
Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

1
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

M
ore P

rogram
m

ing C
onstructs -- Introduction

•
W

e can now
 exam

ine som
e additional program

m
ing

concepts and constructs

•
C

hapter 5 focuses on:

–
internal data representation

–
conversions betw

een one data type and another

–
m

ore operators

–
m

ore selection statem
ents

–
m

ore repetition statem
ents

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

2
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Internal D
ata R

epresentation

•
W

e discussed earlier that every piece of inform
ation

stored on a com
puter is represented as binary values

•
W

hat is represented by the follow
ing binary string?

0
1

1
0

0
0

0
1

0
0

1
0

1
0

•
Y

ou can't tell just from
 the bit string itself.

•
W

e take specific binary values and apply an
interpretation to them

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

3
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

R
epresenting Integers

•
T

here are four types of integers in Java, each providing a
different bits to store the value

•
E

ach has a sign bit. If it is 1, the num
ber is negative; if

it is 0, the num
ber is positive

byte

short

int

long

s
7 bits

s
15 bits

s
31 bits

s
63 bits

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

4
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
w

o's C
om

plem
ent

•
Integers are stored in

sig
n

e
d

 tw
o

's co
m

p
le

m
e

n
t

 form
at

•
A

 positive value is a straightforw
ard binary num

ber

•
A

 negative value is represented by inverting all of the
bits of the corresponding positive value, then adding 1

•
T

o "decode" a negative value, invert all of the bits and
add 1

•
U

sing tw
o's com

plem
ent m

akes internal arithm
etic

processing easier

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

5
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
w

o's C
om

plem
ent

•
T

he num
ber 25 is represented in 8 bits (

b
yte

) as

0
0

0
1

1
0

0
1

•
T

o represent -25, first invert all of the bits

1
1

1
0

0
1

1
0

then add 1

1
1

1
0

0
1

1
1

•
N

ote that the sign bit reversed, indicating the num
ber is

negative

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

6
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

O
verflow

 and U
nderflow

•
S

toring num
eric values in a fixed storage size can lead to

overflow
 and underflow

 problem
s

•
O

ve
rflo

w occurs w
hen a num

ber grow
s too large to fit in

its allocated space

•
U

n
d

e
rflo

w occurs w
hen a num

ber shrinks too sm
all to fit

in its allocated space

•
S

ee O
ve

rflo
w

.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

7
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

R
epresenting F

loating P
oint V

alues

•
A

 decim
al (base 10) floating point value can be defined

by the follow
ing equation

sig
n * m

a
n

tissa * 10 e
xp

o
n

e
n

t

•
w

here

–
sig

n is either 1 or -1

–
m

a
n

tissa is a positive value that represents the significant digits
of the num

ber

–
e

xp
o

n
e

n
t is a value that indicates how

 the decim
al point is

shifted relative to the m
antissa

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

8
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

R
epresenting F

loating P
oint V

alues

•
F

or exam
ple, the num

ber -843.977 can be represented by

-1 * 843977 * 10 -3

•
F

loating point num
bers can be represented in binary the

sam
e w

ay, except that the m
antissa is a binary num

ber
and the base is 2 instead of 10

sign * m
antissa * 2 exponent

•
F

loating point values are stored by storing each of these
com

ponents in the space allotted

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

9
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

R
epresenting C

haracters

•
A

s described earlier, characters are represented
according to the U

nicode C
haracter S

et

•
T

he character set m
atches a unique num

ber to each
character to be represented

•
S

toring the character is therefore as sim
ple as storing the

binary version of the num
ber that represents it

•
F

or exam
ple, the character

'z'
 has the U

nicode value
122, w

hich is represented in 16 bits as

0
0

0
0

0
0

0
0

0
1

1
1

1
0

1
0

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

10
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

R
epresenting C

haracters

•
B

ecause they are stored as num
bers, Java lets you

perform
 som

e arithm
etic processing on characters

•
F

or exam
ple, because 'A

' is stored as U
nicode value 65,

the statem
ent

 ch
a

r ch
 =

 'A
' +

 5
;

w
ill store the character

'F
'

 in ch
 (U

nicode value 70)

•
T

his relationship is occasionally helpful

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

11
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
onversions

•
E

ach data value and variable is associated w
ith a

particular data type

•
It is som

etim
es necessary to convert a value of one data

type to another

•
N

ot all conversions are possible. F
or exam

ple, boolean
values cannot be converted to any other type and vice
versa

•
E

ven if a conversion is possible, w
e need to be careful

that inform
ation is not lost in the process

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

12
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

W
idening C

onversions

•
W

id
e

n
in

g
 co

n
ve

rsio
n

s are generally safe because they go
from

 a sm
aller data space to a larger one

•
T

he w
idening conversions are:

F
rom

byte
short
char
int
long
float

T
o

short, int, long, float, or double
int, long, float, or double
int, long, float, or double
long, float, or double
float or double
double

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

13
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

N
arrow

ing C
onversions

•
N

a
rro

w
in

g
 co

n
ve

rsio
n

s are m
ore dangerous because they

usually go from
 a sm

aller data space to a larger one

•
T

he narrow
ing conversions are:

F
rom

byte
short
char
int
long
float
double

T
o

char
byte or char
byte or short
byte, short, or char
byte, short, char, or int
byte, short, char, int or long
byte, short, char, int, long, or float

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

14
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
erform

ing C
onversions

•
In Java, conversion betw

een one data type and another
can occur three w

ays

•
A

ssig
n

m
e

n
t co

n
ve

rsio
n - w

hen a value of one type is
assigned to a variable of another type

•
A

rith
m

e
tic p

ro
m

o
tio

n - occurs autom
atically w

hen
operators m

odify the types of their operands

•
C

a
stin

g - an operator that forces a value to another type

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

15
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
ssignm

ent C
onversion

•
F

or exam
ple, if m

o
n

e
y is a flo

a
t

 variable and
d

o
lla

rs
 is an in

t
 variable (storing 82), then

 m
o

n
e

y =
 d

o
lla

rs;

converts the value 82 to 82.0 w
hen it is stored

•
T

he value in do
lla

rs
 is not actually changed

•
O

nly w
idening conversions are perm

itted through
assignm

ent

•
A

ssignm
ent conversion can also take place w

hen passing
param

eters (w
hich is a form

 of assignm
ent)

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

16
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
rithm

etic P
rom

otion

•
C

ertain operators require consistent types for their
operands

•
F

or exam
ple, if su

m
 is a flo

a
t

 variable and co
u

n
t

 is
an in

t
 variable, then the statem

ent

 re
su

lt =
 su

m
 / co

u
n

t;

internally converts the value in
co

u
n

t
 to a flo

a
t

 then
perform

s the division, producing a floating point result

•
T

he value in co
u

n
t

 is not changed

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

17
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
asting

•
A

 cast is an operator that is specified by a type nam
e in

parentheses

•
It is placed in front of the value to be converted

•
T

he follow
ing exam

ple truncates the fractional part of
the floating point value in mo

n
e

y and stores the integer
portion in d

o
lla

rs

 d
o

lla
rs =

 (in
t) m

o
n

e
y;

•
T

he value in m
o

n
e

y is not changed

•
If a conversion is possible, it can be done through a cast

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

18
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

M
ore O

perators

•
W

e've seen several operators of various types:
arithm

etic, equality, relational

•
T

here are m
any m

ore in Java to m
ake use of:

–
increm

ent and decrem
ent operators

–
logical operators

–
assignem

ent operators

–
the conditional operator

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

19
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he Increm

ent and D
ecrem

ent O
perators

•
T

he in
cre

m
e

n
t o

p
e

ra
to

r (+
+

) adds one to its integer or
floating point operand

•
T

he d
e

cre
m

e
n

t o
p

e
ra

to
r (--) subtracts one

•
T

he statem
ent

 co
u

n
t+

+
;

is essentially equivalent to

 co
u

n
t =

 co
u

n
t +

 1
;

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

20
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he Increm

ent and D
ecrem

ent O
perators

•
T

he increm
ent and decrem

ent operators can be applied in
prefix (before the variable) or postfix (after the variable)
form

•
W

hen used alone in a statem
ent, the prefix and postfix

form
s are basically equivalent. T

hat is,

 co
u

n
t+

+
;

is equivalent to

 +
+

co
u

n
t;

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

21
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he Increm

ent and D
ecrem

ent O
perators

•
W

hen used in a larger expression, the prefix and postfix
form

s have a different effect

•
In both cases the variable is increm

ented (decrem
ented)

•
B

ut the value used in the larger expression depends on
the form

E
xpression

co
u

n
t+

+
+

+
co

u
n

t
co

u
n

t--
--co

u
n

t

O
peration

add 1
add 1

subtract 1
subtract 1

V
alue of E

xpression

old value
new

 value
old value
new

 value

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

22
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he Increm

ent and D
ecrem

ent O
perators

•
If co

u
n

t
 currently contains 45, then

 to
ta

l =
 co

u
n

t+
+

;

assigns 45 to tota
l

 and 46 to co
u

n
t

•
If co

u
n

t
 currently contains 45, then

 to
ta

l =
 +

+
co

u
n

t;

assigns the value 46 to both
to

ta
l

 and co
u

n
t

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

23
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he Increm

ent and D
ecrem

ent O
perators

•
If sum

 contains 25, then the statem
ent

 S
yste

m
.o

u
t.p

rin
tln

 (su
m

+
+

 +
 " " +

 +
+

su
m

 +

 " " +
 su

m
 +

 " " +
 su

m
--);

prints the follow
ing result:

 2
5

 2
7

 2
7

 2
7

and sum
 contains 26 after the line is com

plete

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

24
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Logical O
perators

•
T

here are three logical operators in Java:

•
T

hey all take boolean operands and produce boolean
results

•
Logical N

O
T

 is unary (one operand), but logical A
N

D

and O
R

 are binary (tw
o operands)

O
perator

!&
&

||

O
peration

Logical N
O

T
Logical A

N
D

Logical O
R

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

25
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Logical N
O

T

•
T

he logical N
O

T
 is also called logical negation or logical

com
plem

ent

•
If a

 is true, !a
 is false; if a

 is false, then !a
 is true

•
Logical expressions can be show

n using
tru

th
 ta

b
le

s

a

false
true

!atrue
false

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

26
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Logical A
N

D

•
T

he expression a &
&

 b
 is true if both a and b

 are true,
and false otherw

ise

•
T

ruth tables show
 all possible com

binations of all term
s

a

false
false
true
true

b

false
true
false
true

a
 &

&
 b

false
false
false
true

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

27
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Logical O
R

•
T

he expression a || b
 is true if a

 or b
 or both are true,

and false otherw
ise

a

false
false
true
true

b

false
true
false
true

a
 || b

false
true
true
true

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

28
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Logical O
perators

•
C

onditions in selection statem
ents and loops can use

logical operators to form
 m

ore com
plex expressions

 if (to
ta

l <
 M

A
X

 &
&

 !fo
u

n
d

)

 S
yste

m
.o

u
t.p

rin
tln

 ("P
ro

ce
ssin

g
...");

•
Logical operators have precedence relationships betw

een
them

selves and other operators

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

29
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Logical O
perators

•
F

ull expressions can be evaluated using truth tables

to
ta

l <
 M

A
X

false
false
true
true

fo
u

n
d

false
true
false
true

!fo
u

n
d

true
false
true
false

to
ta

l <
 M

A
X

 &
&

 !fo
u

n
d

false
false
true
false

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

30
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
ssignm

ent O
perators

•
O

ften w
e perform

 an operation on a variable, then store
the result back into that variable

•
Java provides assig

n
m

e
n

t o
p

e
ra

to
rs that sim

plify that
process

•
F

or exam
ple, the statem

ent

 n
u

m
 +

=
 co

u
n

t;

is equivalent to

 n
u

m
 =

 n
u

m
 +

 co
u

n
t;

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

31
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
ssignm

ent O
perators

•
T

here are m
any such assignm

ent operators, alw
ays

w
ritten as op

=
 , such as:

O
perator

+
=

-=*=/=%
=

E
xam

ple

x +
=

 y
x -=

 y
x *=

 y
x /=

 y
x %

=
 y

E
quivalent T

o

x =
 x +

 y
x =

 x - y
x =

 x * y
x =

 x / y
x =

 x %
 y

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

32
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
ssignm

ent O
perators

•
T

he right hand side of an assignm
ent operator can be a

com
plete expression

•
T

he entire right-hand expression is evaluated first, then
com

bined w
ith the additional operation

•
T

herefore

 re
su

lt /=
 (to

ta
l-M

IN
) %

 n
u

m
;

is equivalent to

 re
su

lt =
 re

su
lt / ((to

ta
l-M

IN
) %

 n
u

m
);

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

33
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he C

onditional O
perator

•
Java has a conditional operator that evaluates a boolean
condition that determ

ines w
hich of tw

o expressions is
evaluated

•
T

he result of the chosen expression is the result of the
entire conditional operator

•
Its syntax is:

co

n
d

itio
n

 ?

e
xp

re
ssio

n
1

 :
e

xp
re

ssio
n

2

•
If the co

n
d

itio
n is true, exp

re
ssio

n
1 is evaluated; if it is

false, e
xp

re
ssio

n
2 is evaluated

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

34
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he C

onditional O
perator

•
It is sim

ilar to an if-else statem
ent, except that it is an

expression that returns a value

•
F

or exam
ple:

 la
rg

e
r =

 (n
u

m
1

 >
 n

u
m

2
) ?

 n
u

m
1

 : n
u

m
2

;

•
If n

u
m

1 is greater that nu
m

2, then n
u

m
1 is assigned to

la
rg

e
r

; otherw
ise, nu

m
2 is assigned to larg

e
r

•
T

he conditional operator is
te

rn
a

ry, m
eaning it requires

three operands

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

35
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he C

onditional O
perator

•
A

nother exam
ple:

•S
yste

m
.o

u
t.p

rin
tln

 ("Y
o

u
r ch

a
n

g
e

 is " +
 co

u
n

t +

 (co
u

n
t =

=
 1

) ?
 "D

im
e

" : "D
im

e
s");

•
If co

u
n

t
 equals 1, "D

im
e

"
 is printed, otherw

ise
"D

im
e

s"
 is printed

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

36
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
nother S

election S
tatem

ent

•
T

he if
 and the if-e

lse
 statem

ents are selection
statem

ents, allow
ing us to select w

hich statem
ent to

perform
 next based on som

e boolean condition

•
A

nother selection construct, called the
sw

itch
 sta

te
m

e
n

t,
provides another w

ay to choose the next action

•
T

he sw
itch

 statem
ent evaluates an expression, then

attem
pts to m

atch the result to one of a series of values

•
E

xecution transfers to statem
ent list associated w

ith the
first value that m

atches

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

37
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he sw

itch
 S

tatem
ent

•
T

he syntax of the sw
itch statem

ent is:

 sw
itch

 (
e

xp
re

ssio
n

) {

 ca
se

va

lu
e

1
:

sta

te
m

e
n

t-list1

 ca
se

va

lu
e

2
:

sta

te
m

e
n

t-list2

 ca
se

 …

 }

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

38
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he sw

itch
 S

tatem
ent

•
T

he expression m
ust evaluate to an integral value, such

as an integer or character

•
T

he b
re

a
k

 statem
ent is usually used to term

inate the
statem

ent list of each case, w
hich causes control to jum

p
to the end of the sw

itch
 statem

ent and continue

•
A

 d
e

fa
u

lt
 case can be added to the end of the list of

cases, and w
ill execute if no other case m

atches

•
S

ee V
o

w
e

ls.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

39
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

M
ore R

epetition C
onstructs

•
In addition to w

h
ile

loops, Java has tw

o other
constructs used to perform

 repetition:

•
the d

o
 statem

ent

•
the fo

r
 statem

ent

•
E

ach loop type has its ow
n unique characteristics

•
Y

ou m
ust choose w

hich loop type to use in each
situation

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

40
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he d

o
 S

tatem
ent

•
T

he d
o

 sta
te

m
e

n
t has the follow

ing syntax:

 d
o

sta

te
m

e
n

t

 w
h

ile
 (

co
n

d
itio

n
);

•
T

he sta
te

m
e

n
t is executed until the

co
n

d
itio

n becom
es

false

•
It is sim

ilar to a w
h

ile
 statem

ent, except that its
term

ination condition is evaluated after the loop body

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

41
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he d

o
 S

tatem
ent

statem
ent

condition

false

true

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

42
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he d

o
 S

tatem
ent

•
S

ee D
ice

.ja
va

•
T

he key difference betw
een a

d
o

 loop and a wh
ile

 loop
is that the body of the

d
o

 loop w
ill execute at least once

•
If the condition of a wh

ile
 loop is false initially, the

body of the loop is never executed

•
A

nother w
ay to put this is that a

w
h

ile
 loop w

ill
execute zero or m

ore tim
es and a

d
o

 loop w
ill execute

one or m
ore tim

es

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

43
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he fo

r
 S

tatem
ent

•
T

he syntax of the for lo
o

p is

 fo
r (

in
tia

liza
tio

n
;

co
n

d
itio

n
;

in
cre

m
e

n
t

)

sta

te
m

e
n

t
;

w
hich is equivalent to

 in
itia

liza
tio

n
;

 w
h

ile
 (

co
n

d
itio

n
) {

sta

te
m

e
n

t
;

in

cre
m

e
n

t
;

 }

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

44
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he fo

r
 S

tatem
ent

•
Like a w

h
ile

 loop, the condition of a for
 statem

ent is
tested prior to executing the loop body

•
T

herefore, a for
 loop w

ill execute zero or m
ore tim

es

•
It is w

ell suited for executing a specific num
ber of tim

es,
know

n in advance

•
N

ote that the initialization portion is only perform
ed

once, but the increm
ent portion is executed after each

iteration

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

45
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he fo

r
 S

tatem
ent

statem
ent

condition
false

true

initialization

increm
ent

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

46
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he fo

r
 S

tatem
ent

•
E

xam
ples:

 fo
r (in

t co
u

n
t=

1
; co

u
n

t <
 7

5
; co

u
n

t+
+

)

 S
yste

m
.o

u
t.p

rin
tln

 (co
u

n
t);

 fo
r (in

t n
u

m
=

5
; n

u
m

 <
=

 to
ta

l; n
u

m
 *=

 2
) {

 su
m

 +
=

 n
u

m
;

 S
yste

m
.o

u
t.p

rin
tln

 (su
m

);

 }

•
S

ee D
ice

2
.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

47
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he fo

r
 S

tatem
ent

•
E

ach expression in the header of a
fo

r
 loop is optional

–
If the initialization is left out, no initialization is perform

ed

–
If the condition is left out, it is alw

ays considered to be true, and
therefore m

akes an infinite loop

–
If the increm

ent is left out, no increm
ent opertion is perform

ed

•
B

oth sem
i-colons are alw

ays required

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

48
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he b

re
a

k
 and co

n
tin

u
e

 statem
ents

•
T

he b
re

a
k

 statem
ent, w

hich w
e used w

ith
sw

itch

statem
ents, can also be used inside a loop

•
W

hen the bre
a

k
 statem

ent is executed, control jum
ps to

the statem
ent after the loop (the condition is not

evaluated again)

•
A

 sim
ilar construct, the co

n
tin

u
e

 statem
ent, can also

be executed in a loop

•
W

hen the co
n

tin
u

e
 statem

ent is executed, control
jum

ps to the end of the loop and the condition is
evaluated

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 5

49
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he b

re
a

k
 and co

n
tin

u
e

 S
tatem

ents

•
T

hey can calso be used to jum
p to a line in your program

w

ith a particular la
b

e
l

•
Jum

ping from
 one point in the program

 to another in an
unstructured m

anner is not good practice

•
T

herefore, as a rule of thum
b, avoid the

b
re

a
k

statem

ent except w
hen needed in

sw
itch

 statem
ents,

and avoid the co
n

tin
u

e
 statem

ent altogether

