
Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

1
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

O
bjects and C

lasses -- Introduction

•
N

ow
 that som

e low
-level program

m
ing concepts have

been established, w
e can exam

ine objects in m
ore detail

•
C

hapter 4 focuses on:

–
the concept of objects

–
the use of classes to create objects

–
using predefined classes

–
defining m

ethods and passing param
eters

–
defining classes

–
visibility m

odifiers

–
static variables and m

ethods

–
m

ethod overloading

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

2
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

O
bjects

•
A

n object has:

–
sta

te - descriptive characteristics

–
b

e
h

a
vio

rs - w
hat it can do (or be done to it)

•
F

or exam
ple, a particular bank account

–
has an account num

ber

–
has a current balance

–
can be deposited into

–
can be w

ithdraw
n from

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

3
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
lasses

•
A

 cla
ss is a blueprint of an object

•
It is the m

odel or pattern from
 w

hich objects are created

•
A

 class defines the m
ethods and types of data associated

w
ith an object

•
C

reating an object from
 a class is called

in
sta

n
tia

tio
n; an

object is an insta
n

ce of a particular class

•
F

or exam
ple, the A

cco
u

n
t

 class could describe m
any

bank accounts, but
 to

m
s_

sa
vin

g
s

is a particular
bank account w

ith a particular balance

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

4
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
reating O

bjects

•
T

he n
e

w

operator creates an object from
 a class:

 A
cco

u
n

t to
m

s_
sa

vin
g

s =
 n

e
w

 A
cco

u
n

t ();

•
T

his declaration asserts that
to

m
s_

sa
vin

g
s

 is a
variable that refers to an object created from

 the
A

cco
u

n
t

 class

•
It is initialized to the object created by the

 n
e

w

operator

•
T

he new
ly created object is set up by a call to a

co
n

stru
cto

r of the class

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

5
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
onstructors

•
A

 constructor is a special m
ethod used to set up an object

•
It has the sam

e nam
e as the class

•
It can take param

eters, w
hich are often used to initialize

som
e variables in the object

•
F

or exam
ple, the A

cco
u

n
t

constructor could be set up
to take a param

eter specifying its initial balance:

 A
cco

u
n

t to
m

s_
sa

vin
g

s =
 n

e
w

 A
cco

u
n

t (1
2

5
.8

9
);

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

6
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

O
bject R

eferences

•
T

he declaration of the
o

b
je

ct re
fe

re
n

ce
 variable and the

creation of the object can be separate activities:

 A
cco

u
n

t to
m

s_
sa

vin
g

s;

 to
m

s_
sa

vin
g

s =
 n

e
w

 A
cco

u
n

t (1
2

5
.8

9
);

•
O

nce an object exists, its m
ethods can be invoked using

the d
o

t o
p

e
ra

to
r:

 to
m

s_
sa

vin
g

s.d
e

p
o

sit (3
5

.0
0

);

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

7
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he S

tring C
lass

•
A

 character string in Java is an object, defined by the
S

trin
g

 class

 S
trin

g
 n

a
m

e
 =

 n
e

w
 S

trin
g

 ("K
e

n
 A

rn
o

ld
");

•
B

ecause strings are so com
m

on, Java allow
s an

abbreviated syntax:

 S
trin

g
 n

a
m

e
 =

 "K
e

n
 A

rn
o

ld
";

•
Java strings are

im
m

u
ta

b
le; once a string object has a

value, it cannot be changed

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

8
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he S

tring C
lass

•
A

 character in a string can be referred to by its position,
or in

d
e

x

•
T

he index of the first character is zero

•
T

he S
trin

g

class is defined in the ja
va

.la
n

g

package (and is therefore autom
atically im

ported)

•
M

any helpful m
ethods are defined in the

 S
trin

g

class

•
S

ee C
a

rp
e

_
D

ie
m

.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

9
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he S

tringT
okenizer C

lass

•
T

he S
trin

g
T

o
ke

n
ize

r
class m

akes it easy to break
up a string into pieces called

to
ke

n
s

•
B

y default, the de
lim

ite
rs for the tokens are the space,

tab, carriage return, and new
line characters (w

hite space)

•
T

he S
trin

g
T

o
ke

n
ize

r
class is defined in the

ja
va

.u
til

package

•
S

ee In
t_

R
e

a
d

e
r.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

10
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he R

andom
 C

lass

•
A

 program
 m

ay need to produce a random
 num

ber

•
T

he R
a

n
d

o
m

class provides m

ethods to sim
ulate a

ra
n

d
o

m
 n

u
m

b
e

r g
e

n
e

ra
to

r

•
T

he n
e

xtIn
t

m
ethod returns a random

 num
ber from

the entire spectrum

 of
 in

t
values

•
U

sually, the num
ber m

ust be
sca

le
d and sh

ifte
d into a

particular range to be useful

•
S

ee F
lip

.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

11
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he R

andom
 C

lass

E
xpression

M
a

th
.a

b
s (ra

n
d

.n
e

w
In

t()) %
 6

 +
 1

M
a

th
.a

b
s (ra

n
d

.n
e

w
In

t()) %
 1

0
 +

 1

M
a

th
.a

b
s (ra

n
d

.n
e

w
In

t()) %
 1

0
1

M
a

th
.a

b
s (ra

n
d

.n
e

w
In

t()) %
 1

1
 +

 2
0

M
a

th
.a

b
s (ra

n
d

.n
e

w
In

t()) %
 1

1
 - 5

R
ange

1 to 6

1 to 10

0 to 100

20 to 30

-5 to 5

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

12
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

R
eferences

•
A

n object reference holds the m
em

ory address of an
object

 C
h

e
ss_

P
ie

ce
 b

ish
o

p
1

 =
 n

e
w

 C
h

e
ss_

P
ie

ce
();

•
A

ll interaction w
ith an object occurs through a reference

variable

•
R

eferences have an effect on actions such as assignm
ent

b
ish

o
p

1

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

13
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
ssignm

ent

•
T

he act of assignm
ent takes a copy of a value and stores

it in a variable

•
F

or prim
itive types:

 n
u

m
2

 =
 n

u
m

1
;

B
efore

n
u

m
1

5

n
u

m
2

12

A
fter

n
u

m
1

5

n
u

m
2

5

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

14
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

R
eference A

ssignm
ent

•
F

or object references, the value of the m
em

ory location
is copied:

 b
ish

o
p

2
 =

 b
ish

o
p

1
;

B
efore

b
ish

o
p

1
b

ish
o

p
2

A
fter

b
ish

o
p

1
b

ish
o

p
2

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

15
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
liases

•
T

w
o or m

ore references that refer to the sam
e object are

called a
lia

se
s of each other

•
T

here is only one copy of the object (and its data), but
w

ith m
ultiple w

ays to access it

•
A

liases can be useful, but should be m
anaged carefully

•
A

ffecting the object through one reference affects it for
all aliases, because they refer to the sam

e object

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

16
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

G
arbage C

ollection

•
W

hen an object no longer has any valid references to it,
it can no longer be accessed by the program

•
It is useless, and therefore called

g
a

rb
a

g
e

•
Java perform

s au
to

m
a

tic g
a

rb
a

g
e

 co
lle

ctio
n periodically,

returning an object's m
em

ory to the system
 for future use

•
In other languages, the program

m
er has the

responsibility for perform
ing garbage collection

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

17
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

M
ethods

•
A

 class contains m
ethods; prior to defining our ow

n
classes, w

e m
ust explore m

ethod definitions

•
W

e've defined the m
a

in

m
ethod m

any tim
es

•
A

ll m
ethods follow

 the sam
e syntax:

re

tu
rn

-typ
e

m

e
th

o
d

-n
a

m
e

 (
p

a
ra

m
e

te
r-list

) {

sta

te
m

e
n

t-list

 }

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

18
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

M
ethods

•
A

 m
ethod definition:

 in
t th

ird
_

p
o

w
e

r (in
t n

u
m

b
e

r) {

 in
t cu

b
e

;

 cu
b

e
 =

 n
u

m
b

e
r * n

u
m

b
e

r * n
u

m
b

e
r;

 re
tu

rn
 cu

b
e

;

 } // m
e

th
o

d
 th

ird
_

p
o

w
e

r

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

19
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

M
ethods

•
A

 m
ethod m

ay contain
lo

ca
l d

e
cla

ra
tio

n
s as w

ell as
executable statem

ents

•
V

ariables declared locally can only be used locally

•
T

he th
ird

_
p

o
w

e
r

m
ethod could be w

ritten w
ithout

any local variables:

 in
t th

ird
_

p
o

w
e

r (in
t n

u
m

b
e

r) {

 re
tu

rn
 n

u
m

b
e

r * n
u

m
b

e
r * n

u
m

b
e

r;

 } // m
e

th
o

d
 th

ird
_

p
o

w
e

r

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

20
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he return S

tatem
ent

•
T

he re
tu

rn
 typ

e of a m
ethod indicates the type of value

that the m
ethod sends back to the calling location

•
A

 m
ethod that does not return a value (such as

 m
a

in
)

has a vo
id

return type

•
T

he re
tu

rn
 sta

te
m

e
n

t specifies the value that w
ill be

returned

•
Its expression m

ust conform
 to the return type

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

21
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

M
ethod F

low
 of C

ontrol

•
T

he m
a

in

m
ethod is invoked by the system

 w
hen you

subm
it the bytecode to the interpreter

•
E

ach m
ethod call returns to the place that called it

m
ain

m
ethod1

m
ethod2

m
e

th
o

d
1

();

m
e

th
o

d
2

();

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

22
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
aram

eters

•
A

 m
ethod can be defined to accept zero or m

ore
param

eters

•
E

ach param
eter in the param

eter list is specified by its
type and nam

e

•
T

he param
eters in the m

ethod definition are called
fo

rm
a

l p
a

ra
m

e
te

rs

•
T

he values passed to a m
ethod w

hen it is invoked are
called a

ctu
a

l p
a

ra
m

e
te

rs

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

23
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
aram

eters

•
W

hen a param
eter is passed, a copy of the value is m

ade
and assigned to the form

al param
eter

•
B

oth prim
itive types and object references can be passed

as param
eters

•
W

hen an object reference is passed, the form
al param

eter
becom

es an alias of the actual param
eter

•
S

ee P
a

ra
m

e
te

r_
P

a
ssin

g
.ja

va

•
U

sually, w
e w

ill avoid putting m
ultiple m

ethods in the
class that contains the

 m
a

in

m
ethod

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

24
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

D
efining C

lasses

•
T

he syntax for defining a class is:

 cla
ss

cla
ss-n

a
m

e
 {

d

e
cla

ra
tio

n
s

co

n
stru

cto
rs

m

e
th

o
d

s

 }

•
T

he variables, constructors, and m
ethods of a class are

generically called me
m

b
e

rs of the class

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

25
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

D
efining C

lasses

 cla
ss A

cco
u

n
t {

 in
t a

cco
u

n
t_

n
u

m
b

e
r;

 d
o

u
b

le
 b

a
la

n
ce

;

 A
cco

u
n

t (in
t a

cco
u

n
t, d

o
u

b
le

 in
itia

l) {

 a
cco

u
n

t_
n

u
m

b
e

r =
 a

cco
u

n
t;

 b
a

la
n

ce
 =

 in
itia

l;

 } // co
n

stru
cto

r A
cco

u
n

t

 vo
id

 d
e

p
o

sit (d
o

u
b

le
 a

m
o

u
n

t) {

 b
a

la
n

ce
 =

 b
a

la
n

ce
 +

 a
m

o
u

n
t;

 } // m
e

th
o

d
 d

e
p

o
sit

 } // cla
ss A

cco
u

n
t

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

26
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
onstructors

•
A

 constructor:

–
is a special m

ethod that is used to set up a new
ly created object

–
often sets the initial values of variables

–
has the sam

e nam
e as the class

–
does not return a value

–
has no return type, not even

 vo
id

•
T

he program
m

er does not have to define a constructor
for a class

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

27
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
lasses and O

bjects

•
A

 class defines the data types for an object, but a class
does not store data values

•
E

ach object has its ow
n unique data space

•
T

he variables defined in a class are called
in

sta
n

ce

va
ria

b
le

s because each instance of the class has its ow
n

•
A

ll m
ethods in a class have access to all instance

variables of the class

•
M

ethods are shared am
ong all objects of a class

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

28
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
lasses and O

bjects

C
lass

O
bjects

in
t a

cco
u

n
t_

n
u

m
b

e
r

d
o

u
b

le
 b

a
la

n
ce

a
cco

u
n

t_
n

u
m

b
e

r

b
a

la
n

ce

2
9

0
8

3
7

1

5
7

3
.2

1

a
cco

u
n

t_
n

u
m

b
e

r

b
a

la
n

ce

4
1

1
3

7
8

7

9
2

1
1

.8
4

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

29
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

E
ncapsulation

•
Y

ou can take one of tw
o view

s of an object:

–
internal - the structure of its data, the algorithm

s used by its
m

ethods

–
external - the interaction of the object w

ith other objects in the
program

•
F

rom
 the external view

, an object is an
e

n
ca

p
su

la
te

d
entity, providing a set of specific services

•
T

hese services define the
in

te
rfa

ce to the object

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

30
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

E
ncapsulation

•
A

n object should be self-governing; any changes to the
object's state (its variables) should be accom

plished by
that object's m

ethods

•
W

e should m
ake it difficult, if not im

possible, for
another object to "reach in" and alter an object's state

•
T

he user, or clie
n

t, of an object can request its services,
but it should not have to be aw

are of how
 those services

are accom
plished

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

31
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

E
ncapsulation

•
A

n encapsulated object can be thought of as a
b

la
ck b

o
x;

its inner w
orkings are hidden to the client

client

to
m

s_
sa

vin
g

s
d

e
p

o
sit

w
ith

d
ra

w

a
d

d
_

in
te

re
st

p
ro

d
u

ce
_

sta
te

m
e

n
t

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

32
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
bstraction

•
E

ncapsulation is a pow
erful abstraction

•
A

n a
b

stra
ctio

n hides the right details at the right tim
e

•
W

e use abstractions every day:

–
driving a car

–
using a com

puter

•
E

ncapsulation m
akes an object easy to m

anage m
entally

because its interaction w
ith clients is lim

ited to a set of
w

ell-defined services

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

33
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

V
isibility M

odifiers

•
W

e accom
plish encapsulation through the appropriate

use of visib
ility m

o
d

ifie
rs

•
A

 m
o

d
ifie

r is a Java reserved w
ord that specifies

particular characteristics of a program
m

ing construct

•
W

e've used the m
odifier

 fin
a

l
to define a constant

•
Java has three visibility m

odifiers:
p

u
b

lic
, p

riva
te

,
and p

ro
te

cte
d

•
W

e w
ill discuss the p

ro
te

cte
d

m

odifier later

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

34
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

V
isibility M

odifiers

•
M

em
bers of a class that are declared w

ith
p

u
b

lic
visib

ility can be accessed from
 anyw

here

•
M

em
bers of a class that are declared w

ith
p

riva
te

visib

ility can only be accessed from
 inside the class

•
M

em
bers declared w

ithout a visibility m
odifier have

d
e

fa
u

lt visib
ility and can be accessed by any class in the

sam
e package

•
Java m

odifiers are discussed in detail in A
ppendix F

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

35
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

V
isibility M

odifiers

•
A

s a general rule, no object's data should be declared
w

ith public visibility

•
M

ethods that provide the object's services are usually
declared w

ith public visibility so that they can be
invoked by clients

•
P

ublic m
ethods are also called

se
rvice

 m
e

th
o

d
s

•
O

ther m
ethods, called

su
p

p
o

rt m
e

th
o

d
s, can be defined

that assist the service m
ethods; they should not be

declared w
ith public visibility

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

36
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
lasses and O

bjects

•
S

ee T
u

n
e

s.ja
va

m
a

in

m
u

sic

a
d

d
_

cd
s

p
rin

t

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

37
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he static M

odifier

•
T

he sta
tic

m
odifier can be applied to variables or

m
ethods

•
It associates a variable or m

ethod w
ith the class rather

than an object

•
T

his approach is a distinct departure from
 the norm

al
w

ay of thinking about objects

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

38
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

S
tatic V

ariables

•
N

orm
ally, each object has its ow

n data space

•
If a variable is declared as static, only one copy of the
variable exists for all objects of the class

 p
riva

te
 sta

tic in
t co

u
n

t;

•
C

hanging the value of a static variable in one object
changes it for all others

•
S

tatic variables are som
etim

es called
cla

ss va
ria

b
le

s

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

39
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

S
tatic M

ethods

•
N

orm
ally, w

e invoke a m
ethod through an instance (an

object) of a class

•
If a m

ethod is declared as static, it can be invoked
through the class nam

e; no object needs to exist

•
F

or exam
ple, the M

a
th

class in the ja

va
.la

n
g

package contains several static m

athem
atical operations

 M
a

th
.a

b
s (n

u
m

)
 -- absolute value

 M
a

th
.sq

rt (n
u

m
)

 -- square root

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

40
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

S
tatic M

ethods

•
T

he m
a

in

m
ethod is static; it is invoked by the system

w

ithout creating an object

•
S

tatic m
ethods cannot reference instance variables,

because instance variables don't exist until an object
exists

•
H

ow
ever, they can reference static variables or local

variables

•
S

tatic m
ethods are som

etim
es called

cla
ss m

e
th

o
d

s

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

41
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

O
verloaded M

ethods

•
M

e
th

o
d

 o
ve

rlo
a

d
in

g is the process of using the sam
e

m
ethod nam

e for m
ultiple m

ethods

•
T

he sig
n

a
tu

re of each overloaded m
ethod m

ust be
unique

•
T

he signature is based on the num
ber, type, and order of

the param
eters

•
T

he com
piler m

ust be able to determ
ine w

hich version of
the m

ethod is being invoked by analyzing the param
eters

•
T

he return type of the m
ethod is not

 part of the signature

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

42
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

O
verloaded M

ethods

•
T

he p
rin

tln

m
ethod is overloaded:

 p
rin

tln
 (S

trin
g

 s)

 p
rin

tln
 (in

t i)

 p
rin

tln
 (d

o
u

b
le

 d
)

etc.

•
T

he lines

 S
yste

m
.o

u
t.p

rin
tln

 ("T
h

e
 to

ta
l is:");

 S
yste

m
.o

u
t.p

rin
tln

 (to
ta

l);

invoke different versions of the prin
tln

m

ethod

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

43
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

O
verloaded M

ethods

•
C

onstructors are often overloaded to provide m
ultiple

w
ays to set up a new

 object

 A
cco

u
n

t (in
t a

cco
u

n
t) {

 a
cco

u
n

t_
n

u
m

b
e

r =
 a

cco
u

n
t;

 b
a

la
n

ce
 =

 0
.0

;

 } // co
n

stru
cto

r A
cco

u
n

t

 A
cco

u
n

t (in
t a

cco
u

n
t, d

o
u

b
le

 in
itia

l) {

 a
cco

u
n

t_
n

u
m

b
e

r =
 a

cco
u

n
t;

 b
a

la
n

ce
 =

 in
itia

l;

 } // co
n

stru
cto

r A
cco

u
n

t

•
S

ee C
a

sin
o

.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

44
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
lasses and O

bjects

•
S

ee P
u

rch
a

se
_

P
o

w
e

r.ja
va

jimb
o

b

b
e

a
n

s
fra

n
ks

n
a

m
e

"B
o

b
"

M
a

n
a

g
e

r
P

u
rch

a
se

_
P

o
w

e
r

n
a

m
e

"Jim
"

M
a

n
a

g
e

r

n
a

m
e

"b
e

a
n

s"

S
to

ck_
Ite

m

p
ro

d
u

ct_
b

u
ye

r

n
a

m
e

"fra
n

ks"

S
to

ck_
Ite

m

p
ro

d
u

ct_
b

u
ye

r

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 4

45
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
lasses and O

bjects

•
S

ee S
to

rm
.ja

va

d
ro

p
1

d
ro

p
2

d
ro

p
3

d
ro

p
4

d
ro

p
5

S
to

rm

cu
rre

n
t_

size
1

8

cu
rre

n
t_

size
4

cu
rre

n
t_

size
1

2

cu
rre

n
t_

size
7

cu
rre

n
t_

size
2

4

