a dataset con-
sisting of mixtures of a variable number of simultaneous
pitches and instruments, up to a maximum of four concur-
rent notes. The overall instrument classification success
rate is of 47%.

1 INTRODUCTION

The increasing quantity of music titles available in dig-
ital format added to the huge amount of personal music
storage capacity available today has resulted in a growing
demand for more efficient and automatic means of index-
ing, searching and retrieving music content. The computer
identification of the instruments playing in a music signal
can assist the automatic labeling and retrieval of music.

Several studies have been made on the recognition of
musical instruments on isolated notes or in melodies played
by a single instrument. A comprehensive review of those
techniques can be found in [1]. However, the recogni-
tion of musical instruments in multi-instrumental, poly-
phonic music is much more complex and presents addi-
tional challenges. The main challenge stands from the
fact that tones from performing instruments can overlap
in time and frequency. Therefore, most of the isolated
note recognition techniques that have been proposed in
the literature are inappropriate for polyphonic music sig-
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Figure 1. System diagram block.

nals. Some of the proposed techniques for the instru-
ment recognition on polyphonic signals consider the en-
tire audio mixture, avoiding any prior source separation
[2, 3]. Other approaches are based on the separation of
the playing sources, requiring the prior knowledge or es-
timation of the pitches of the different notes [4, 5]. How-
ever, robustly extracting the fundamental frequencies in
such multiple pitch scenarios is difficult.

In this paper, we propose a framework for timbre clas-
sification of polyphonic, multi-instrumental music signals
using automatically separated sound sources. Figure 1
presents a block-diagram of the complete system. It starts
by taking a single-channel audio signal and uses a sinu-
soidal analysis front-end for estimating the most promi-
nent spectral peaks over time. The detected spectral peaks
are then grouped into clusters according to cues inspired
from Computational Auditory Scene Analysis (i.e. fre-
quency, amplitude and harmonic proximity) and formu-
lated as a graph partitioning problem. The normalized cut,
a technique from the Computer Vision field, is then used
as a global criterion for segmenting graphs. Contrary to
other approaches [6, 7], this source separation technique
does not require any prior knowledge or pitch estimation.

As demonstrated in previous works by the authors [8,
9] and later in section 4, the resulting clusters capture rea-
sonably well the underlying sound sources and events (i.e.
notes, in the case of music signals) present in the audio
mixture. After the sound source separation stage, each
identified cluster is matched to a collection of six timbre
models namely piano, oboe, clarinet, trumpet, violin and
alto sax. These models are a compact description of the
spectral envelope and its evolution in time, and were pre-



viously trained using isolated note audio recordings. The
design of the models, as well as their application to iso-
lated note classification, were described in [10].

The outline of the paper is as follows. In section 2
we describe the sound source separation technique, which
starts from a sinusoidal representation of the signal fol-
lowed by the application of the normalized cut for source
separation. In section 3 we briefly describe the training of
the timbre models and focus on the matching procedure
used to classify the separated clusters. We then evaluate
the system performance in section 4 and close with some
final conclusions.

2 SOUND SOURCE SEPARATION

Computational Auditory Scene Analysis (CASA) systems
aim at identifying perceived sound sources (e.g. notes in
the case of music recordings) and grouping them into au-
ditory streams using psycho-acoustical cues [11]. How-
ever, as remarked in [6] the precedence rules and the rel-
evance of each of those cues with respect to a given prac-
tical task is hard to assess. Our goal is to use a flexible
framework where these perceptual cues can be expressed
in terms of similarity between time-frequency components.
The separation task is then carried out by clustering com-
ponents which are close in the similarity space, see Figure
2. Once identified, those clusters will be matched to tim-
bre models in order to perform the instrument identifica-
tion task.

2.1 Sinusoidal Modeling

Most CASA approaches consider auditory filterbanks and/or
correlograms as their front-end [12]. In these approaches
the number of time-frequency components is relatively
small. However closely-spaced components within the
same critical band are hard to separate. Other approaches
[6, 13, 14] consider the Fourier Spectrum as their front-
end. In these approaches, in order to obtain sufficient fre-
quency resolution a large number of components is re-
quired. Components within the same frequency region
can be pre-clustered together according to a stability crite-
rion computed using statistics over the considered region.
However, this approach has the drawback of introducing
another clustering step, and opens the issue of choosing
the right descriptors for those pre-clusters. Alternatively, a
sinusoidal front-end is helpful to provide meaningful and
precise information about the auditory scene while con-
sidering only a limited number of components, and is the
representation we consider in this work.

Sinusoidal modeling aims to represent a sound signal
as a sum of sinusoids characterized by amplitudes, fre-
quencies, and phases. A common approach is to segment
the signal into successive frames of small duration so that
the stationarity assumption is met. For each frame a set of
sinusoidal components is estimated.

The discrete signal xk(n) at frame index k is then mod-

Spectral Peaks

Sinusoidal 
Analysis

Cluster Selection

Similarity 
Computation

Normalized Cut

Sinusoidal 
Synthesis

Figure 2. Block-Diagram of the Sound Source Separation
algorithm.

eled as follows:

xk(n) =
Lk∑
l=1

ak
l cos

(
2π
Fs

fk
l · n+ φk

l

)
(1)

where Fs is the sampling frequency and φk
l is the phase

at the beginning of the frame of the l-th component of Lk

sine waves. The fl and al are the frequency and the ampli-
tude of the l-th sine wave, respectively, both of which are
considered as constant within the frame. For each frame k,
a set of sinusoidal parameters Sk = {pk

1 , · · · , pk
Lk} is es-

timated. The system parameters of this Short-Term Sinu-
soidal (STS) model Sk are theLk triplets pk

l = {fk
l , a

k
l , φ

k
l },

often called peaks.

2.2 Spectral Clustering

In order to simultaneously optimize partial tracking and
source formation, we construct a graph over the entire du-
ration of the sound mixture. Unlike approaches based on
local information [15], we utilize the global normalized
cut criterion to partition the graph (spectral clustering).
This criterion has been successfully used for image and
video segmentation [16]. In our perspective, each parti-
tion is a set of peaks that are grouped together such that
the similarity within the partition is minimized and the dis-
similarity between different partitions is maximized. By
appropriately defining the similarity between peaks a va-
riety of perceptual grouping cues can be used.

The edge weight connecting two peaks pk
l and pk′

l′ (k
is the frame index and l is the peak index) depends on the
proximity of frequency, amplitude and harmonicity:

W (pk
l , p

k′
l′ ) = Wf (pk

l , p
k′
l′ ) ·Wa(pk

l , p
k′
l′ ) ·Wh(pk

l , p
k′
l′ )
(2)

where Wx are typically radial basis functions of distance
among the two peaks in the x axis. For more details see
[8, 9].

Most existing approaches that apply the Ncut algorithm
to audio [13, 14] consider the clustering of components
over one analysis frame only. However, the time integra-
tion (partial tracking) is as important as the frequency one
(source formation) and should be carried out at the same
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Figure 3. Resulting sound source formation clusters for
two notes played by a piano and an oboe (E4 and B4,
respectively).

time. We therefore consider the sinusoidal components
extracted within the entire mixture as proposed in [8]. We
considered a maximum of 20 sinusoids per frame which
are 20 ms long.

Figure 3 depicts the result of the sound source separa-
tion using the normalized cut for a single-channel audio
signal with mixture of two notes (E4 and B4 1 , same on-
set, played by a piano and an oboe, respectively). Each dot
corresponds to a peak in the time-frequency space and the
different coloring reflects the cluster to which it belongs
(i.e. its source).

3 TIMBRE IDENTIFICATION

3.1 Timbre Models

Once each single-note cluster of sinusoidal parameters has
been extracted, it is classified into an instrument from a
predefined set of six: piano (p), oboe (o), clarinet (c),
trumpet (t), violin (v) and alto sax (s). The method models
each instrument as a set of time-frequency templates, one
for each instrument. The template describes the typical
evolution in time of the spectral envelope of a note. The
spectral envelope is an appropriate representation to gen-
erate features to analyze sounds described by sinusoidal
modeling, since it matches the salient peaks of the spec-
trum, i.e., the amplitudes alk of the partials.

The training process consists of arranging the training
dataset as a time-frequency matrix X(g, k) of sizeG×K,
where g is the frequency bin index and k is the frame in-
dex, and performing spectral basis decomposition upon it
using Principal Component Analysis (PCA). This yields a
factorization of the form X = BC, where the columns of
theG×Gmatrix B are a set of spectral basis sorted in de-
creasing order of contribution to the total variance, and C
is the G×K matrix of projected coefficients. By keeping

1 Throughout this paper we use the convention A4 = 440Hz.
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Figure 4. Examples of prototype envelopes for a range of
one octave.

a reduced set of R < G basis, we obtain both a reduction
of the data needed for a reasonable approximation and,
more importantly for our purpose, a representation based
only on the most essential spectral shapes.

Having as goal a pitch-independent classification, the
time-frequency templates should be representative for a
wide range of notes. In the training process, notes from
several pitches must be considered to obtain a single model.
The training samples are subjected to sinusoidal model-
ing, and arranged in the data matrix X by linearly inter-
polating the amplitude values to a regular frequency grid
defined at the locations of the G bins. This is important
for appropriately describing formants, which are mostly
independent of the fundamental frequency.

The projected coefficients of each instrument in the R-
dimensional PCA space are summarized as a prototype
curve by interpolating the trajectories corresponding to
the individual training samples at common time points and
point-wise averaging them. When projecting back into the
time-frequency domain by a truncated inverse PCA, each
P i-point prototype curve will correspond to aG×P i pro-
totype envelope Mi(g, k) for instrument i. We consider
the same number of time frames P = Pi for all instrument
models. Figure 4 shows the obtained prototype envelopes
for the fourth octave of a piano and of an oboe.

Depending on the application, it can be more con-
venient to perform further processing on the reduced-
dimensional PCA space or back in the time-frequency



0

0.2

0.4

0.6

0.8

1 500

1000

1500

2000

−4

−3

−2

−1

0

Frequency (Hz)
Time (normalized)

M
ag

ni
tu

de
 (

dB
)

Figure 5. Weak matching of an alto sax cluster and a
portion of the piano prototype envelope.

domain. When classifying individual notes, a distance
measure between unknown trajectories and the prototype
curves in PCA space has proven successful [10]. In the
current source separation application, the clusters to be
matched to the models can contain regions of unresolved
overlapping partials or outliers, which can introduce im-
portant interpolation errors when adapted to theK-bin fre-
quency grid needed for projection onto the bases. This
makes working in the time-frequency domain more con-
venient in the present case.

3.2 Timbre Matching

Each one of the clusters obtained by the sound source sep-
aration step is matched against each one of the prototype
envelopes. Let us denote a particular cluster of K frames
represented as an ordered set of amplitude and frequency
vectors A = (a1, . . . ,aK), F = (f1, . . . , fK) of possibly
differing lengths L1, . . . , LK .

We need to evaluate the prototype envelope of model
i at the frequency support of the input cluster j. This
operation is denoted by M̃ij = Mi(Fj). To that end,
the time scales of both input and model are first normal-
ized. Then, the model frames closest to each one of the
input frames in the normalized time scale are selected.
Finally, each new amplitude value m̃ij

lk is linearly inter-
polated from the neighboring amplitude values of the se-
lected model frame.

We then define the distance between a cluster j and an
interpolated prototype envelope i as

d(Aj , M̃ij) =
1
Kj

Kj∑
k=1

√√√√√ Lj
k∑

l=1

(aj
lk − m̃

ij
lk)2 (3)

i.e., the average of the Euclidean distances between frames
of the input clusters and interpolated prototype envelope
at the normalized time scale. The model M̃ij minimiz-
ing this distance is chosen as the predicted instrument for

True instruments classified
p o c t v s as

100 0 0 0 0 0 p
0 100 8 8 0 0 o
0 0 67 0 33 0 c
0 0 0 92 0 8 t
0 0 0 0 58 8 v
0 0 25 0 8 83 s

Table 1. Confusion matrix for single–note instrument
identification. We considered 6 different instruments from
the RWC database: piano (p), oboe (o), clarinet (c), trum-
pet (t), violin (v), alto sax (s).

classification. Figure 5 shows an attempt to match a clus-
ter extracted from a alto sax note and the corresponding
section of the piano prototype envelope. As it is clearly
visible, this weak match results in a high distance value.

4 EXPERIMENTS

The current framework implementation does still not fully
take into consideration timing information and continuity
issues, such as note on-sets and durations. Given so, we
will limit the evaluation procedure to the separation and
classification of concurrent notes sharing the same on-set
and played from different instruments.

The evaluation dataset was artificially created mixing
audio samples of isolated notes of piano, oboe, clarinet,
trumpet, violin and alto sax, all from the RWC Music
Database [17]. The training dataset used to derive the tim-
bre models for each instrument (see Section 3) is com-
posed of audio samples of isolated notes, also from the
RWC Music Database. However, in order to get mean-
ingful timbre recognition results, we used independent in-
stances of each instrument for the evaluation dataset and
for the training dataset. Ground-truth data was also cre-
ated for each mixture and includes information about the
notes played and the corresponding instrument. Given that
the timbre models used in this work showed good results
for a range of about two octaves [10], we constrained the
notes used for evaluation to the range C4 to B4.

4.1 Timbre identifications for single note signals

We started by evaluating the performance of the timbre
matching block (as discussed in Section 3.2) for the case
of isolated notes coming from each of the six instruments
modeled. This provides a base-ground with which will be
possible to compare the ability of the framework to clas-
sify notes separated from mixtures. For the case of iso-
lated notes, the sound source separation block reduces its
action to just performing sinusoidal analysis, since there
are no other sources to be separated. This basically only
results in the loss of the non-harmonic residual, which
although not irrelevant to timbre identification, has been
demonstrated to have a small impact in the classification
performance [18]. Table 1 presents the confusion matrix



2-note 3-note 4-note total
RCL PRC F1 RCL PRC F1 RCL PRC F1 RCL PRC F1

p 83 100 91 22 100 36 0 0 0 23 100 38
o 133 75 96 100 46 63 67 40 50 86 50 63
c 33 100 50 33 100 50 40 86 55 36 93 52
t 89 100 94 58 100 74 58 64 61 67 85 75
v 67 67 67 83 45 59 83 36 50 80 43 56
s 100 43 60 78 60 63 60 75 67 67 62 64

total 75 79 77 56 64 59 46 56 50 56 64 60

Table 2. Recall and precision values for instrument presence detection in multiple-note mixtures

for the instrument classification for a dataset of 72 isolated
notes, ranging from C4 to B4, from each one of the six
considered instruments. The system presents an overall
classification accuracy of 83.3%, being violin and clarinet
the instruments posing the biggest difficulties. This result
is not as strong as the one published in [10], based on the
same timbre models, where a 94.86% classification rate
was presented. This difference may result from the use
of independent datasets for training and testing, instead of
cross-validation over the entire dataset.

4.2 Instrument presence detection in mixtures of notes

We then evaluated the ability of the system to separate and
classify the notes from audio files with up to 4 simultane-
ously sounding instruments. A combination of 54 differ-
ent instruments and mixtures of 2-, 3- and 4-notes was
created (i.e. 18 audio files for each case).

The first and simplest evaluation we performed was to
test the system ability to detect the presence of an instru-
ment in a mixture of up to 4 notes. In this case it was just
a matter of matching each one of the six timbre models
with all the separated clusters and counting the true and
false positives for each instrument. A true positive (TP) is
here defined as the number of separated clusters correctly
matched to an instrument playing in the original mixture
(such information is available in the dataset ground-truth).
A false positive (FP) can be defined as the number of clus-
ters classified as an instrument not present in the original
audio mixture. Given these two values, it is then possible
to define three performance measures for each instrument
- Recall (RCL), Precision (PRC) and F-Measure (F1):

RCL =
TP

COUNT
PRC =

TP

TP + FP
(4)

F1 =
2×RCL× PRC
RCL+ PRC

(5)

where COUNT is the total number of instances of an
instrument over the entire dataset (i.e. the total number of
notes it plays). As shown in Table 2, the system was able
to correctly detect 56% of the occurrences of instruments
in mixtures of up to 4 notes, with a precision of 64%. Pi-
ano appears as the most difficult timbre to identify, specif-
ically for the case of 4-note mixtures, where from the ex-
isting 15 notes playing in the dataset, none was correctly
detected as coming from that instrument. As anticipated,

Instrument Detection Rate
2-note 3-note 4-note overall

p 67 67 0 55
o 100 86 60 81
c 33 29 19 26
t 75 33 22 43
v 67 100 50 75
s 75 36 42 44

total 65 50 33 47

Table 3. Instrument classification performance for 2-, 3-
and 4-note mixtures

the system performance degrades with the increase of the
number of concurrent notes. Nevertheless, it was still pos-
sible to retrieve 46% of the present instruments in 4-note
mixtures, with a precision of 56%.

4.3 Note separation and timbre identification in mix-
tures of notes

Although informative, the previous evaluation has a caveat
– it does not allow to precisely verify if a separated and
classified cluster does in fact correspond to a note played
with the same instrument in the original audio mixture.
In order to fully assess the separation and classification
performance of the framework, we tried to make a corre-
spondence between each separated cluster and the notes
played in the mix (available in the ground-truth). A sim-
ple way to obtain such a correspondence is by estimat-
ing the pitch of each one of the detected clusters, using a
simple technique. For each cluster we calculated the his-
togram of peak frequencies. Since the audio recordings
of the instruments used in this evaluation are from notes
with steady pitch over time (i.e. no vibrato, glissandos or
other articulations), the peaks on the histogram provide a
good indication of the frequencies of the strongest partials.
Having the set of the strongest partial frequencies, we then
performed another histogram of the differences among all
partials and selected the highest mode as the best F0 can-
didate for that cluster. Given these pitch correspondences,
it is now possible to check the significance of each sepa-
rated cluster as a good note candidate, as hypothesized in
Section 1. For the entire dataset, which includes a total of
162 notes from all the 2-, 3- and 4-note audio mixtures,



the system was able to correctly establish a pitch corre-
spondence for 55% of the cases (67%, 57% and 49% for
the 2-, 3- and 4-note mixtures, respectively). These results
can not however be taken as an accurate evaluation of the
sound source separation performance, as they are influ-
enced by the accuracy of the pitch estimation technique.

The results in Table 3 show the correct classification
rate for all modeled instruments and multiple-note scenar-
ios, excluding the clusters whose correspondence was not
possible to establish. This allows decoupling the source
separation/pitch estimation performance from the timbre
identification accuracy. Table 3 shows a correct identi-
fication rate of 47% of the separated notes overall, di-
minishing sharply its accuracy with the increase of con-
current notes in the signal. This shows the difficulties
posed by the overlap of spectral components from differ-
ent notes/instruments into a single detected cluster.

5 DISCUSSION

We proposed a framework for the sound source separation
and timbre classification of single-channel polyphonic mu-
sic played by a mixture of instruments. Although using a
constrained scenario, the experiments show the potential
of the system to achieve sound source separation and iden-
tification of music instruments using timbre models.

Furthermore, the proposed framework is versatile and
flexible enough to include new features at a later stage
that may allow overcoming some of its current limita-
tions. The use of timbre models as a-priori information
at the sound source separation stage will be an interesting
topic of future research. The extraction of new and more
descriptors directly from the estimated cluster parameters
(e.g. pitch, timbre features, timing information, etc.) will
allow the development of innovative applications for the
automatic analysis and sophisticated processing of real-
world polyphonic music signals.
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