Java Software Solutions Lewis and Loftus

Inheritance -- Introduction

« Another fundamental object-oriented technique is call
Inheritance, which, when used correctly, supports reu
and enhances software designs

Chapter 8 focuses on:

the concept of inheritance

inheritance in Java

theprotected modifier

adding and modifying methods through inheritance
creating class hierarchies

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Inheritance

* Inheritanceallows a software developer to derive a ne
class from an existing one

The existing class is called tparent classor
superclassorbase class

The derived class is called tbkild classor subclass

As the name implies, the child inherits characteristics
the parent

In programming, the child class inherits the methods g
data defined for the parent class

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Inheritance

 Inheritance relationships are often shown graphically,
with the arrow pointing to the parent class:

* Inheritance should create maa relationship meaning
the child is-a more specific version of the parent

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Deriving Subclasses

 |n Java, the reserved woedtends Is used to establish
an inheritance relationship

class Car extends Vehicle {

/| class contents

e SeeWords.java

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Theprotected Modifier

The visibility modifiers determine which class membe
get inherited and which do not

Variables and methods declared wotlblic visibility
are inherited, and those witinivate visibility are not

But public variables violate our goal of encapsulatia

Theprotected visibility modifier allows a member tc
be inherited, but provides more protection thablic
does

The detalls of each modifier are given in Appendix F

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thesuper Reference

Constructors are not inherited, even though they have
public visibility

Yet we often want to use the parent's constructor to s
up the "parent's part" of the object

Thesuper reference can be used to refer to the pare
class, and is often used to invoke the parent's constru

SeeWords2.java

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Defined vs. Inherited

A subtle feature of inheritance Is the fact that even if 4
method or variable is not inherited by a child, it is still
definedfor that child

* An inherited member can be referenced directly in the
child class, as If it were declared in the child class

But even members that are not inherited exist for the
child, and can be referenced indirectly through parent
methods

o SeeEating.java andSchool.java

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Overriding Methods

A child class camverridethe definition of an inherited
method in favor of its own

That Is, a child can redefine a method it inherits from |
parent

The new method must have the same signature as th
parent's method, but can have different code in the bg

The object type determines which method is invoked

SeeMessages.java

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Overloading vs. Overriding

 Don't confuse the concepts of overloading and overrigli

Overloading deals with multiple methods in the same
class with the same name but different signatures

Overriding deals with two methods, one in a parent cl
and one in a child class, that have the same signature

Overloading lets you define a similar operation in
different ways for different data

Overriding lets you define a similar operation in differe
ways for different object types

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Thesuper Reference Revisited

Thesuper reference can be used to invoke any meth
from the parent class

This ability is often helpful when using overridden
methods

The syntax is:

super. method (parameters)

SeeFirm.java andAccounts.java

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Class Hierarchies

e A child class of one parent can be the parent of anoth
child, formingclass hierarchies

Retall Business Service Business

i i o

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Class Hierarchies

e Two children of the same parent are caiéalings

Good class design puts all common features as high
the hierarchy as is reasonable

Class hierarchies often have to be extended and modli
to keep up with changing needs

There Is no single class hierarchy that is appropriate {
all situations

SeeAccounts2.java

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

TheObject Class

All objects are derived from th@bject class

If a class Is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the
Object class

TheObject class is therefore the ultimate root of all
class hierarchies

TheObject class contains a few useful methods, sug
astoString() , which are inherited by all classes

SeeTest_toString.java

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

References and Inheritance

e An object reference can refer to an object of its class,
to an object of any class related to it by inheritance

For example, if th&loliday class is used to derive a
child class calle€hristmas , then aHoliday
reference could actually be used to point to a
Christmas object:

Holiday day;

day = new Christmas();

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

References and Inheritance

e Assigning a predecessor object to an ancestor referel
IS considered to be a widening conversion, and can b
performed by simple assignment

e Assigning an ancestor object to a predecessor referel
can also be done, but it is considered to be a narrowi
conversion and must be done with a cast

e The widening conversion is the most useful

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Polymorphism

* A polymorphic references one which can refer to one ¢
several possible methods

Suppose theloliday class has a method called
celebrate , and theChristmas class overrode it

Now consider the following invocation:
day.celebrate();

If day refers to d&doliday object, it invokes
Holiday 's version otelebrate ; ifitreferstoa
Christmas object, it invokes that version

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Polymorphism

* In general, it is the type of the object being referencec
not the reference type, that determines which method |
iInvoked

SeeMessages?2.java

Note that, if an invocation is in a loop, the exact same
line of code could execute different methods at differe
HES

Polymorphic references are therefore resolved at run;
time, not during compilation

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Polymorphism

* Note that, because all classes inherit fromQbgect
class, arDbject reference can refer to any type of
object

A Vector Is designed to stoi@bject references

« TheinstanceOf operator can be used to determine
the class from which an object was created

e SeeVariety.java

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

Java Software Solutions Lewis and Loftus

Polymorphism

e SeeFirm2.java

Staff Member

Employee

O_\._m.Uﬁmq. 8 Copyright 1997 by John Lewis and William Loftus. All rights reserved.

