
Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

1
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Inheritance -- Introduction

•
A

nother fundam
ental object-oriented technique is called

inheritance, w
hich, w

hen used correctly, supports reuse
and enhances softw

are designs

•
C

hapter 8 focuses on:

–
the concept of inheritance

–
inheritance in Java

–
the p

ro
te

cte
d

 m
odifier

–
adding and m

odifying m
ethods through inheritance

–
creating class hierarchies

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

2
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Inheritance

•
In

h
e

rita
n

ce allow
s a softw

are developer to derive a new

class from
 an existing one

•
T

he existing class is called the
p

a
re

n
t cla

ss, or
su

p
e

rcla
ss, or b

a
se

 cla
ss

•
T

he derived class is called the
ch

ild
 cla

ss or su
b

cla
ss.

•
A

s the nam
e im

plies, the child inherits characteristics of
the parent

•
In program

m
ing, the child class inherits the m

ethods and
data defined for the parent class

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

3
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Inheritance

•
Inheritance relationships are often show

n graphically,
w

ith the arrow
 pointing to the parent class:

•
Inheritance should create an

is-a
 re

la
tio

n
sh

ip, m
eaning

the child is-a m
ore specific version of the parent

V
ehicle

C
ar

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

4
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

D
eriving S

ubclasses

•
In Java, the reserved w

ord
e

xte
n

d
s

 is used to establish
an inheritance relationship

 cla
ss C

a
r e

xte
n

d
s V

e
h

icle
 {

 // cla
ss co

n
te

n
ts

 }

•
S

ee W
o

rd
s.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

5
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he p

ro
te

cte
d

 M
odifier

•
T

he visibility m
odifiers determ

ine w
hich class m

em
bers

get inherited and w
hich do not

•
V

ariables and m
ethods declared w

ith
p

u
b

lic
 visibility

are inherited, and those w
ith
p

riva
te

 visibility are not

•
B

ut p
u

b
lic

 variables violate our goal of encapsulation

•
T

he p
ro

te
cte

d
 visibility m

odifier allow
s a m

em
ber to

be inherited, but provides m
ore protection than

p
u

b
lic

does

•
T

he details of each m
odifier are given in A

ppendix F

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

6
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he su

p
e

r
 R

eference

•
C

onstructors are not inherited, even though they have
public visibility

•
Y

et w
e often w

ant to use the parent's constructor to set
up the "parent's part" of the object

•
T

he su
p

e
r

 reference can be used to refer to the parent
class, and is often used to invoke the parent's constructor

•
S

ee W
o

rd
s2

.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

7
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

D
efined vs. Inherited

•
A

 subtle feature of inheritance is the fact that even if a
m

ethod or variable is not inherited by a child, it is still
d

e
fin

e
d for that child

•
A

n inherited m
em

ber can be referenced directly in the
child class, as if it w

ere declared in the child class

•
B

ut even m
em

bers that are not inherited exist for the
child, and can be referenced indirectly through parent
m

ethods

•
S

ee E
a

tin
g

.ja
va

 and S
ch

o
o

l.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

8
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

O
verriding M

ethods

•
A

 child class can ove
rrid

e the definition of an inherited
m

ethod in favor of its ow
n

•
T

hat is, a child can redefine a m
ethod it inherits from

 its
parent

•
T

he new
 m

ethod m
ust have the sam

e signature as the
parent's m

ethod, but can have different code in the body

•
T

he object type determ
ines w

hich m
ethod is invoked

•
S

ee M
e

ssa
g

e
s.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

9
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

O
verloading vs. O

verriding

•
D

on't confuse the concepts of overloading and overriding

•
O

verloading deals w
ith m

ultiple m
ethods in the sam

e
class w

ith the sam
e nam

e but different signatures

•
O

verriding deals w
ith tw

o m
ethods, one in a parent class

and one in a child class, that have the sam
e signature

•
O

verloading lets you define a sim
ilar operation in

different w
ays for different data

•
O

verriding lets you define a sim
ilar operation in different

w
ays for different object types

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

10
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he su

p
e

r
 R

eference R
evisited

•
T

he su
p

e
r

 reference can be used to invoke any m
ethod

from
 the parent class

•
T

his ability is often helpful w
hen using overridden

m
ethods

•
T

he syntax is:

 su
p

e
r.

m
e

th
o

d
(

p
a

ra
m

e
te

rs
)

•
S

ee Firm
.ja

va
 and A

cco
u

n
ts.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

11
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
lass H

ierarchies

•
A

 child class of one parent can be the parent of another
child, form

ing cla
ss h

ie
ra

rch
ie

s:

B
usiness

S
ervice_B

usiness
R

etail_B
usiness

K
-M

art
M

acy's
K

inko's

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

12
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

C
lass H

ierarchies

•
T

w
o children of the sam

e parent are called
sib

lin
g

s

•
G

ood class design puts all com
m

on features as high in
the hierarchy as is reasonable

•
C

lass hierarchies often have to be extended and m
odified

to keep up w
ith changing needs

•
T

here is no single class hierarchy that is appropriate for
all situations

•
S

ee A
cco

u
n

ts2
.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

13
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

T
he O

b
je

ct
 C

lass

•
A

ll objects are derived from
 the

O
b

je
ct

 class

•
If a class is not explicitly defined to be the child of an
existing class, it is assum

ed to be the child of the
O

b
je

ct
 class

•
T

he O
b

je
ct

 class is therefore the ultim
ate root of all

class hierarchies

•
T

he O
b

je
ct

 class contains a few
 useful m

ethods, such
as to

S
trin

g
()

, w
hich are inherited by all classes

•
S

ee Te
st_

to
S

trin
g

.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

14
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

R
eferences and Inheritance

•
A

n object reference can refer to an object of its class, or
to an object of any class related to it by inheritance

•
F

or exam
ple, if the Ho

lid
a

y
 class is used to derive a

child class called Ch
ristm

a
s

, then a H
o

lid
a

y

reference could actually be used to point to a
C

h
ristm

a
s

 object:

 H
o

lid
a

y d
a

y;

 d
a

y =
 n

e
w

 C
h

ristm
a

s();

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

15
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

R
eferences and Inheritance

•
A

ssigning a predecessor object to an ancestor reference
is considered to be a w

idening conversion, and can be
perform

ed by sim
ple assignm

ent

•
A

ssigning an ancestor object to a predecessor reference
can also be done, but it is considered to be a narrow

ing
conversion and m

ust be done w
ith a cast

•
T

he w
idening conversion is the m

ost useful

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

16
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
olym

orphism

•
A

 p
o

lym
o

rp
h

ic re
fe

re
n

ce is one w
hich can refer to one of

several possible m
ethods

•
S

uppose the Ho
lid

a
y

 class has a m
ethod called

ce
le

b
ra

te
, and the Ch

ristm
a

s
 class overrode it

•
N

ow
 consider the follow

ing invocation:

 d
a

y.ce
le

b
ra

te
();

•
If d

a
y

 refers to a Ho
lid

a
y

 object, it invokes
H

o
lid

a
y

's version of ce
le

b
ra

te
; if it refers to a

C
h

ristm
a

s
 object, it invokes that version

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

17
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
olym

orphism

•
In general, it is the type of the object being referenced,
not the reference type, that determ

ines w
hich m

ethod is
invoked

•
S

ee M
e

ssa
g

e
s2

.ja
va

•
N

ote that, if an invocation is in a loop, the exact sam
e

line of code could execute different m
ethods at different

tim
es

•
P

olym
orphic references are therefore resolved at run-

tim
e, not during com

pilation

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

18
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
olym

orphism

•
N

ote that, because all classes inherit from
 the
O

b
je

ct

class, an Ob
je

ct
 reference can refer to any type of

object

•
A

 V
e

cto
r

 is designed to store
O

b
je

ct
 references

•
T

he in
sta

n
ce

O
f

 operator can be used to determ
ine

the class from
 w

hich an object w
as created

•
S

ee V
a

rie
ty.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 8

19
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
olym

orphism

•
S

ee Firm
2

.ja
va

S
taff_M

em
ber

V
olunteer

E
m

ployeeE
xecutive

H
ourly

