
Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

1
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

E
nhanced C

lass D
esign -- Introduction

•
W

e now
 exam

ine several features of class design and
organization that can im

prove reusability and system

elegance

•
C

hapter 9 focuses on:

–
abstract classes

–
form

al Java interfaces

–
packages

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

2
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
bstract C

lasses

•
A

n a
b

stra
ct cla

ss cannot be instantiated

•
It is used in a class hierarchy to organize com

m
on

features at appropriate levels

•
A

n a
b

stra
ct m

e
th

o
d has no im

plem
entation, just a nam

e
and signature

•
A

n abstract class often contains abstract m
ethods

•
A

ny class that contains an abstract m
ethod is by

definition abstract

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

3
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
bstract C

lasses

•
T

he m
odifier ab

stra
ct

 is used to define abstract
classes and m

ethods

•
T

he children of the abstract class are expected to define
im

plem
entations for the abstract m

ethods in w
ays

appropriate for them

•
If a child class does not define all abstract m

ethods of the
parent, then the child is also abstract

•
A

n abstract class is often too generic to be of use by
itself

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

4
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
bstract C

lasses

•
S

ee D
in

n
e

r.ja
va

F
ood

P
epperoni

F
ranks

B
eans

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

5
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
bstract C

lasses

•
S

ee P
rin

te
r.ja

va

F
ile

T
ext_F

ile
B

inary_F
ile

Im
age_F

ile

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

6
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

A
bstract C

lasses

•
A

n abstract m
ethod cannot be declared as

fin
a

l
,

because it m
ust be overridden in a child class

•
A

n abstract m
ethod cannot be declared as

sta
tic

,
because it cannot be invoked w

ithout an im
plem

entation

•
A

bstract classes are placeholders that help organize
inform

ation and provide a base for polym
orphic

references

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

7
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Interfaces

•
W

e've used the term
 interface to m

ean the set of service
m

ethods provided by an object

•
T

hat is, the set of m
ethods that can be invoked through

an object define the w
ay the rest of the system

 interacts,
or interfaces, w

ith that object

•
T

he Java language has an interface construct that
form

alizes this concept

•
A

 Java in
te

rfa
ce is a collection of constants and abstract

m
ethods

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

8
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Interfaces

•
A

 class that im
p

le
m

e
n

ts an interface m
ust provide

im
plem

entations for all of the m
ethods defined in the

interface

•
T

his relationship is specified in the header of the class:

 cla
ss

cla
ss-n

a
m

e im
p

le
m

e
n

ts
in

te
rfa

ce
-n

a
m

e {

 }

•
S

ee S
o

a
p

_
B

o
x.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

9
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Interfaces

•
A

n interface can be im
plem

ented by m
ultiple classes

•
E

ach im
plem

enting class can provide their ow
n unique

version of the m
ethod definitions

•
A

n interface is not a class, and cannot be used to
instantiate an object

•
A

n interface is not part of the class hierarchy

•
A

 class can be derived from
 a base class and

 im
plem

ent
one or m

ore interfaces

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

10
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Interfaces

•
U

nlike interface m
ethods, interface constants require

nothing special of the im
plem

enting class

•
C

onstants in an interface can be used in the
im

plem
enting class as if they w

ere declared locally

•
T

his feature provides a convenient technique for
distributing com

m
on constant values am

ong m
ultiple

classes

•
S

ee File
_

P
ro

te
ctio

n
.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

11
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Interfaces

•
A

n interface can be derived from
 another interface, using

the e
xte

n
d

s
 reserved w

ord

•
T

he child interface inherits the constants and abstract
m

ethods of the parent

•
N

ote that the interface hierarchy and the class hierarchy
are distinct

•
A

 class that im
plem

ents the child interface m
ust define

all m
ethods in both the parent and child

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

12
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Interfaces

•
A

n interface nam
e can be used as a generic reference

type nam
e

•
A

 reference to any object of any class that im
plem

ents
that interface is com

patible w
ith that type

•
F

or exam
ple, if Ph

ilo
so

p
h

e
r

 is the nam
e of an

interface, it can be used as the type of a param
eter to a

m
ethod

•
A

n object of any class that im
plem

ents
P

h
ilo

so
p

h
e

r

can be passed to that m
ethod

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

13
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Interfaces

•
N

ote the sim
ilarities betw

een interfaces and abstract
classes

•
B

oth define abstract m
ethods that are given definitions

by a particular class

•
B

oth can be used as generic type nam
es for references

•
H

ow
ever, a class can im

plem
ent m

ultiple interfaces, but
can only be derived from

 one class

•
S

ee P
rin

te
r2

.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

14
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

Interfaces

•
A

 class that im
plem

ents m
ultiple interfaces specifies all

of them
 in its header, separated by com

m
as

•
T

he ability to im
plem

ent m
ultiple interfaces provides

m
any of the features of

m
u

ltip
le

 in
h

e
rita

n
ce, the ability

to derive one class from
 tw

o or m
ore parents

•
Java does not support m

ultiple inheritance

•
S

ee R
e

a
d

a
b

le
_

F
ile

s.ja
va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

15
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
ackages

•
A

 Java pa
cka

g
e is a collection of classes

•
T

he classes in a package m
ay or m

ay not be related by
inheritance

•
A

 package is used to group sim
ilar and interdependent

classes together

•
T

he Java A
P

I is com
posed of m

ultiple packages

•
T

he im
p

o
rt

 statem
ent is used to assert that a particular

program
 w

ill use classes from
 a particular package

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

16
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
ackages

•
A

 program
m

er can define a package and add classes to it

•
T

he p
a

cka
g

e
 sta

te
m

e
n

t
 is used to specify that all classes

defined in a file belong to a particular package

•
T

he syntax of the package statem
ent is:

 p
a

cka
g

e

p
a

cka
g

e
-n

a
m

e;

•
It m

ust be located at the top of a file, and there can be
only one package statem

ent per file

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

17
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
ackages

•
T

he classes m
ust be organized in the directory structure

such that they can be found w
hen referenced by an

im
port statem

ent

•
T

here is a C
LA

S
S

P
A

T
H

 environm
ent variable on each

com
puter system

 that determ
ines w

here to look for
classes w

hen referenced

•
S

ee S
im

p
le

_
IO

_
T

e
st.ja

va

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

18
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
ackages

•
T

he im
port statem

ent specifies particular classes, or an
entire package of classes, that can be used in that
program

•
Im

port statem
ents are not necessary; a class can alw

ays
be referenced by its fully qualified nam

e in-line

•
S

ee S
im

p
le

_
IO

_
T

e
st2

.ja
va

•
If tw

o classes from
 tw

o packages have the sam
e nam

e
and are used in the sam

e program
, they m

ust be
referenced by their fully qualified nam

e

Java S
oftw

are S
olutions Lew

is and Loftus

C
hapter 9

19
C

opyright 1997 by John Lew
is and W

illiam
 Loftus. A

ll rights reserved.

P
ackages

•
A

s a rule of thum
b, if you w

ill use only one class from
 a

package, im
port that class specifically

•
S

ee S
im

p
le

_
IO

_
T

e
st3

.ja
va

•
If tw

o or m
ore classes w

ill be used, use the * w
ildcard

character in the im
port statem

ent to provide access to all
classes in the package

