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Abstract—Musical genres are categorical labels created by hu- history will be available on the Web. Automatic music analysis
mans to characterize pieces of music. A musical genre is char- wijll be one of the services that music content distribution ven-

acterized by the common characteristics shared by its members. 4, i yse to attract customers. Another indication of the in-
These characteristics typically are related to the instrumentation,

rhythmic structure, and harmonic content of the music. Genre hi- creasing importance of digital music distribution is the legal at-
erarchies are commonly used to structure the large collections of tention that companies like Napster have recently received.

music available on the Web. Currently musical genre annotation Genre hierarchies, typically created manually by human ex-

is performed manually. Automatic musical genre classification can oo 4re currently one of the ways used to structure music con-
assist or replace the human user in this process and would be a

valuable addition to music information retrieval systems. In ad- €Nt on the Web. Automatic musical genre classification can po-
dition, automatic musical genre classification provides a frame- tentially automate this process and provide an important com-
work for developing and evaluating features for any type of con- ponent for a complete music information retrieval system for
tent-hased analysis of musical signals. audio signals. In addition it provides a framework for devel-

In this paper, the automatic classification of audio signals into . . I .
an hierarchy of musical genres is explored. More specifically, OPINd and evaluating features for describing musical content.

three feature sets for representing timbral texture, rhythmic Such features can be used for similarity retrieval, classification,

content and pitch content are proposed. The performance and segmentation, and audio thumbnailing and form the foundation
relative importance of the proposed features is investigated by f most proposed audio analysis techniques for music.
training statistical pattern recognition classifiers using real-world In thi th bl f aut ticallv cl - di
audio collections. Both whole file and real-time frame-based n 'S. paper, .epro emo ag omatica ycassﬁymg auaio
classification schemes are described. Using the proposed featureSignals into an hierarchy of musical genres is addressed. More
sets, classification of 61% for ten musical genres is achieved. This specifically, three sets of features for representing timbral tex-
r’TSU“_f'_S comparable to resuits reported for human musical genre yre, rhythmic content and pitch content are proposed. Although
classification. there has been significant work in the development of features
_ Index Terms—Audio classification, beat analysis, feature extrac- for speech recognition and music—-speech discrimination there
tion, musical genre classification, wavelets. has been relatively little work in the development of features
specifically designed for music signals. Although the timbral
|. INTRODUCTION texture feature set is based on features used for speech and gen-
USICAL genres are labels created and used by humaenrsal sqund classification, the other twc.).feature sgts (rhythmic
. - . d pitch content) are new and specifically designed to rep-
for categorizing and describing the vast universe o

music. Musical genres have no strict definitions and boundariréesSent aspects of musical content (thythm and harmony). The

as they arise through a complex interaction between the pubﬁg rformance and relative importance of the proposed feature

marketing, historical, and cultural factors. This observatio%ets is evaluated by training statistical pattern recognition clas-

has led some researchers to suggest the definition of a nSeIerrS using audio collections collected from compact disks,

e radio, and the Web. Audio signals can be classified into an hier-
genre classification scheme purely for the purposes of music

information retrieval [1]. However even with current musica rchy of music genres, augmented with speech categories. The

o . speech categories are useful for radio and television broadcasts.
genres, it is clear that the members of a particular genre sh% €

. L . ; . Both whole-file classification and real-time frame classification
certain characteristics typically related to the instrumentation

rhythmic structure, and pitch content of the music schemes are proposed.
y : ' ; o L The paper is structured as follows. A review of related work
Automatically extracting music information is gaining im-,

ﬁ rovided in Section Il. Feature extraction and the three spe-

) . i

ortance as a way to structure and organize the increasin L )

P y 1o st : 9 .gl c feature sets for describing timbral texture, rhythmic struc-
large numbers of music files available digitally on the Web. It S

very likely that in the near future all recorded music in humatrtljre’ and pitch content of musical signals are described in Sec-

tion Ill. Section IV deals with the automatic classification and

evaluation of the proposed features and Section V with conclu-
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they are based on some form of time-frequency representatibor example, no information regarding the rhythmic structure
Although a complete overview of audio feature extraction is bef the music is utilized. Research in the areas of automatic beat
yond the scope of this paper, some relevant representative awthitection and multiple pitch analysis can provide ideas for the
feature extraction references are provided. development of novel features specifically targeted to the anal-
Automatic classification of audio has also a long history origssis of music signals.
inating from speech recognition. Mel-frequency cepstral coef- Scheirer [12] describes a real-time beat tracking system for
ficients (MFCC) [2], are a set of perceptually motivated feaaudio signals with music. In this system, a filterbank is coupled
tures that have been widely used in speech recognition. Theigh anetwork of combfilters that track the signal periodicities to
provide a compact representation of the spectral envelope, spepvide an estimate of the main beat and its strength. Areal-time
that most of the signal energy is concentrated in the first coeffieat tracking system based on a multiple agent architecture that
cients. tracks several beat hypotheses in parallel is described in [13].
More recently, audio classification techniques that includdore recently, computationally simpler methods based on onset
nonspeech signals have been proposed. Most of these syst@@tgction at specific frequencies have been proposed in [14]
target the classification of broadcast news and video in bro@fd [15]- The beat spectrum, described in [16], is a more global
categories like music, speech, and environmental sounds. fTRRresentation of rhythm than just the main beat anq its strength.
problem of discrimination between music and speech has re-T0 the best of our knowledge, there has been little research
ceived considerable attention from the early work of Saunddfsfeature extraction and classification with the explicit goal of
[3] where simple thresholding of the average zero-crossing r&l@ssifying musical genre. Reference [17] contains some early
and energy features is used, to the work of Scheirer and Smwk and preliminary results in automatic musical genre classi-
[4] where multiple features and statistical pattern recognitidifation-
classifiers are carefully evaluated. In [5], audio signals are
segmented and classified into “music,” “speech,” “laughter,”
and nonspeech sounds using cepstral coefficients and a hiddefReature extraction is the process of computing a compact nu-
Markov model (HMM). A heuristic rule-based system for thenerical representation that can be used to characterize a seg-
segmentation and classification of audio signals from moviesent of audio. The design of descriptive features for a specific
or TV programs based on the time-varying properties of simpdgplication is the main challenge in building pattern recogni-
features is proposed in [6]. Signals are classified into two brotidn systems. Once the features are extracted standard machine
groups of music and nonmusic which are further subdivideéarning techniques which are independent of the specific appli-
into (music) harmonic environmental sound, pure music, songgtion area can be used.
speech with music, environmental sound with music, and
(non-music) pure speech and nonharmonic environmenfal Timbral Texture Features
sound. Berenzweig and Ellis [7] deal with the more difficult The features used to represent timbral texture are based on
problem of locating singing voice segments in musical signatstandard features proposed for music-speech discrimination [4]
In their system, the phoneme activation output of an automatind speech recognition [2]. The calculated features are based
speech recognition system is used as the feature vector darthe short time Fourier transform (STFT) and are calculated
classifying singing segments. for every short-time frame of sound. More details regarding
Another type of nonspeech audio classification system ithe STFT algorithm and the Mel-frequency cepstral coefficients
volves isolated musical instrument sounds and sound effedfdFCC) can be found in [18]. The use of MFCCs to separate
In the pioneering work of Wolakt al. [8] automatic retrieval, music and speech has been explored in [19]. The following spe-
classification and clustering of musical instruments, sound é#fic features are used to represent timbral texture in our system.
fects, and environmental sounds using automatically extracted) Spectral Centroid:The spectral centroid is defined as the
features is explored. The features used in their system are st&@ter of gravity of the magnitude spectrum of the STFT

I1l. FEATURE EXTRACTION

" ow

tics (mean, variance, autocorrelation) over the whole sound file N
of short time features such as pitch, amplitude, brightness, and > Min]+n
bandwidth. Using the same dataset various other retrieval and Cr = "21]\4 1)
classification approaches have been proposed. Foote [9] pro- > My[n)
n=1

poses the use of MFCC coefficients to construct a learning tree
vector quantizer. Histograms of the relative frequencies of feaherel, [»] is the magnitude of the Fourier transform at frame
ture vectors in each quantization bin are subsequently usedf@nd frequency bim. The centroid is a measure of spectral
retrieval. The same dataset is also used in [10] to evaluate a felaape and higher centroid values correspond to “brighter” tex-
ture extraction and indexing scheme based on statistics of thees with more high frequencies.
discrete wavelet transform (DWT) coefficients. Li[11] used the 2) Spectral Rolloff: The spectral rolloff is defined as the fre-
same dataset to compare various classification methods and fgegncy R, below which 85% of the magnitude distribution is
ture sets and proposed the use of the nearest feature line pagerncentrated
classification method. Ry N

In the previously cited systems, the proposed acoustic fea- Z M;[n] = 0.85 Z M;[n]. 3
tures do not directly attempt to model musical signals and there- n=1 n=1
fore are not adequate for automatic musical genre classificationThe rolloff is another measure of spectral shape.
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3) Spectral Flux: The spectral flux is defined as the squared 7) Low-Energy Feature:Low energy is the only feature that
difference between the normalized magnitudes of successig®dased on theexture windowather than thanalysis window

spectral distributions Itis defined as the percentageaofalysis windowthat have less
N RMS energy than the average RMS energy acrossetkieire
F, = Z(Nt[n] _ Nt_l[n])2 ©) window As an example, vocal music with silences will have

large low-energy value while continuous strings will have small
eIow—energy value.

n=1

whereN,[n] and N;_;[n] are the normalized magnitude of th
Fourier transform at the current frarheand the previous frame

t — 1, respectively. The spectral flux is a measure of the amount Timbral Texture Feature Vector

of local spectral change. To summarize, the feature vector for describing timbral tex-
4) Time Domain Zero Crossings: ture consists of the following features: means and variances of
N spectral centroid, rolloff, flux, zerocrossings over the texture
Z, = % Z |sign(z[n]) — sign(zfn — 1])| (4) window (8), low energy (1), and means and variances of the first

five MFCC coefficients over the texture window (excluding the
coefficient corresponding to the DC component) resulting in a
"9-dimensional feature vector.

n=1
where thesign function is 1 for positive arguments and 0 fo
negative arguments angl:] is the time domain signal for frame
t. Time domain zero crossings provide a measure of the noi
ness of the signal.

5) Mel-Frequency Cepstral Coefficientddel-frequency  Most automatic beat detection systems provide a running es-
cepstral coefficients (MFCC) are perceptually motivatetimate of the main beat and an estimate of its strength. In ad-
features that are also based on the STFT. After taking tH#ion to these features in order to characterize musical genres
log-amplitude of the magnitude spectrum, the FFT bins aneore information about the rhythmic content of a piece can be
grouped and smoothed according to the perceptually motivatdiized. The regularity of the rhythm, the relation of the main
Mel-frequency scaling. Finally, in order to decorrelate thkeat to the subbeats, and the relative strength of subbeats to the
resulting feature vectors a discrete cosine transform is pemain beat are some examples of characteristics we would like
formed. Although typically 13 coefficients are used for speedb represent through feature vectors.
representation, we have found that the first five coefficients One of the common automatic beat detector structures con-
provide the best genre classification performance. sists of a filterbank decomposition, followed by an envelope ex-

6) Analysis and Texture Windowin short-time audio traction step and finally a periodicity detection algorithm which
analysis, the signal is broken into small, possibly overlappinig, used to detect the lag at which the signal’s envelope is most
segments in time and each segment is processed separasatyilar to itself. The process of automatic beat detection resem-
These segments are callethalysis windowsand have to bles pitch detection with larger periods (approximately 0.5 s to
be small enough so that the frequency characteristics of thé s for beat compared to 2 ms to 50 ms for pitch).
magnitude spectrum are relatively stable (i.e., assume that th@he calculation of features for representing the rhythmic
signal for that short amount of time is stationary). However, ttatructure of music is based on the wavelet transform (WT)
sensation of a sound “texture” arises as the result of multipihich is a technique for analyzing signals that was developed
short-time spectrums with different characteristics followings an alternative to the STFT to overcome its resolution
some pattern in time. For example, speech contains vowbblems. More specifically, unlike the STFT which provides
and consonant sections which have very different spectraliform time resolution for all frequencies, the WT provides
characteristics. high time resolution and low-frequency resolution for high

Therefore, in order to capture the long term nature of soufreéquencies, and low time and high-frequency resolution for
“texture,” the actual features computed in our system are tlmsv frequencies. The discrete wavelet transform (DWT) is a
running means and variances of the extracted features descrifygecial case of the WT that provides a compact representation
in the previous section over a number of analysis windows. Thé the signal in time and frequency that can be computed
termtexture windows used in this paper to describe this largeefficiently using a fast, pyramidal algorithm related to multirate
window and ideally should correspond to the minimum timélterbanks. More information about the WT and DWT can
amount of sound that is necessary to identify a particular soubel found in [20]. For the purposes of this work, the DWT
or music “texture.” Essentially, rather than using the featuan be viewed as a computationally efficient way to calculate
values directly, the parameters of a running multidimensionah octave decomposition of the signal in frequency. More
Gaussian distribution are estimated. More specifically, these paecifically, the DWT can be viewed as a consté@n{center
rameters (means, variances) are calculated based ¢extnee  frequency/bandwidth) with octave spacing between the centers
windowwhich consists of the current feature vector in additioaf the filters.
to a specific number of feature vectors from the past. Anotherin the pyramidal algorithm, the signal is analyzed at different
way to think of thetexture windows as a memory of the past.frequency bands with different resolutions for each band. This is
For efficient implementation a circular buffer holding previousichieved by successively decomposing the signal into a coarse
feature vectors can be used. In our systemaralysis window approximation and detail information. The coarse approxima-
of 23 ms (512 samples at 22 050 Hz sampling rate) aedtare tion is then further decomposed using the same wavelet decom-
windowof 1 s (43 analysis windows) is used. position step. This decomposition step is achieved by successive

8._ Rhythmic Content Features
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BEAT HISTOGRAM CALCULATION FLOW DIAGRAM 2) Low-Pass Filtering'

Discrete Wavelet Transform Octave Frequency Bands yln] = (1 — a)zn] + ayln — 1] (8)

i.e., a one-pole filter with an alpha value of 0.99 which is used
to smooth the envelope. Full wave rectification followed by
low-pass filtering is a standard envelope extraction technique.

lter 3) Downsampling:
Low Pass 11termg Envelope Envelope Envelope ) ping

Extraction Extraction Extraction y [n] - [ L 7’L] (9)

Downsampling
wherek = 16 in our implementation. Because of the large pe-

| Full Wave Rectification |

riodicities for beat analysis, downsampling the signal reduces
e computation time for the autocorrelation computation without
affecting the performance of the algorithm.

4) Mean Removal:

Envelope Extraction

| Multiple Peak Picking | ylnl = x[n] = Elzln]] (10)
is applied in order to make the signal centered to zero for the
| Beat Histogram | autocorrelation stage.
5) Enhanced Autocorrelation:
Fig. 1. Beat histogram calculation flow diagram.
ok = 5 3 alnleln — A a1
highpass and lowpass filtering of the time domain signal and is n_ . ,
defined by the following equations: the peaks of the gutoc_orrelatlor! fu.nctlon' correspon(_j to the time
lags where the signal is most similar to itself. The time lags of
Unighlk] = Z z[n]g[2k — n] (5) Peaks in the right time range for rhythm analysis correspond

to beat periodicities. The autocorrelation function is enhanced

using a similar method to the multipitch analysis model of

Uiow[K] = > z[n]h[2k — n] (6) Tolonen and Karjalainen [22] in order to reduce the effect
" of integer multiples of the basic periodicities. The original

whereyn; k], 110w [k] are the outputs of the highpass (g) anagtocorrelatioq 'function of the summary of the envelopes, is
lowpass (h) filters, respectively after subsampling by two. THd!PPed to positive values and then time-scaled by a factor of
DAUBA filters proposed by Daubechies [21] are used. two and subtracted from the original clipped function. The
The feature set for representing rhythm structure is base@Me Process is repeated with other integer factors such that
on detecting the most salient periodicities of the signal. Fig."gPetitive peaks at integer multiples are removed.
shows the flow diagram of the beat analysis algorithm. The 8) Peak Detection and Histogram Calculatiorthe first
signal is first decomposed into a number of octave frequen@ee peaks of the enhanced autocorrelation function that are in
bands using the DWT. Following this decomposition, thive appropriate range for bea_t detectlon_are selected and added
time domain amplitude envelope of each band is extractiy@Peat histogram (BH)The bins of the histogram correspond
separately. This is achieved by applying full-wave rectificatio® Peats-per-minute (bpm) from 40 to 200 bpm. For each peak
low pass filtering, and downsampling to each octave frequen_@ilthe enhanced a_utocorrelanon function the peak amplltu_de
band. After mean removal, the envelopes of each band are thg@dded to the histogram. That way peaks that have high
summed together and the autocorrelation of the resulting s@fplitude (where the signal is highly similar) are weighted
envelope is computed. The dominant peaks of the autocorfé2re strongly than weaker peak; in the histogram cglculatlon.
lation function correspond to the various periodicities of the /) Beat Histogram Features“F|g. 2 shows a b”eat histogram
signal’s envelope. These peaks are accumulated over the wHgle? 30-S excerpt of the song “Come Together” by the Beatles.
sound file into aeat histogranwhere each bin corresponds tol € W0 main peaks of the BH correspond to the main beat at
the peak lag, i.e., the beat period in beats-per-minute (bprf _proxmatgly 80 bpm and its fwstharmonlc (tW|c<_a the speed)_at
Rather than adding one, the amplitude of each peak is added 89 PPM- Fig. 3 shows four beat histograms of pieces from dit-
the beat histogram. That way, when the signal is very similar ft%rent musical genres. The upper left corner, labeled classical,

n

itself (strong beat) the histogram peaks will be higher. is the BH of an excerpt from “La Mer” by Claude Debussy. Be-
The following building blocks are used for the beat analysk2use of the complexity of the multiple instruments of the or-
feature extraction. chestra there is no strong self-similarity and there is no clear
1) Full Wave Rectification: dominant peak in the histogram. More strong peaks can be seen
at the lower left corner, labeled jazz, which is an excerpt from a
y[n] = |z[n]| (7) live performance by Dee Dee Bridgewater. The two peaks cor-

respond to the beat of the song (70 and 140 bpm). The BH of
is applied in order to extract the temporal envelope of the sigriah. 2 is shown on the upper right corner where the peaks are
rather than the time domain signal itself. more pronounced because of the stronger beat of rock music.
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The prominent peaks of this summary enhanced autocorre-
lation function (SACF) correspond to the main pitches for that
short segment of sound. This method is similar to the beat de-
tection structure for the shorter periods corresponding to pitch
at {1  perception. The three dominant peaks of the SACF are accumu-
lated into a PH over the whole soundfile. For the computation
of the PH, a pitch analysis window of 512 samples at 22 050 Hz
sampling rate (approximately 23 ms) is used.

The frequencies corresponding to each histogram peak are
converted to musical pitches such that each bin of the PH corre-
sponds to a musical note with a specific pitch (for example A4
= 440 Hz). The musical notes are labeled using the MIDI note

/\ /\ .\ /\ numbering scheme. The conversion from frequency to MIDI
° adalie. o 1.0 A/ bo MLV note number can be performed using

Beat Strength
[~
T
L

60 80 100 120 140 160 180 200
BPM

n = 12log, S + 69 (12)
Fig. 2. Beat histogram example. 440
where f is the frequency in Hertz and is the histogram bin
. . I MIDI note number).
rThh?hr:TI\gigifrtu%tajrkeso?fathl-i I%V\c/)ersr(l)gnht gorﬁiggﬁgﬁﬁ:he Stro&gTwo versions of the PH are createdfadded (FPH) andun-

)’/A\ amal.scale study (20I0 exgerptsgfrgm Various genyr.es) COfo_Idedhistogram (UPH). The unfolded version' i; crgated using
firmed that most of the time (18/20) the main beat correspong{i : cl; 2;2 eeilillar:g; Swalltrgo#]taang J l:(r)t:le;ir:n ?e? g|§tz;t\|/cénj éirl1n the
to the first or second BH peak. The results of this study and the ' PP g 9
initial description of beat histograms can be found in [23]. Un- ¢ =n mod 12 (13)
like previous work in automatic beat detection which typicall . . . :
aims to provide only an estimate of the main beat (or tempo) perec IS thg folded hlstogram bin (p|tch class or chroma
the song and possibly a measure of its strength, the BH repY@l-ue)’ andn is the unfoIdpd h'Stogra”? bin (or_ MIDI notg
sentation captures more detailed information about the rhyth %mt.’er)- The folded version contains mformatlpn regarding
content of the piece that can be used to intelligently guess & pitch clas§es or har-molnlc contgnt of the music whereas the
musical genre of a song. Fig. 3 indicates that the BH of differe E‘fo"?'ed version con_taln.s |.nfor.mat|on about the pitch range of
musical genres can be visually differentiated. Based on this Je Plece. The FPH is ;lmllar n concept to the ch_rpma—based
servation a set of features based on the BH are calculated resentatlons uged in [24] for audm-thgmbnephng. _More
order to represent rhythmic content and are shown to be use Prmatlop regarding the chroma and he|gh.t d'menS'on of
for automatic musical genre classification. These are: musical pitch can b.e fqund n [2.5]' The reIgnpn of musical

) . . . . scales to frequency is discussed in more detail in [26].
* AD, Al relative amplitude (divided by the sum of ampli- Finally, the FPH is mapped to a circle of fifths histogram so

tudes) of the first, and second histogram peak; that adi t hist bi d a fifth t rather th
» RA: ratio of the amplitude of the second peak divided bg :e%i:gg?Thliz ?ﬁggg;n;}: Z(r;isep\)ggebya 'th apart rather than

the amplitude of the first peak;

» P1, P2 period of the first, second peak in bpm; ¢ = (7 x ¢) mod 12 (14)
) ;lr.lel\r/:;ﬁ%\;erall sum of the histogram (indication of bea%/vherec’ is the new folded histogram bin after the mapping and

. . . ) éis the original folded histogram bin. The number seven corre-
For the BH calculation, the DWT is applied in a window Ov%ovnds to seven semitones or the music interval of a fifth. That

65536 samples at 22 050 Hz sampling rate which correspongls, e gistances between adjacent bins after the mapping are
to approximately 3 s. This window is advanced by a hop size gl syited for expressing tonal music relations (tonic-dom-

32768 samples. This larger window is necessary to capture %ﬁnt) and the extracted features result in better classification
signal repetitions at the beat and subbeat levels. accuracy

Although musical genres by no means can be characterized
fully by their pitch content, there are certain tendencies that

The pitch content feature set is based on multiple pitch deté@n lead to useful feature vectors. For example jazz or classical
tion techniques. More specifically, the multipitch detection amusic tend to have a higher degree of pitch change than rock
gorithm described by Tolonen and Karjalainen [22] is utilized’ POp music. As a consequence, pop or rock music pitch his-
In this algorithm, the signal is decomposed into two frequenéggrams will have fewer and more pronounced peaks than the
bands (below and above 1000 Hz) and amplitude envelopes Bigograms of jazz or classical music.
extracted for each frequency band. The envelope extraction i®ased on these observations the following features are com-
performed by applying half-wave rectification and low-pass filPuted from the UPH and FPH in order to represent pitch content.
tering. The envelopes are summed and an enhanced autocorrelee FAO: Amplitude of maximum peak of the folded his-
tion function is computed so that the effect of integer multiples  togram. This corresponds to the most dominant pitch
of the peak frequencies to multiple pitch detection is reduced. class of the song. For tonal music this peak will typically

D. Pitch Content Features
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Fig. 3. Beat histogram examples.

correspond to the tonic or dominant chord. This peghute the rhythmic and pitch features in real-time using only
will be higher for songs that do not have many harmonghort-time information but we have not explored this possibility.
changes.

« UPQ: Period of the maximum peak of the unfolded his-
togram. This corresponds to the octave range of the dom-
inant musical pitch of the song. In order to evaluate the proposed feature sets, standard sta-

« FPO. Period of the maximum peak of the folded hististical pattern recognition classifiers were trained using real-
togram. This corresponds to the main pitch class of tigorld data collected from a variety of different sources.
song.

 IPO1: Pitch interval between the two most prominenf. Classification

peaks of the folded histogram. This corresponds to thegq, cjassification purposes, a number of standard statistical
main tonal interval relation. For pieces with simplé,siern recognition (SPR) classifiers were used. The basic idea
harmonic structure this featurg will have \_/alue 1,*)1 behind SPR is to estimate the probability density function (pdf)
corresponding to fifth or fourth interval (tonic-dominant)., e feature vectors of each class. In supervised learning a la-
SUM The overall sum of the hlstogram. Th's.'s feature 'Beled training set is used to estimate the pdf for each class. In
a measure of the strength of the pitch detection. the simple Gaussian (GS) classifier, each pdf is assumed to be
] ] a multidimensional Gaussian distribution whose parameters are
E. Whole File and Real-Time Features estimated using the training set. In the Gaussian mixture model
In this work, both the rhythmic and pitch content featur€GMM) classifier, each class pdf is assumed to consist of a mix-
set are computed over the whole file. This approach posesthte of a specific numbek™ of multidimensional Gaussian dis-
problem if the file is relatively homogeneous but is not apprdtibutions. The iterative EM algorithm can be used to estimate
priate if the file contains regions of different musical texturghe parameters of each Gaussian component and the mixture
Automatic segmentation algorithms [27], [28] can be used teights. In this work GMM classifiers with diagonal covariance
segment the file into regions and apply classification to eachatrices are used and their initialization is performed using the
region separately. If real-time performance is desired, only thé-means algorithm with multiple random starting points. Fi-
timbral texture feature set can be used. It might possible to conally, the K-nearest neighborf(-NN) classifier is an example

IV. EVALUATION



TZANETAKIS AND COOK: MUSICAL GENRE CLASSIFICATION OF AUDIO SIGNALS 299

AUDIO CLASSIFICATION HIERARCHY 100
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Classical Orchestra
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Country Piano
Disco String Quartet F)

< Music

HipHop B0
Speech Jazz BigBand |
[
Rock Cool L -
Male Blues Fusion a0
Female Reggae Piano 30
Sports Pop Quartet
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i
Fig. 4. Audio classification hierarchy. a .
Ganmg Classical Jaz:
TABLE |
CLASSIFICATION ACCURACY MEAN AND STANDARD DEVIATION Fig. 5. Classification accuracy percentages (RNPandom, RT= real time,
WF = whole file).
[ Genres(10) | Classical(4) | Jazz(6)
Random 10 25 16 . . . . . .
2T GS 7 SR Y and the pitch content features (five dimensions) resulting in a
Gs 59E4 7TE6 S 30-dimensional feature vector. In order to compute a single tim-
GMM(2) 60 £ 4 81+5 66 £ 7 bral-texture vector for the whole file the mean feature vector
GMM(3) 61+4 88+4 687 over the whole file is used.
GMM(4) || 6144 885 6226 The row RT GS shows classification accuracy percentage re-
GMM(5) 61+ 4 88 L5 59+ 6 . o . .
REN (D) ] 7 16 sults for real-time classification per frame using only the tim-
KN (3) 604 7SE6 58 L 7 bral texture feature set (19 dimensions). In this case, each file
KNN(5) 56 £ 3 70+ 6 56 % 6 is represented by a time series of feature vectors, one for each

analysis windowFrames from the same audio file are never split

between training and testing data in order to avoid false higher

of a nonparametric classifier where each sample is labeled ggéuracy due to the similarity of feature vectors from the same

cording to the majority of its” nearest neighbors. That way, nc;gi!l‘ne. A comparison of random classification, real-time features,

functional form for the pdf is assumed and it is approximate ) : - :
locally using the trainingset. More information aboFLJJFt) statistic .d whole-file features is shown in Fig. 5. The data for creating

g . is bar graph corresponds to the random, RT GS, and GMM(3)
pattern recognition can be found in [29]. rows of Table .

The classification results are calculated using a ten-fold cross-
validation evaluation where the dataset to be evaluated is ran-

Fig. 4 shows the hierachy of musical genres used for evalyomly partitioned so that 10% is used for testing and 90% is
ation augmented by a few (three) speech-related categoriesyd@d for training. The process is iterated with different random
addition, a music/speech classifier similar to [4] has been igartitions and the results are averaged (for Table I, 100 iterations
plemented. For each of the 20 musical genres and three spaggfe performed). This ensures that the calculated accuracy will
genres, 100 representative excerpts were used for training. Egghpe biased because of a particular partitioning of training and
excerpt was 30 s long resulting in (23 * 100 * 30=s19 h) testing. If the datasets are representative of the corresponding
of training audio data. To ensure variety of different recordingysical genres then these results are also indicative of the clas-
qualities the excerpts were taken from radio, compact disks, agification performance with real-world unknown signals. Bhe
MP3 compressed audio files. The files were stored as 22 050 it shows the standard deviation of classification accuracy for
16-bit, mono audio files. An effort was made to ensure thgie jterations. The row labeledndomcorresponds to the clas-
the training sets are representative of the corresponding musigatation accuracy of a chance guess.
genres. The Genres dataset has the following classes: classicathe additional music/speech classification has 86% (random
country, disco, hiphop, jazz, rock, blues, reggae, pop, metglould be 50%) accuracy and the speech classification (male,
The classical dataset has the following classes: choir, orchesfgagale, sports announcing) has 74% (random 33%). Sports
piano, string quartet. The jazz dataset has the following classgﬁhouncing refers to any type of speech over a very noisy
bigband, cool, fusion, piano, quartet, swing. background. The STFT-based feature set is used for the

music/speech classification and the MFCC-based feature set is
C. Results used for the speech classification.

Table | shows the classification accuracy percentage results oll) Confusion Matrices:Table Il shows more detailed infor-
different classifiers and musical genre datasets. With the excepation about the musical genre classifier performance in the
tion of the RT GS row, these results have been computed usinfpam of a confusion matrix. In a confusion matrix, the columns
single-vector to represent the whole audio file. The vector cooerrespond to the actual genre and the rows to the predicted
sists of the timbral texture features [9 (FFF)10 (MFCC)= genre. For example, the cell of row 5, column 1 with value 26
19 dimensions], the rhythmic content features (6 dimensiong)eans that 26% of the classical music (column 1) was wrongly

B. Datasets
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TABLE 1 EFFECT OF TEXTURE WINDOW SIZE TO CLASSIFICATION ACCURACY
GENRE CONFUSION MATRIX 56 T T T T
\k/—\\
” cl]co di | hi | ja ro|b1[re|po|me 54 | 1
cl||69] 0 0 0 1 0 0 0 0 0
co][0 [58] 2 | 0|58 |64 2]0 g 1
di o[ 8 [52[11]0|13]14] 5 |9 [ 6 . el / |
hi 0 3 18 | 64 1 6 3 26 7 6 ES
jall26| 4 [0 |0 |75 8 | 7 [1]2]1 3E ol |
ro 5 13 4 1 9 | 40 | 14 1 7 33 g§
p1lo |7 0|t |3[4]43] 1|0 ] o0 3 .l i
re 0 9 10 | 18 2 12 | 11 | 59 7 1
pof| 0| 2|14 | 5 3 510} 3]|66|0 44 1
me 0 1 0 1 0 4 2 0 0 53
42 -
TABLE Il “ 20 0 o0 % 100
Jazz CONFUSION MATRIX TEXTURE WINDOW SIZE (number of analysis windows)
BBand | Cool | Fus. | Piano | 4tet | Swing Fig. 6. Effect of texture window size to classification accuracy.
BBand 42 2 1 0 6 1
Cool 21 67 5 4 23 10 TABLE V
Fus. 28 6 | 88 0 38 22 INDIVIDUAL FEATURE SET IMPORTANCE
Piano 1 0 0 80 0 0
4tet 4 5 2 0 19 5 Genres | Classical | Jazz
Swing 4 10 4 16 14 62 RND 10 25 16
PHF(5) 23 40 26
BHF (6) 28 39 31
TABLE IV STFT(9) 45 78 58
CLASSICAL CONFUSION MATRIX MFCC(10) a7 61 56
Choir | Orch. | Piano [ Str.4tet FULL (30) 59 ” 61
Choir 99 7 7 3
g?Ch' 8 598 826 Z 40 analysis windows was chosen astthdure windovsize. The
3 trthoe s 1 56 5 26 timbral-texture feature set (STFT and MFCC) for the whole file

and a single Gaussian classifier (GS) were used for the creation
of Fig. 6.
classified as jazz music (row 2). The percentages of correct clas3) Importance of Individual Feature Set§able V shows
sification lie in the diagonal of the confusion matrix. The confuthe individual importance of the proposed feature sets for the
sion matrix shows that the misclassifications of the system aeesk of automatic musical genre classification. As can be seen,
similar to what a human would do. For exampssicalmusic  the nontimbral texture features pitch histogram features (PHF)
is misclassified agmzzmusic for pieces with strong rhythm fromand beat histogram features (BHF) perform worse than the tim-
composers like Leonard Bernstein and George GerstRank bral-texture features (STFT, MFCC) in all cases. However, in
music has the worst classification accuracy and is easily cail cases, the proposed feature sets perform better than random
fused with other genres which is expected because of its bradassification therefore provide some information about musical
nature. genre and therefore musical content in general. The last row of
Tables lll and IV show the confusion matrices for the classic@bble V corresponds to the full combined feature set and the
and jazz genre datasets. In the classical genre dabasle¢stral first row corresponds to random classification. The number in
music is mostly misclassified asring quartet As can be seen parentheses beside each feature set denotes the number of in-
from the confusion matrix (Table Ill), jazz genres are mostlglividual features for that particular feature set. The results of
misclassified agusion This is due to the fact thdusionis a Table V were calculated using a single Gaussian classifier (GS)
broad category that exhibits large variability of feature valuessing the whole-file approach.
jazz quarteseems to be a particularly difficult genre to correctly The classification accuracy of the combined feature set, in
classify using the proposed features (it is mostly misclassifisdme cases, is not significantly increased compared to the in-
ascool andfusion. dividual feature set classification accuracies. This fact does not
2) Importance of Texture Window Siz€ig. 6 shows how necessarily imply that the features are correlated or do not con-
changing the size of thexture windovaffects the classification tain useful information because it can be the case that a specific
performance. It can be seen that the use tdxdure window file is correctly classified by two different feature sets that con-
increases significantly the classification accuracy. The valuetain different and uncorrelated feature information. In addition,
zeroanalysis windowsorresponds to using directly the featurealthough certain individual features are correlated, the addition
computed from theanalysis windowAfter approximately 40 of each specific feature improves classification accuracy. The
analysis window$1 s) subsequent increases in texture windovinythmic and pitch content feature sets seem to play a less im-
size do not improve classification as they do not provide amprtant role in the classical and jazz dataset classification com-
additional statistical information. Based on this plot, the value pfared to the Genre dataset. This is an indication that it is possible



TZANETAKIS AND COOK: MUSICAL GENRE CLASSIFICATION OF AUDIO SIGNALS 301

TABLE VI plan to explore other filterbank front-ends as well as onset based
BESTINDIVIDUAL FEATURES periodicity detection as in [14] and [15]. We are also planning
Genres to investigate real-time running versions of the rhythmic struc-
BAF . SUN 20 ture and harmonic content feature sets. Another interesting pos-
PHF .FPO 23 sibility is the extraction of similar features directly from MPEG
STFT. VCTRD 29 audio compressed data as in [31] and [32]. We are also plan-
MFCC.MMFCCL | 25 ning to use the proposed feature sets with alternative classi-

fication and clustering methods such as atrtificial neural net-

that genre-specific feature sets need to be designed for more'§grks. Finally, we are planning to use the proposed feature set
tailed subgenre classification. for query-by-example similarity retrieval of music signals and
Table VI shows the best individual features for each featufé!dio thumbnailing. By having separate feature sets to repre-
set. These are the sum of the beat histogram (BHF.SUM), Nt timbre, rhythm, and harmony, different types of similarity
period of the first peak of the folded pitch histogram (PHF.Fpgigtrieval are possible. Two other possible sources of informa-
the variance of the spectral centroid over the texture windd{f" @bout musical genre content are melody and singer voice.

(STFT.FPO) and the mean of the first MFCC coefficient oveplthough melody extraction is a hard problem that is not solved
the texture window (MFCC.MMFCC1). for general audio it might be possible to obtain some statistical

information even from imperfect melody extraction algorithms.
Singing voice extraction and analysis is another interesting di-

. s . rection for future research.
The performance of humans in classifying musical genre haSThe software used for this paper is available as part

been investigated in [30]. Using a ten-way forced-choice Parge MARSYAS [33], a free software framework for rapid
digm college students were able to accurately judge (53% Carévelopment and evaluation of computer audition appli-
rect) after listening to only 250-ms samples and (70% corre®iions  The framework follows a client-server architec-
after listening to 3 s (chance would be 10%). Listening to MO{Bre. The C++ server contains all the pattern recognition,
than 3 s did not improve their performance. The subjects Wh%ﬁ%nal processing, and numerical computations and is con-
trained using representative samples from each genre. The&floq 1,y 4 client graphical user interface written in Java.
genres used in this study were: blues, country, classical, da%RSYAS is available under the GNU Public License at

jazz, latin, pop, R&B, rap, and rock. Although direct Comloarﬁttp:/lwww.cs.princeton.edu/~gtzan/marsyas.html.
ison of these results with the automatic musical genre classifica-

tionresults, is not possible due to different genres and datasets, it

is clear that the automatic performance is not far away from the ACKNOWLEDGMENT
human performance. Moreover, these results indicate the fuzz
nature of musical genre boundaries.

D. Human Performance for Genre Classification

Yhe authors would like to thank the anonymous reviewers for
their careful reading of the paper and suggestions for improve-
ment. D. Turnbull helped with the implementation of the Genre-

V. CONCLUSIONS AND FUTURE WORK Gram user interface and G. Tourtellotimplemented the multiple

Despite the fuzzy nature of genre boundaries, musical geitch analysis algorithm. Many thanks to G. Essl for discussions
classification can be performed automatically with results signd help with the beat histogram calculation.
nificantly better than chance, and performance comparable to
human genre classification. Three feature sets for representing
timbral texture, rhythmic content and pitch content of music

signals were proposed and evaluated using statistical patterf#] F- Pachet and D. Cazaly, “A classification of musical genre,Poc.
RIAO Content-Based Multimedia Information Access CoRaris,

recognition classifiers trained with large real-world audio  £r3nce Mar 2000.
collections. Using the proposed feature sets classification ofi2] S.Davis and P. Mermelstein, “Experiments in syllable-based recognition

61% (nom—ea| time) and 44% (rea| time), has been achieved ina ©f continuous speechlEEE Trans. Acoust., Speech, Signal Processing
vol. 28, pp. 357-366, Aug. 1980.

dataset consisting of ter_] musical genres_._Th_e SUCCG_S_S of the pr?s] J. Saunders, “Real time discrimination of broadcast speech/music,” in
posed features for musical genre classification testifies to their ~ Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICAISB},

potential as the basis for other types of automatic techniques = Pp- 993-99. . .
?4] E. Scheirer and M. Slaney, “Construction and evaluation of a robust

for music S|gnals such as S|m|la”ty retrieval, segmentation and multifeature speech/music discriminator,”Rmoc. Int. Conf. Acoustics,
audio thumbnailing which are based on extracting features to  Speech, Signal Processing (ICASSE)97, pp. 1331-1334.
describe musical content. [5] D. Kimber and L. Wilcox, “Acoustic segmentation for audio browsers,”
. . . . . in Proc. Interface Conf.Sydney, Australia, July 1996.
An obvious direction for future research is expanding the (] T zhang and J. Kuo, “Audio content analysis for online audiovisual data
genre hierarchy both in width and depth. Other semantic de-  segmentation and classificatiorftans. Speech Audio Processingl.

scriptions such as emotion or voice style will be investigated __ 9. pp. 441-457, May 2001. o
[7] A. L. Berenzweig and D. P. Ellis, “Locating singing voice segments

a; pOSSIb|e classification Categones_- More exploratlon of the within musical signals,” ifProc. Int. Workshop on Applications of Signal
pitch content feature set could possibly lead to better perfor-  Processing to Audio and Acoustics (WASPAAJohonk, NY, 2001, pp.
mance. Alternative multiple pitch detection algorithms, for ex- _ 119-123. _ . .
le b d on cochlear models. could be used to create th[g] E. Wold, T. Blum, D. Keislar, and J. Wheaton, “Content-based classifi-
ample base ,» cou u cation, search, and retrieval of audi¢2EE Multimedia vol. 3, no. 2,

pitch histograms. For the calculation of the beat histogram we  1996.
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