Sorting and Searching

Introduct:

- Two common programming tasks items and searching for an item in are sortin മ list മ
- Chapter 13 focuses on:
- Selection Sort
- Insertion Sort
- A generic sort for objects
- Linear Search
- Binary Search
- Hashing

Sorting

- Sorting particular ന-പ order the process O f arranging മ . ຕ
- There must be some value on which the order
- There are many algorithms for sorting മ
- These algorithms vary in efficiency
- and We will examine two Insertion Sort specific algorithms

Selection Sort

- The approach of Selection Sort:
- select one value and put it in its final place
- repeat for all other values

Ī

- An expanded version:
- scan the list to find the smallest value
- put it in the first position
- find the next smallest value
- put it in the second position
- repeat until all values are placed

Selection Sort

An example:

original: W 9 9

<u></u> 9 9 W

N

N

smallest

<u>ი</u>-

smallest <u>ը</u>-2 9

2

W

9

ω •• N

W

<u>о</u> 9

smallest <mark>ր-</mark> .. თ smallest

<u>ռ</u>-

2

W

9 9

See Selection_Sort_Test.java

Insertion Sort

- The approach of Insertion Sort:

Pick any item and insert it

into

1ts

proper

ртас

- repeat until all items have been inserted
- ı
- An expanded version:
- consider the first item to be a sorted sublist
- necessary to make room to insert the new addition insert the second item into the sorted sublist,
- insert the third item into the sorted sublist shifting as necessary (of
- repeat until all values are inserted into their

Insertion Sort

An example:

original:

W

insert 9:

9

9

W

9

9

 \vdash

N

 \vdash

N

9

 \vdash

2

9 N

insert 2 insert

<u>..</u>

 \vdash

W

<u></u>σ

insert

<u>..</u>

W

9

2

W

9 9

S C C C Insertion_Sort_Test.java

0

Comparing Sorts

- efficiency Both Selection and Insertion Sorts are
- almost all values in the list The both have outer loops that scan inner loops that compare the value of the a 11 ele
- That is approximately n² number of comparis list O f size n
- We therefore say that these sorts are of
- Other sorts are more efderinglog

Sorting Objects

- Integers have цe inherent order
- But person the order defining the O H മ Set class 0 f objects must 00
- and particular methods Recall that a Java interface can guarantees that മ particular class фe useo Set ξΩ CO
- We can use this to develop a generic sort objects
- See Object_Sort_Test.java

Searching

- The goal is to find a particular target _Va_
- In an unsorted list, a lisears septehtechnic
- for Scan through the list one item at the target value മ tim
- S C C C Linear_Search_Test.java
- Ηf the list is sorted, not all items need
- As value, you know the target SOON S D you encounter മ is not in value greater th€

Binary Search

- If the target value list is sorted, bimearyans easecla t O
- Strategy: eliminating half of the items from consider examine the item in the midd n
- The target value will either be found, half or the other
- Continue the process, examining the middle search section on each comparison
- See Binary_Search_Test.java

Recursive Binary Search

- The binary search algorithm can be implemen recursively
- It has the same general strategy S D the ナナん
- Each recursive call narrows the search Sect Sect
- S C C C Binary_Search_Test2.java

Hashing

- Hashing is another technique for information storing a D
- given item A hash function produces bashntegter any
- The hash code is size of the hash table scaled to a hash index Re'
- The item is stored in hash table at the has

Hashing

- Collisions particular index may occur, resulting in מ
- Therefore a small search may be necessary
- Because hashing is based on calculations efficient
- Storing and searching involve the same