Java Software Solutions Lewis and Loftus

More Programming Constructs -- Introduction

 We can now examine some additional programming
concepts and constructs

e Chapter 5 focuses on:

Internal data representation

conversions between one data type and another
more operators

more selection statements

more repetition statements

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Internal Data Representation

We discussed earlier that every piece of information
stored on a computer Is represented as binary values

What is represented by the following binary string?
01100001001010
You can't tell just from the bit string itself.

We take specific binary values and apply an
Interpretation to them

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Representing Integers

 There are four types of integers in Java, each providir
different bits to store the value

Each has a sign bit. If itis 1, the number is negative;
it is 0, the number is positive

15 hits
31 bits

[o]gle

O_\._m._u._nm_‘. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Two's Complement
* Integers are stored signed two's complemefarmat

A positive value Is a straightforward binary number

A negative value Is represented by inverting all of the
bits of the corresponding positive value, then adding |

To "decode" a negative value, invert all of the bits anc
add 1

Using two's complement makes internal arithmetic
processing easier

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Two's Complement

« The number 25 is represented in 8 Dugt¢) as
00011001

 To represent -25, first invert all of the bits
11100110

then add 1
11100111

* Note that the sign bit reversed, indicating the number
negative

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Overflow and Underflow

Storing numeric values in a fixed storage size can lea
overflow and underflow problems

Overflowoccurs when a number grows too large to fit|i
its allocated space

Underflowoccurs when a number shrinks too small to
In its allocated space

SeeOverflow.java

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Representing Floating Point Values

A decimal (base 10) floating point value can be define
by the following equation

sign* mantissar 10 exPonent

e where

signis either 1 or -1

mantissas a positive value that represents the significant digj
of the number

exponents a value that indicates how the decimal point is
shifted relative to the mantissa

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Representing Floating Point Values

 For example, the number -843.977 can be represente
-1 * 843977 * 10°

* Floating point numbers can be represented in binary {
same way, except that the mantissa Is a binary numb
and the base is 2 instead of 10

sign * mantissa * 2*Ponent

* Floating point values are stored by storing each of the
components in the space allotted

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Representing Characters

As described earlier, characters are represented
according to the Unicode Character Set

 The character set matches a unique number to each
character to be represented

Storing the character is therefore as simple as storing
binary version of the number that represents it

For example, the character has the Unicode value
122, which Is represented in 16 bits as

0000000001111010

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Representing Characters

e Because they are stored as numbers, Java lets you
perform some arithmetic processing on characters

 For example, because 'A' is stored as Unicode value
the statement

char ch ='A' + 5;
will store the charactéF' inch (Unicode value 70)

« This relationship is occasionally helpful

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Conversions

Each data value and variable is associated with a
particular data type

It iIs sometimes necessary to convert a value of one d
type to another

Not all conversions are possible. For example, booleg
values cannot be converted to any other type and vice
versa

Even if a conversion is possible, we need to be careft
that information is not lost in the process

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Widening Conversions

* Widening conversionare generally safe because they
from a smaller data space to a larger one

e The widening conversions are:

From To

byte short, int, long, float, or double
short Int, long, float, or double

char Int, long, float, or double

Int long, float, or double

[o]gle float or double

float double

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Narrowing Conversions

e Narrowing conversionare more dangerous because tt
usually go from a smaller data space to a larger one

 The narrowing conversions are:
From T0

byte char

short byte or char

char byte or short

Int byte, short, or char

long byte, short, char, or int

float byte, short, char, int or long
double byte, short, char, int, long, or float

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Performing Conversions

In Java, conversion between one data type and anott
can occur three ways

Assignment conversion when a value of one type Is
assigned to a variable of another type

Arithmetic promotion- occurs automatically when
operators modify the types of their operands

Casting - an operator that forces a value to another t

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Assignment Conversion

 For example, ifmoney is afloat variable and
dollars is anint variable (storing 82), then

money = dollars;

converts the value 82 to 82.0 when it is stored
The value irdollars Is not actually changed

Only widening conversions are permitted through
assignment

e Assignment conversion can also take place when pas
parameters (which is a form of assignment)

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Arithmetic Promotion

Certain operators require consistent types for their
operands

For example, iBumis afloat variable anactount Is
anint variable, then the statement

result = sum / count;

Internally converts the value aount to afloat then
performs the division, producing a floating point result

 The value ircount Is not changed

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Casting

e A castis an operator that is specified by a type name
parentheses

It is placed in front of the value to be converted

The following example truncates the fractional part of

the floating point value imoney and stores the integer
portion indollars

dollars = (int) money;
The value ilTmoney Is not changed

If a conversion Is possible, it can be done through a c

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

More Operators

 We've seen several operators of various types:
arithmetic, equality, relational

 There are many more in Java to make use of:

Increment and decrement operators
logical operators

assignement operators

the conditional operator

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

The Increment and Decrement Operators

e Theincrement operato(++) adds one to its integer or
floating point operand

 Thedecrement operatdr-) subtracts one
 The statement

count++;
IS essentially equivalent to

count = count + 1;

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

The Increment and Decrement Operators

 The increment and decrement operators can be appli
prefix (before the variable) or postfix (after the variabl
form

 When used alone in a statement, the prefix and postfi
forms are basically equivalent. That s,

count++;
IS equivalent to

++count;

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

The Increment and Decrement Operators

When used in a larger expression, the prefix and postji
forms have a different effect

In both cases the variable is incremented (decrement

But the value used in the larger expression depends
the form

Expression Operation Value of Expression

count++ add 1 old value
++count add 1 new value
count-- subtract 1 old value
--count subtract 1 new value

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

The Increment and Decrement Operators

e |If count currently contains 45, then
total = count++;

assigns 45 ttotal and 46 taount

e |If count currently contains 45, then
total = ++count;

assigns the value 46 to bdtdtal andcount

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

The Increment and Decrement Operators

e |f sum contains 25, then the statement

System.out.printin (sum++ + " " + ++sum +

"+sum+" "+ sum--);

prints the following result:
25 27 27 27

and sum contains 26 after the line is complete

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Logical Operators

 There are three logical operators in Java:

Operator Operation

| Logical NOT
&& Logical AND
| Logical OR

They all take boolean operands and produce boolean
results

Logical NOT is unary (one operand), but logical AND
and OR are binary (two operands)

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Logical NOT

 The logical NOT is also called logical negation or logig
complement

If ais true,la Is false; ifa Is false, theha Is true

Logical expressions can be shown ugmugh tables

la

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Logical AND

 The expressioa && b Is true if botha andb are true,
and false otherwise

e Truth tables show all possible combinations of all tern

b a&&hb

false false
true false
false false
true true

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Logical OR

e The expressioa || b Is true ifa orb or both are true
and false otherwise

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Logical Operators

Conditions in selection statements and loops can use
logical operators to form more complex expressions

If (total < MAX && !found)

System.out.printin ("Processing...");

Logical operators have precedence relationships betv
themselves and other operators

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Logical Operators

« Full expressions can be evaluated using truth tables

total < MAX
total < MAX && !'found

false false
false false
true true

true false

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Assignment Operators

Often we perform an operation on a variable, then stc
the result back into that variable

e Java provideassignment operatoithat simplify that
process

For example, the statement
num += count;
IS equivalent to

num = num + count;

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Assignment Operators

e There are many such assignment operators, always
written asop=, such as:

Operator Example Equivalent To

X+=y X=X+Yy
X-=Y X=X-Y
X*=y X=X*Yy
X[=y X=X/y
X %=y X=X%y

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Assignment Operators

The right hand side of an assignment operator can be
complete expression

The entire right-hand expression is evaluated first, thg
combined with the additional operation

Therefore
result /= (total-MIN) % num,;

IS equivalent to

result = result / ((total-MIN) % num);

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

The Conditional Operator

Java has a conditional operator that evaluates a boolg
condition that determines which of two expressions is
evaluated

The result of the chosen expression is the result of the
entire conditional operator

Its syntax Is:

condition ? expressionl . expression2

If the conditionis true,expressionis evaluated; If it is
false,expression2s evaluated

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

The Conditional Operator

It is similar to an if-else statement, except that it is an
expression that returns a value

For example:

larger = (num1 > num2) ? numl : numz2;

If num1is greater thatum2, thennuml is assigned to
larger ; otherwisenum?2 is assigned t@arger

The conditional operator ternary, meaning it requires
three operands

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

The Conditional Operator

* Another example:

System.out.printin ("Your change is " + count +

(count == 1) ? "Dime" : "Dimes");

e If count equals 1'Dime" s printed, otherwise
"Dimes" Is printed

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Another Selection Statement

« Theif and thaf-else statements are selection
statements, allowing us to select which statement to
perform next based on some boolean condition

« Another selection construct, called sheitch statement
provides another way to choose the next action

« Theswitch statement evaluates an expression, then
attempts to match the result to one of a series of valu

 Execution transfers to statement list associated with t
first value that matches

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

The switch Statement

e The syntax of the switch statement is:

switch (expression) {
case valuel
Statement-list1
value2 .

statement-list2

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Theswitch Statement

The expression must evaluate to an integral value, sy
as an integer or character

Thebreak statement is usually used to terminate the
statement list of each case, which causes control to |t
to the end of thewitch statement and continue

A default case can be added to the end of the list @
cases, and will execute If no other case matches

SeeVowels.java

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

More Repetition Constructs

* |n addition towhile loops, Java has two other
constructs used to perform repetition:

 thedo statement
e thefor statement

« Each loop type has its own unique characteristics

e You must choose which loop type to use in each
situation

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thedo Statement

 Thedo statemenhas the following syntax:

do
statement

while (condition);

e Thestatements executed until theonditionbecomes
false

e Itis similar to awhile statement, except that its
termination condition is evaluated after the loop body

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions

Lewis and Loftus

Thedo Statement

'

statement

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thedo Statement

SeeDice.java

The key difference betweerda loop and avhile loop
IS that the body of theo loop will execute at least once

If the condition of avhile loop is false initially, the
body of the loop Is never executed

Another way to put this is thatvehile loop will
execute zero or more times andaloop will execute
one or more times

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thefor Statement

e The syntax of théor loopis

for (intialization , condition

Statement

which is equivalent to

initialization
while (condition) {
Statement ;

increment

increment)

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thefor Statement

Like awhile loop, the condition of &or statement is
tested prior to executing the loop body

Therefore, dor loop will execute zero or more times

It is well suited for executing a specific number of timg
known Iin advance

Note that the initialization portion is only performed
once, but the increment portion is executed after eact
iteration

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thefor

Statement

Initialization

Y

true

Statement

Y

iIncrement

\

Chapter 5

Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thefor Statement
 Examples:

for (int count=1; count < 75; count++)

System.out.printin (count);

for (int num=5; num <= total; num *= 2) {
sum += num;

System.out.printin (sum);

e SeeDice2.java

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thefor Statement

 Each expression in the header dba loop is optional

— If the initialization is left out, no initialization is performed

— If the condition is left out, it is always considered to be true, :
therefore makes an infinite loop

— If the increment is left out, no increment opertion is performe

 Both semi-colons are always required

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thebreak andcontinue statements

Thebreak statement, which we used walvitch
statements, can also be used inside a loop

When thebreak statement is executed, control jumps
the statement after the loop (the condition is not
evaluated again)

A similar construct, theontinue statement, can also
be executed in a loop

When thecontinue statement is executed, control
jumps to the end of the loop and the condition is
evaluated

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thebreak andcontinue Statements

 They can calso be used to jump to a line in your prog
with a particulatabel

e Jumping from one point in the program to another in ¢
unstructured manner is not good practice

 Therefore, as a rule of thumb, avoid tireak
statement except when needeguntch statements,
and avoid theontinue statement altogether

O_\._m.Uﬁmq. 5 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

